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Abstract

Klebsiella pneumoniae (KP) is a Gram-negative bacterium that commonly resides in the
human gastrointestinal tract and can also act as an opportunistic pathogen and cause
extra-intestinal infections. KP poses a global health threat because it causes both hospital-
and community-acquired infections in immune-competent and immunocompromised
hosts. These infections can be multidrug-resistant and/or hypervirulent, making KP infec-
tions difficult to treat and deadly. In the absence of effective treatments for recalcitrant KP
infections, bacteriophage (phage) therapy is gaining attention as a promising alternative.
In this review, we evaluate KP epidemiology and epitope diversity, discuss interactions
between KP-targeting phages and their bacterial hosts from an eco-evolutionary perspec-
tive, and summarize recent efforts in phage therapy for treating KP infections. We also
discuss novel approaches, including genetic engineering and machine learning, as initial
steps toward developing KP-targeting phage therapy as a precision medicine approach for
an emerging and dangerous pathogen.

Introduction

Klebsiella pneumoniae (KP) are gut commensals that can also cause opportunistic infections.
KP can be categorized into two distinct pathotypes, called classical and hypervirulent. Classi-
cal strains are associated with infections in hospitalized and immunocompromised patients,
are frequently multidrug-resistant, and cause hospital-associated infections such as urinary
tract infections, pneumonia, and surgical site infections (Fig 1A) [1]. In contrast, hyperviru-
lent KP strains are usually community-acquired, infect healthy individuals, are often sus-
ceptible to antibiotics, and are able to cause highly invasive infections like liver and splenic
abscesses, endophthalmitis, and meningitis (Fig 1A) [1]. While genomic studies have shown
that the classical and hypervirulent KP pathotypes have followed independent evolutionary
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trajectories [2], recent studies report a worrisome convergence of multidrug-resistant and
hypervirulent traits in some strains [3]. This poses a challenge, as the pace of new antimi-
crobial discovery and approval has not kept up with the increasing emergence and spread of
high-risk KP clones [4].

To fight high-risk KP clones, therapeutic strategies have been developed to target different
surface antigens, including capsular polysaccharide (CPS) and lipopolysaccharide (LPS) [5,6].
While vaccination and antibody therapies have been a primary focus in recent decades [7,8],
bacteriophage (hereafter referred to as phage) therapy is gaining widespread attention as a new
approach for treating KP infections [9]. Phages are bacteria-targeting viruses that can be used
to treat infections. Naturally occurring phages and their bacterial hosts are constantly entan-
gled in an evolutionary arms race, and prior work has suggested that the diversity of bacterial
antigens like CPS and LPS is likely driven by phage predation [10,11]. Understanding the eco-
evolutionary dynamics between phages and bacterial antigens is critical in the deployment of
phage therapy as a successful alternative therapeutic strategy for treating infections, like those
caused by KP. Here, we review the diversity of surface antigens recognized by KP-targeting
phages, analyze phage-host dynamics, explore the use of phage therapy to treat KP infections,
and discuss how phages could be further harnessed as an alternative antimicrobial strategy.

Klebsiella pneumoniae surface polysaccharides

KP is well known for producing a CPS, which is a major contributor to its virulence [12]. CPS
is attached to the outer membrane with a lipid anchor, but may also be retained at the bacte-
rial surface through interactions with other surface molecules such as LPS [13]. The KP CPS is
composed of repeating oligosaccharide units that together form the K-antigen, which defines
the K-type of a KP strain. In this review, the terms K-antigen and CPS will be used inter-
changeably. CPS can be composed of a variety of different carbohydrates including glucose,
galactose, galactofuranose, fucose, mannose, and rhamnose [14]. These sugar moieties may
be additionally modified by CPS-modifying enzymes such as acetyltransferases and pyruvyl
transferases [14]. CPS composition is diverse and varies between different KP strains. Addi-
tionally, hypervirulent strains typically produce more CPS than classical strains and are often
found to be hypermucoviscous [1]. The other dominant surface-associated polysaccharide,
LPS, is composed of a lipid A molecule embedded in the bacterial outer membrane, a core
oligosaccharide domain, and a variable O-antigen made of repeating sugar units that is used
to define the O-antigen type. The O-antigen is composed of sugars such as galactose, galacto-
furanose, mannose, ribofuranose, and N-acetyl-p-glucosamine [15] and can be additionally
modified (e.g., acetylated) to generate subvariants of O-antigens [16,17].

Typing and tracking of K-antigens and O-antigens can help identify which antigen types
are more commonly associated with KP infections, and thus identify the K-types and O-types
that should be prioritized for the development of new therapeutics. Historically, both CPS and
LPS were typed using antisera reactive to specific and immunologically defined K-antigen or
O-antigen types termed serotypes. K-antigen typing was initially performed with the Quel-
lung capsular swelling reaction, in which typing serum is added to bacteria and then observed
under a microscope for capsular swelling, which happens upon binding of type-specific
antibodies to the K-antigen [18]. Several other methods were later developed to increase
speed, accuracy, and efficiency, including indirect immunofluorescence, slide agglutination,
double-diffusion gel precipitation (Ouchterlony test), countercurrent immunoelectrophore-
sis, and latex agglutination [19-21]. However, the requirement for antisera to perform these
tests limited comprehensive identification, and many KP isolates were unable to be typed due
to the limited number of antisera available. Additionally, cross-reactivity between different
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Fig 1. Klebsiella pneumoniae infections and cell surface phage receptors. (A) Classical KP strains are typically associated with pneumonia, urinary tract infec-
tions (UTIs), and surgical site infections. Hypervirulent KP strains are associated with invasive infections such as meningitis, soft tissue infections, liver and splenic
abscesses, and bacteremia. (B) The primary cell surface receptor for KP phage is the capsular polysaccharide (CPS). Other phage receptors include lipopolysaccharide
(LPS), outer membrane porins (OMPs), and conjugative plasmid-encoded pili. (C) Phages bind to cell surface receptors using receptor-binding proteins on their tail
fibers. These proteins can contain catalytic domains (e.g., depolymerase domains) that aid in targeting cell surface receptors. This figure was created using BioRender.

https://doi.org/10.1371/journal.ppat.1012971.g001

serotypes made precise identification challenging. Like K-antigen typing, O-antigen typing
was also traditionally performed using antisera in a tube or latex agglutination test [22],

but this had the additional challenge of requiring acapsular mutants, as the K-antigen often
masks the O-antigen. An enzyme-linked immunosorbent assay that did not require acapsular
mutants was later developed, thereby facilitating the O-antigen typing process [23].

PLOS Pathogens | https://doi.org/10.1371/journal.ppat. 1012971  April 8, 2025 3/28



https://doi.org/10.1371/journal.ppat.1012971.g001

PLOS PATHOGENS

More recently, genetic methods based on PCR or whole genome sequencing (WGS) were
developed for both K-antigen and O-antigen typing. PCR-based methods include restriction
fragment length polymorphism analysis of the entire CPS locus to determine a “C-pattern,”
and typing based on the sequences of specific CPS biosynthesis genes such as wzi, wzc, and
wzy [24-26]. Similarly, O-antigen typing can be performed using PCR to identify specific
alleles in the wzm-wzt genes in the O-antigen locus, as well as alleles in the wbbY region
[27]. As WGS has become more accessible in recent years, genomic typing of K-antigen and
O-antigen loci is now preferred as it is more precise and comprehensive. Software tools like
Kaptive have been instrumental in the development of a standardized typing scheme for KP
isolates, even in the presence of genetic mutations and locus disruptions [28,29]. Kaptive is
regularly updated and currently enables the identification of 163 genetically defined K-antigen
types (also called K-loci) and 11 different O loci [28].

Despite the ability to assign K-antigen types from WGS data, additional work is still needed
to link K-antigen locus genotypes to biochemical structures, as these cannot be predicted
based solely on genomic sequence. Among the 163 different K-antigen types, only about
half have a determined structure [14,30,31]. While K-antigen structures have historically
been identified using gas chromatography-mass spectrometry and nuclear magnetic reso-
nance spectroscopy, a recent study used Fourier transform infrared spectroscopy to predict
K-antigen structure based on similarity to known K-antigens [32]. As more structures are
elucidated, it is tempting to speculate that one day new K-antigen types could be inferred from
genome sequencing data alone, though biochemical validation would still be necessary to
confirm polysaccharide composition.

CPS epidemiology and impact on virulence

The high diversity of KP CPS types appears to be a major determinant of the adaptive suc-
cess of KP, and the distribution of K-antigen types varies by geography [33,34]. Common
K-antigen types described in the literature include KL2, KL10, KL15, KL16, KL17, KL21,
KL22, KL24, KL25, KL28, KL30, KL54, KL62, and KL64. For this review, we surveyed 16,475
KP genomes deposited in NCBI (accessed October 16, 2023) that were collected from humans
and sampled from urine, blood, or the respiratory tract. Among these genomes, we found that
the ten most frequently observed K-loci were KL2, KL24, KL25, KL47, KL51, KL64, KL102,
KL106, KL107, and KL112. We also observed enrichment of different K-loci on different con-
tinents, confirming regional differences in prevalence (Fig 2A).

CPS is an important virulence factor for KP [12]. Experimental disruption of CPS in a
variety of KP strains has been shown to decrease virulence in mouse models of infection
compared to encapsulated parent strains [35,36]. CPS has also been shown to mediate evasion
of phagocytosis and complement-mediated lysis [37,38], and limits the inflammatory response
to KP infection [36]. Beyond simply the presence of CPS, the amount and composition of
the CPS also impact KP virulence. For example, CPS associated with hypervirulent strains
is often hypermucoviscous, and this characteristic has been demonstrated to correlate with
increased virulence [12,39]. Hypermucoviscosity is associated with specific K-antigen types,
including KL1, KL2, KL4, and KL5 [40]. Of these, KL1 and KL2 have been particularly well
characterized and shown to confer hypervirulence, defined as causing lethal infection in
mice at a low bacterial inoculum (10° bacteria) and the ability to cause disease in otherwise
healthy humans. KL1 and KL2 antigen types have also been linked to more invasive disease
and increased resistance to phagocytosis, killing by neutrophils, and capture by liver-resident
macrophages [41-44]. The ability of CPS loci to be horizontally transferred between geneti-
cally distinct KP strains has caused some researchers to propose that KP virulence is associ-
ated with particular genetic lineages rather than specific K-antigen types [40,45]. To rigorously
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Fig 2. K- and O- locus type diversity across different geographic regions. 16,475 KP genomes derived from human blood, urinary tract, or
respiratory specimens were accessed from NCBI on October 16, 2023. Genomes were typed using Kaptive to determine K-locus types (A) and
O-locus types (B) [28,29]. The most prevalent types are labeled; all other types are grouped as “Other.” K-loci and O-loci flagged as “unknown” by
Kaptive are included in the “Other” category.

https://doi.org/10.1371/journal.ppat.1012971.9002

study CPS-specific mechanisms without confounding from the genetic background, some
recent studies have performed CPS swap experiments. Notably, Huang and colleagues found
that “high-virulence” K-antigen types conferred the ability to evade capture by liver-resident
macrophages more than “low-virulence” types [42]. However, other studies have shown that
the transfer of a hypervirulent CPS to a less virulent strain does not fully recapitulate virulence
[46-48]. Additionally, it is not uncommon to observe clinical KP strains with disruptions

in CPS biosynthesis genes such as wcaJ and wbaP [49,50], further highlighting the complex
relationship between K-antigen type and KP virulence.

Lipopolysaccharide structure, epidemiology, and associated
virulence

In contrast to the 163 K-antigen types currently known, only 11 primary O-antigen types have
been described, including O1, O2a, O2ac, O2aeh, O3, 04, 05, 07, 08, O11, and O12 [16]. All
except O11 have published structures [31], and four additional types (OL101, OL102, OL103,
and OL104) have been genetically identified but not yet structurally characterized [33]. One
final O-antigen type, O2afg, is associated with the ST258 lineage and is also considered to be
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a distinct type [16,51]. Unlike K-antigens, whose structure is dictated entirely by the K-locus,
O-antigen structures are determined by both the O-locus and additional genes outside the
locus (wbbY, gmIABD, and wbVW) [28]. For example, the WbbY glycosyltransferase modifies
the O1 antigen type and converts it to the O2 antigen type. Additionally, several O-antigens
are structurally similar and differ by the presence of an additional subunit or by a modifi-
cation such as acetylation, resulting in O-antigen subvariants [16,17,52]. Of the different
O-antigen types, only a few are commonly found in clinical KP strains. Four O-antigen types,
01, O2ab, 03, and O5, accounted for 82% of strains tested in two German university hospitals
and 92% of human-derived strains tested in Japan [22,53]. In line with these seroepidemio-
logical studies, among the 16,475 KP genomes we accessed from NCBI, we found that the O1/
0O2v1 and 01/02v2 loci were the most common O-loci, followed by O3b, OL101, O4, and O5.
There was less regional variation in O-loci compared to K-loci, however, we did find the O4
locus to be more common in South America and the OL101 locus to be predominantly found
in Asia (Fig 2B).

LPS, specifically lipid A, is strongly immunogenic and an activator of the pattern recog-
nition receptor TLR4 [12,54]. Some KP strains are able to dampen this immunogenicity by
masking LPS with specific CPS antigens [12,38]. LPS has also been implicated in the virulence
of KP and contributes to bacterial resistance to complement-mediated killing by binding
complement protein C3b far from the cell membrane and thus preventing the formation and
insertion of the membrane attack complex [55]. The O1 serotype in particular is associated
with more invasive and hypervirulent strains [28], and contributes to bacteremia in a murine
model of pneumonia [56]. Finally, lipid A may also contribute to virulence by confer-
ring protection against cationic antimicrobial peptides [12,57]. Overall, while LPS is more
immunogenic than CPS, both CPS and LPS are highly abundant surface polysaccharides that
contribute to KP virulence in different ways.

Diversity of KP surface receptors from a phage therapy
perspective

Antibiotics are currently the first line of treatment against KP infections. Due to the quick
acquisition of antibiotic resistance by KP [58], antibiotics are no longer effective in clearing
some infections and alternative approaches are required. Phage therapy is gaining attention
as an alternative treatment for antibiotic-resistant bacterial infections. In contrast to broad-
spectrum antimicrobials, phage therapy can specifically target pathogens and preserve benefi-
cial bacteria in the microbiome [59,60], sparing patients from the microbial dysbiosis that can
accompany antibiotic treatment.

KP-targeting phages have been isolated from a broad range of sources where KP bacteria
are prevalent, including water, soil, and clinical samples [61]. The first KP phage was identi-
fied over a hundred years ago [62], and since then, more than 10,000 have been isolated [63].
KP phages belong mainly to the Caudoviricetes class of viruses [64], which are tailed viruses
with double-stranded DNA (dsDNA) genomes ranging in size from 5 to 300+ kilobases [65].
Caudoviricetes phages are composed of (i) a head or capsid, which encases the dsDNA, (ii) a
helical tail that injects DNA into the bacterial cytoplasm, (iii) a portal complex which links the
head and tail, and (iv) tail fiber and tailspike proteins attached to the baseplate which interact
with bacterial cell surface receptors to initiate infection. Until recently, phages were classified
by their morphological characteristics, with tailed phages belonging to three families: myovi-
ruses (long contractile tails), siphoviruses (long non-contractile tails), and podoviruses (short
non-contractile tails) [66]. However, this classification scheme did not accurately reflect the
evolutionary history of phages, and a new genome-based classification was recently proposed
by the International Committee on the Taxonomy of Viruses [64]. Despite the significant
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number of phages that remain to be classified, Caudoviricetes is now divided into 47 different
families. According to this new classification, phages infecting KP are distributed across the
phylogeny of dsDNA phages, with most belonging to the Ackermannviridae, Autographivir-
idae, Demerecviridae, Drexlerviridae, and Straboviridae families [67,68]. Recently, an open-
source expandable phage and strain collection, known as KlebPhaCol, was initiated to collect,
store, and distribute Klebsiella spp. bacterial strains and phages [69]. As researchers continue
to study Klebsiella-targeting phages, their known diversity is likely to increase accordingly.
The initial steps in phage infection of bacterial cells involve the recognition of surface
receptors and subsequent phage adsorption (i.e., binding) to the cell. These first steps are
required for productive infection and are the primary determinants of the range of hosts
that a particular phage can infect. Initiation of phage infection can happen in a single step by
irreversible binding to a receptor [66], or in two steps, where initial reversible binding to a pri-
mary receptor is followed by irreversible binding to a secondary surface protein in proximity
to the bacterial membrane [70]. Because the presence of a host cell receptor and irreversible
binding are required for the release of phage genetic material into the cell, phages use highly
variable receptor-binding proteins (RBPs) that recognize specific bacterial surface receptors to
initiate infection (Fig 1C). The presence of suitable surface receptors, however, does not guar-
antee a successful infection because many bacteria encode genome defense systems that have
evolved to protect against phage predation. In recent years, a myriad of additional anti-phage
defense systems have been described [71,72]. On average, a KP genome encodes six anti-
phage defense systems and they are often non-redundant [73]. These defense systems include
restriction-modification [74], CRISPR-Cas [75], and abortive infection [76], among others. In
the context of phage therapy, and for this review, only productive infection, whereby phages
replicate and produce infectious viral progeny, will be considered. Other viral infection strate-
gies like lysogeny or pseudolysogeny are not considered here but are reviewed elsewhere [77].

Bacterial epitopes as receptors for K. pneumoniae phages

Because of its abundance and protrusion into the extracellular space, the first bacterial
structure that interacts with KP phages is very likely the CPS. In some bacterial species, phage
infection is hindered by CPS presence [78], which acts as a passive barrier that hides other
cellular receptors. In contrast, most KP phages are dependent on CPS presence to adsorb
efficiently onto host cells [67]. In vitro evolution experiments in which KP strains were
exposed to infectious phages revealed that resistance occurred most often through mutations
that resulted in a lack of CPS production [79,80]. Even when a secondary phage receptor was
required and exposed on the cell surface, phage infection was still hindered in the absence of
CPS [70], suggesting that it is crucial for successful infection by many KP-targeting phages
(Fig 1B).

Because host tropism of KP phages appears to be mainly driven by CPS serotype [67,79]
the infectivity of a given phage is likely limited to relatively few strains. The high specificity of
phages for CPS has been used historically for serotype determination, as a complement to the
traditional methods described above [81]. A recent study used 42 KP-targeting phages from
various genera and tested their ability to infect 138 strains belonging to 59 different K-types
[67]. The results showed that if a phage could infect one strain, there was a 92% chance it
could also infect other strains with the same K-type. In agreement with this study, changing
the K-type of a KP strain conferred resistance to phages that previously could infect the strain,
and conferred susceptibility to phages to which the strain was formerly resistant [10] (Fig 3A).
Other than CPS serotype, more subtle CPS variations also alter phage host range (Fig 3A).
For example, insertion sequence (IS) disruption of the CPS locus or mutations in a putative
acetyltransferase-encoding gene leading to reduced CPS acetylation both caused a change
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https://doi.org/10.1371/journal.ppat.1012971.g003

in phage host range and/or reduced phage adsorption [82,83]. Thus, even if CPS is properly
expressed, fine-tuning of monosaccharide linkage or chemical modification can alter phage
affinity for the capsular receptor.

While CPS-targeting KP phages are prevalent, the CPS is not the only phage receptor
described [67,84]. Transposon-directed insertion site sequencing (TraDIS, a powerful tool to
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generate large loss-of-function mutant libraries) was used to identify alternative/secondary
phage receptors essential for successful infection of KP and found that some phages required
full-length LPS biosynthesis for infection [85] (Fig 1B). Similarly, mutations in the O-antigen
biosynthesis genes wecA and wecG decreased phage adsorption and infection efficiency [86].
It remains unknown, however, whether LPS serves as a secondary phage receptor or if LPS is
instead required for proper CPS assembly, anchoring, and/or positioning [13,85]. Because of
the lower diversity of O-antigen types (Fig 2B), phages targeting LPS might be predicted to
target a broader range of KP strains.

Beyond CPS and LPS, several surface-associated proteins have been identified as recep-
tors for phage infection. These include the siderophore receptor FepA and the major porin
OmpK36, commonly referred to as OmpC [70,87] (Fig 1B). Phage receptors can also be
encoded on mobile genetic elements like plasmids, whereby some phages recognize spe-
cific components of the mating pair formation system to initiate adsorption [88,89] (Fig
1B). These plasmid-targeting phages can infect bacteria carrying IncF and IncP conjugative
plasmids [88,89], many of which carry antibiotic-resistance genes [90,91]. A consequence
of plasmid-dependent phage predation is that rather than targeting a particular bacterial
strain, the phage exerts strong selective pressure against plasmid carriage and reduces
dissemination throughout the population [92,93]. Given that antibiotic resistance and,
more recently virulence factors [94], are known to be encoded on conjugative plasmids,
such counterselection constitutes a beneficial by-product of phage therapy by reducing
virulence [95,96].

Host recognition by receptor-binding proteins and other phage tail
modules

The major determinants of phage host range are RBPs, which are commonly located

at the distal part of the phage tail (Fig 1C). A typical RBP of a KP-targeting phage is
composed of three main sections: (i) an N-terminal domain that anchors it to the phage
baseplate or another structural element of the tail, (ii) a C-terminal domain that acts
either as an autochaperone or as a noncatalytic carbohydrate-binding module [85], and
(iii) a mid-section B-helical domain with enzymatic activity, such as a depolymerase
domain that cleaves surface polysaccharides (Fig 1C). Identification and characteriza-
tion of phage RBP depolymerases is relatively recent [97,98], and knowledge about their
diversity and mechanisms of action is scarce. For instance, it was previously believed
that the trimeric state of tailspikes was crucial for enzyme stability, however recent
biochemical studies showed that monomeric versions of the catalytic domain were also
stable and active [99].

Phage RBP-encoded depolymerases cleave glycosidic bonds of polysaccharides, including
CPS, LPS, or biofilm matrix, and thus facilitate the early steps of phage infection (Fig 1B).
Phage depolymerases fall into two major categories: glycoside hydrolases, including O-antigen
endoglycosidases and CPS endosialidases; and lyases, including pectate and alginate lyases
that specifically cleave LPS, extracellular polymeric substances, CPS, or biofilm matrix [99].
Substrate specificity is determined by the depolymerase enzymatic pocket, which recognizes
precise polysaccharide residues. Thus, even subtle changes in receptor structure or composi-
tion can confer phage resistance [83]. Despite this specificity, predicting depolymerase activity
from RBP gene sequences alone is challenging because single mutations in the catalytic site
can strongly impact enzymatic activity [99]. Additionally, different RBPs that can degrade
the same polysaccharide can exhibit low sequence similarity, suggesting the use of alternative
cleavage sites or convergent evolution [100].
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Within phage genomes, tail fiber, tailspike, and lyase genes tend to be clustered and
arranged in a cassette-like organization (Fig 3B). This organization likely facilitates rapid
RBP evolution to modify residues in the catalytic pocket via horizontal gene transfer and
recombination [101], resulting in the acquisition of new enzymatic domains or the exchange
of tail modules between phages. The modularity of RBPs is predicted to enhance phage
adaptability through rapid modification to expand the functional repertoire (Fig 3B), i.e. host
range, thereby increasing phage fitness. A recent model proposed that anchor and enzy-
matic domains of RBPs could function as interchangeable building blocks [102], facilitating
extensive mosaicism (Fig 3B) [103]. Such domain shuffling in RBPs appears to occur despite
taxonomic and ecological barriers. The potential for varied combinations of RBPs appears to
only be limited by the constraints posed by the virion assembly process. Most phages carry
one or two RBPs with different depolymerase domains, thereby restricting their host range to
only one or a few KP serotypes [104]. However, some phages carry multiple depolymerases
targeting different K-types [84], such as the broad host range phage ®K64-1 which encodes
up to eleven depolymerases [100]. The fitness advantage of such generalist phages is strongly
influenced by the ecological conditions and the severity of trade-offs, which can fluctuate
over extended periods of co-evolution [105,106]. Indeed, a study in Escherichia coli showed
that generalist phages with broad host ranges exhibited higher fitness compared to specialist
phages with narrower host ranges, despite their slower adaptation rate [105]. This remains to
be addressed in KP. Taken together, RBPs play a critical role in phage infection, and under-
standing how they interact with bacterial surface receptors can yield important new insights
for phage therapy.

Bacteria-phage dynamics: Evolving to escape from one another

Phages and bacteria are engaged in a co-evolutionary battle, with bacteria trying to resist
phage infection and phages trying to infect their hosts more efficiently. While bacterial
surface receptors and other defenses (i.e., anti-phage defense systems) have evolved to limit
phage attacks, phages also diversify their targets through module shuffling and acquisition
of new mechanisms to overcome bacterial defenses. There are two main models to explain
phage-bacteria coevolution: “arms-race” dynamics and fluctuating selection dynamics
[107] (Fig 4A, 4B). In the arms-race model, the continuous adaptation of both phage and
bacteria leads to the accumulation of bacterial resistances and new phage infectivities (Fig.
4A). Under this model, genotypes are replaced by successive selective sweeps that lead to
phages with increased host ranges and bacteria with a large repertoire of phage resistance
mechanisms. Evolved bacteria remain resistant to phages with ancestral traits, and evolved
phages can still infect ancestral bacteria. Because of this, arms-race dynamics would very
likely result in high fitness costs, ultimately leading to population extinction of either phage
or bacteria.

On the other hand, the fluctuating selection model posits that phages evolve to overcome
bacterial defenses at the cost of no longer being able to infect ancestral bacteria (Fig 4B). In this
model, bacteria evolve to resist new phages, but in doing so, they may become newly sensitized
to phages that they were previously resistant to. This is exemplified by K-type swaps, in which
K-type exchanges allow a bacterial strain to resist infection by a given phage, but also result in
sensitivity to other phages to which the strain was previously resistant [10]. The fluctuating selec-
tion model implies that phages maintain a narrow host range, with large selective sweeps being
rare. Consequently, this model predicts a coexistence of numerous phage and bacterial genotypes
whose dynamics are driven by negative frequency-dependent selection, wherein fitness changes
over time as a function of allele frequency and rare genotypes have an advantage [108].
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Fig 4. Models of co-evolution between bacterial and phage populations. (A) In the arms-race model, continuous adaptation by bacteria and phage leads to
frequent selective sweeps and accumulation of new bacterial resistances and phage infectivities. (B) In the fluctuating selection model, phages maintain a narrow
host range with infrequent selective sweeps. This enables the co-existence of multiple phage and bacterial genotypes, whose frequencies are driven by negative
frequency-dependent selection and where rare genotypes have a fitness advantage.

https://doi.org/10.1371/journal.ppat.1012971.9004

Phage therapy for KP infections: Promise and challenges

Despite its use in Eastern Europe for nearly a century, phage therapy has emerged in Western
medicine in the last decade as a potentially viable treatment approach for recurrent, recalci-
trant, and multidrug-resistant bacterial infections. There are over a dozen reports of recent
phage therapy treatment for KP infections in humans (Table 1). Successful reports include
treatment of recurrent UTIs with KP-targeting phage cocktails [109,110] and clearance of KP
biofilm in a prosthetic joint infection [111]. Additionally, over 30 studies have tested the treat-
ment efficacy of phages using animal models of infection (Table 2), with most studies showing
promising results. While phage therapy is often considered a last-resort salvage therapy for
patients with no other viable treatment options, these therapeutic successes underscore the
high potential of phages as next-generation antimicrobials.

At the same time, the development of phage therapy for widespread use faces several
challenges. First, there are several disconnects between phage studies conducted in animals
and humans. While numerous animal studies have demonstrated the therapeutic efficacy of
phages, these have largely focused on acute systemic infections like pneumonia and bacte-
remia, however, applications in humans have thus far targeted chronic infections like UTTs
and joint infections (Tables 1 and 2). Extrapolating outcomes from animal studies to human
patients can be complicated as chronic infections introduce additional challenges such as bio-
film formation, development of phage-resistant mutants, or phage neutralization by the host
immune system. These issues are not typically encountered in acute infections. Additionally,
animal studies often use hypervirulent KP strains, while most patient case reports describe
the treatment of classical and multidrug-resistant strains. Another challenge is the variety of
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Table 1. KP bacteriophage therapy studies in humans.

Study Infection KP ST' |KP Co-administered | Phage(s) used Phage dose (PFU/ | Administration | Outcome(s)
type K-type' antibiotics (Family: Name)* | dose) route(s)
Kuipers and UTI ND ND Meropenem NR NR Oral; bladder Successful KP
colleagues (2019) irrigation; eradication
[153] intravesical
Bao and colleagues | UTI ST11 ND Trimethoprim- NR:SZ-1,SZ-2, | 2.5x 10 Bladder Successful KP
(2020) [109] sulfamethoxazole SZ-3,SZ-6,SZ-8, irrigation eradication
Kpl165, Kp166,
Kp167, Kp158,
Kp169, Kp152,
Kpl54, Kp155,
Kp164, Kp6377,
HDO001
Corbellino and Permanent ST307 |ND None Tevenvirinae: 1x 107 (oral); 1 x Oral; intrarectal | Successful KP
colleagues (2020) ureteral stent vB_KpnM_GF 10° (intrarectal) eradication
[113]
Rubalskii and Lung ND ND Ceftazidime, Autographiviri- | 2 x 10* (inhaled); Inhaled; Temporary KP
colleagues (2020) infection Linezolid, Avi- nae: KPV811 1.8 x 10° nasogastric eradication
[154] bactam, Colistin, Tevenvirinae: (nasogastric)
Meropenem, KPV15
Cotrimoxazole,
Tobramycin
Cano and col- PJI ND ND Minocycline NR: KpJH46®2 | 6.3 x 10" v Resolution of
leagues (2021) symptoms
(111]
Qin and colleagues | UTI ST15 KL131 Piperacillin- Podoviridae: 2.5 x 10" (bladder); | Bladder/kidney | Successful KP
(2021) [155] Tazobactam JD902, JD907, 5 x 10? (kidney) irrigation eradication
JD908, D910
Myoviridae:
JD905
Rostkowska and UTI ND ND Meropenem NR NR Intrarectal UTI cleared after
colleagues (2021) nephrectomy
[156]
Zaldastanishvili UTI ND ND Metronidazole, NR NR Oral; Temporary KP
and colleagues Polymixin B, intravaginal eradication
(2021) [157] Neomycin
Doub and col- PJI ND ND Ertapenem NR: KP1, KP2 1x10%2x 108 I\Y% Resolution of
leagues (2022) symptoms
[158]
Eskenazi and Fracture ST893 | K20 Meropenem, Tevenvirinae: 1x 107 Local instilla- Improved wound
colleagues (2022) infection Colistin vB_KpnM_M1 tion via catheter | condition
[115]
Federici and IBD ND ND None Demerecviridae: | 2.8 x 10" Oral Phage administered
colleagues (2022) 1.2-3s as Phase 1 clinical
[159] Autographiviri- trial, no off-target
dae: MCoc5c¢ dysbiosis observed
Le and colleagues UTI ST307; | KL102, K30, | Ciprofloxacin Tevenvirinae: 5x10° v Successful eradi-
(2023) [110] ST3647; | K21,K17 Metamorpho, cation of bacterial
ST1015 Mineola, pKp20 burden, partial serum
neutralization
Li and colleagues Lung ST15 KL112 Amikacin, Podoviridae: >5x 10° Inhaled Decreased bacterial
(2023) [112] infection Ceftazidime- Kp_GWPB35, load, resolution of
Avibactam Kp_GWPA139 symptoms

!Sequence types and K-locus types were provided in the published study, or genome sequences of reported KP strain(s) were analyzed with Kleborate.

*Phage subfamily information is reported instead of family name if available. Phage classification was reported as described in the published study and may not follow
current genome-based classification schemes.

UTTI, urinary tract infection; PJI, prosthetic joint infection; IBD, inflammatory bowel disease; ND, not determined; NR, not reported; IV, intravenous.

https://doi.org/10.1371/journal.ppat.1012971.t001
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Table 2. KP bacteriophage therapy studies in mouse infection models.

Study Infection type | KP ST' KP Phage(s) used (Family: | Phage dose (PFU/ | Administration Administration timing
K-type' | Name)? dose) route(s)
Hung and colleagues Liver abscess; | ND K2 Podoviridae: NK5 2x10°-2 x 108 Intragastric; 30 mpi; 6 hpi; 24 hpi
(2011) [160] Bacteremia Intraperitoneal
Kumari and colleagues Burn wound ND ND NR: Kpn5 5% 10° Topical Simultaneous
(2011) [161]
Gu and colleagues (2012) | Bacteremia ND K2 Myoviridae: GH-K2 3 x10*-3 x 107 Intraperitoneal 30 mpi
[162] NR: GH-K1, GH-K3
Cao and colleagues (2015) | Pneumonia ND ND Siphoviridae:1513 2% 107-2 x 10° Intranasal 2 hpi
[163]
Chadha and colleagues Burn Wound | ST66 K2 Myoviridae: Kpnl, 5x10° Topical 7 dpi
(2016) [164] Kpn2, Kpn3, Kpn4,
Kpn5
Chadha and colleagues Burn Wound ND ND NR: KQ1, KO2, KO3, NR Liposome loaded; 30 mpi; 24 hpi
(2017) [165] KQ4, K@5 Intraperitoneal
Anand and colleagues Pneumonia ST375 K2 NR: VICCBPA43 2 x10° Intranasal 2 hpi
(2020) [166]
Horvath and colleagues Peritonitis ST15 K24 Siphoviridae: 1.75 x 108 Intraperitoneal 10 mpi; 1 hpi; 3 hpi
(2020) [167] vB_KpnS_Kp13
Soleimani and colleagues | Pneumonia ND ND Myoviridae: 1x10%-1x 10° Intraperitoneal Simultaneous; 24 hpi
(2020) [168] vB_KpnM-Teh.1
Dhungana and colleagues | Peritonitis ND ND Podoviridae: 2.4 %107 Intraperitoneal; Oral | Simultaneous
(2021) [169] Kp_Pokalde_002
Fayez and colleagues Burn Wound | ND ND Siphoviridae: ZCKP8 NR Suspension or gel 7 dpi
(2021) [170]
Hesse and colleagues Bacteremia ST258 KL107 | Podoviridae: Pharr 2.5x107or 5x 107 | Intraperitoneal 1 hpi; 8 hpi; 24 hpi
(2021) [171] Siphoviridae: KpNIH-2
Hao and colleagues (2021) | Peritonitis ND K47 Autographivirinae: 1x 108 Intragastric 12 hpi
[172] SRD2021
Luo and colleagues (2021) | Pneumonia ND ND Siphoviridae: 2x10* Intraperitoneal 4 hpi
[173] vB_Kpn_B01
Shi and colleagues (2021) | Bacteremia ST11 ND NR: kpssk3 1x10°-1 x 107 Intraperitoneal 3 hpi
[174]
Wang and colleagues Pneumonia ND K47 Myoviridae: 1x107-1x 10° Intranasal 1 hpi
(2021) [175] vB_KpnM_P-KP2
Zhang and colleagues Pneumonia ND K20 Autographiviridae: 2x10° Intraperitoneal Simultaneous; 2 hours
(2021) [176] vB_KpnP_Bp5 before infection; 2 hpi
Asghar and colleagues Bacteremia ND ND Myoviridae: A¥L NR Intraperitoneal Simultaneous
(2022) [177] Siphoviridae: A¥M
Bai and colleagues (2022) | NR ST2237 KL19 Myoviridae: 5x10° Injection Simultaneous
[178] vB_kpnM_17-11
Federici and colleagues GI tract ST323 KL21 Autographiviridae: 1x10°and 1 x 10° | Oral 6 hpi; 9 hpi; 12 hpi
(2022) [159] colonization Mcoc5¢
Demerecviridae: 1.2-3s,
8M-7
Myoviridae: PKP-55,
KP-2-5-1
Gan and colleagues (2022) | Pneumonia ST11;ST383 | ND Podoviridae: pKp11 1x10° NR 2 hpi
[179] Siphoviridae: pKp383
Pu and colleagues (2022) | Pneumonia ST23 K1 Siphoviridae: BUCT541 |2 x 10%-2 x 107 Nasal drip 6 hpi
(180]
Singh and colleagues Bacteremia ND ND Siphoviridae: KpBHU4, |1 x 10>-1x10° 1 | Intraperitoneal Simultaneous; 6 hours

(2022) [181] KpBHU14 x 101 before infection; 6 hpi
Tectiviridae: KpBHU7
(Continued)
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Table 2. (Continued)

Study Infection type | KP ST! KP Phage(s) used (Family: | Phage dose (PFU/ | Administration Administration timing
K-type' | Name)? dose) route(s)
Volozhantsev and col- Soft tissue ST86; ST493 | K2 NR: KpV74 1x 10 Intraperitoneal 1 hour before infection;
leagues (2022) [182] 3 hpi; 24 hpi
Fang and colleagues Pneumonia ST259 K54 Autographiviridae: 1x 10 Nasal drip 2 hpi
(2023) [183] vB_KpnA_SCNJ1-Z
Siphoviridae:
vB_KpnS_SCNJ1-C
Myoviridae:
vB_KpnM_SCNJ1-Y
Gan and colleagues (2023) | Steatohepatitis | ST1536 ND Podoviridae: phiW14 1x10%*-1 x 10° Intragastric Simultaneous
[184]
Ichikawa and colleagues Primary ST37;ST145 | K80; Drexlerviridae: KP13-2 | Oral: 1 x 10% IV: Oral; IV Simultaneous
(2023) [116] sclerosing K3 Stephanstirmvirinae: 1x 108
cholangitis KP13-16
Straboviridae:
KP13MC5-1
Autographiviridae:
KP13MC5-2
Liang and colleagues Bacteremia ND K54 Straboviridae: BL02 1x 108 Intraperitoneal 1 hpi
(2023) [185]
Rahimi and colleagues Pneumonia ST273 K2 Drexlerviridae: PSKP16 |2 x 107 Nasal drip 30 mpi; 24 hpi
(2023) [186]
Tang and colleagues NR ST86; ST23; | K20; Slopekvirinae: FK1979 | NR NR Simultaneous
(2023) [125] ST489 K1; K6
Feng and colleagues Wound ST11 KL64 Ackermannviridae: 6 x 107 NR 30 mpi
(2024) [187] PH1/P01
Autographiviridae: P24
Drexlerviridae: P39
Kelishomi and colleagues | Burn Wound | ST782 K2 Drexlerviridae: PSKP16 | 1.5 x 108 Topical 2 hpi
(2024) [188]
Li and colleagues (2024) NR ST307;ND | K5 Drexlerviridae: P1011 1x10° Intraperitoneal 2 hpi
(189]
Tang and colleagues Bacteremia ST86 K2 Slopekvirinae: FK1979 | FK1979: 2 x 10%, Intraperitoneal 2 hpi

(2024) [190]

NR: phiR3

2x10°-2 x 1082
x 10"
phiR3: NR

'Sequence types and K-locus types were provided in the published study, or genome sequences of reported KP strain(s) were analyzed with Kleborate.

*Phage subfamily information is reported instead of family name if available. Phage classification was reported as described in the published study and may not follow

current genome-based classification schemes.

GI, gastrointestinal; NR, not reported; ND, not determined; hpi, hours post-infection; mpi, minutes post-infection; dpi, days post-infection; IV, intravenous.

https://doi.org/10.1371/journal.ppat.1012971.t002

phages used across different studies, as well as the use of single phages (i.e., monophage ther-
apy) versus phage cocktails containing mixtures of distinct phages. Most clinical reports used
phage cocktails to treat KP infections, and some suggest that this approach reduces the emer-
gence of phage-resistant bacteria [109,110,112]. Other clinical reports have suggested that
monophage therapy is sufficient to resolve KP infection [111,113]. The use of antibiotics in
combination with phages in some studies also complicates the interpretation of study results

and makes it challenging to determine the independent contribution of phages to infection

clearance. Lastly, a lack of standardized treatment protocols and outcome measures makes it

difficult to compare studies. Overall, while the available literature suggests that phage ther-
apy has good efficacy and a favorable safety profile, well-controlled clinical trials are needed
to robustly measure the broader utility of this therapeutic modality. No currently enrolling
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clinical trials are focused on KP infections specifically, however, the growing interest in this
field may lead to the creation of such trials in the future.

An important step in developing phage therapy is determining the phages to be used. This
determination is primarily based on phage host range. It is thought that the K-type specificity of
most KP phages might be a double-edged sword; narrow host range enables the phages to target
specific isolates while minimizing bacterial cross-resistance, however, the diversity of KP K-types
likely reduces the overall species coverage of any individual CPS-targeting phage. To circumvent
this limitation, there is increasing interest in CPS-independent phages. These phages recognize
the O-antigen or surface-associated proteins, which tend to be more conserved across different
KP strains, thus increasing phage host range [28,84,114]. In vitro evolution can also be leveraged
to generate more efficient phages. One method involves preadapting phages by iteratively pas-
saging them in the presence of a target KP strain to evolve a more active phage [115]. Another
method uses in vitro evolution to generate KP strains that are resistant to an initial phage. These
are then used as bait to isolate additional phages capable of targeting the phage-resistant KP
strains. These additional phages can then be used in combination with the initial phage to create
a cocktail that can target both the original KP strain and anticipated phage-resistant mutants
[116]. Using phages that target different bacterial receptors and have different host ranges can
also reduce the occurrence of phage resistance [117], which often evolves more rapidly in vitro
compared with resistance to small molecule antibiotics [118,119]. Currently, alongside diffi-
culties in the identification and production of suitable phages, obtaining regulatory approval
for phage therapy can cause additional time delays between a compassionate use phage therapy
request and the administration of phage to patients, a process that takes a median of 170 days
[59]. These delays can be further lengthened in regions with limited resources, which lack access
to phage therapy and often suffer from an increased burden of antimicrobial resistance.

The emergence of bacterial resistance to phage predation is often evoked as a concerning
challenge to the potential success of phage therapy. While evolved phage resistance may limit
therapeutic efficacy, it can also lead to beneficial trade-offs. For example, evolved phage resistance
may result in increased bacterial antibiotic susceptibility, altered susceptibility to other phages,
and changes in bacterial virulence [110,117,120]. Thus, even if phage therapy cannot directly clear
KP infection, it can be used to steer the bacterial population toward a more treatable phenotype.
Because KP-targeting phages typically rely on the CPS for adsorption, the emergence of phage
resistance frequently involves the alteration or loss of the bacterial CPS (Fig 3A), which can have
variable effects [87,102]. Acapsular KP variants have higher rates of conjugation and thus greater
potential to acquire multidrug resistance [10]. CPS loss can also enhance tolerance to membrane-
targeting antimicrobial peptides [121] allowing bacterial regrowth even under high-dose anti-
biotic treatment. Furthermore, a recent report found that in vitro phage exposure led to the
formation of KP persister cells that had a 6-log increase in survival when exposed to lethal con-
centrations of antibiotics [122]. These persister cells also slow the pace of bacteria-phage coevolu-
tion and selection [123], promote anti-phage defenses [124], and evade antibiotic killing, thereby
enabling regrowth post-treatment. On the other hand, acapsular KP variants have decreased
rates of gastrointestinal tract colonization and diminished virulence compared with encapsulated
strains [112,125]. Overall, understanding trade-offs driven by phage exposure and evolution of
phage resistance can inform the development of phage therapies, alone or in combination with
antibiotics, that effectively leverage these trade-offs for maximal therapeutic benefit.

Looking ahead: The future of phage therapy for KP infections

With the growing popularity of phage therapy, there is also increased interest in phage-derived
strategies, such as phage enzymes with antibacterial properties. These enzymes, namely lysins
and depolymerases, have shown promise in combatting bacterial infections, with little to no
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A. Phage Derived Enzymes

adverse effects (Fig 5A) [126,127]. Lysins are phage-encoded enzymes that digest the pepti-
doglycan of bacterial cell walls. Studies have shown that exogenous addition of lysins exhibits
antibacterial activity both in vitro and in vivo [128]. Additionally, resistance to lysins is rare,
likely due to their targeting of a highly conserved region of the cell wall [129,130]. Several lysins
with activity against KP have been described [131,132]. Depolymerases, on the other hand,
degrade carbohydrates and exhibit high substrate specificity for CPS, LPS, or other extracellular
polysaccharides. These enzymes have therapeutic potential as standalone agents, as they can
degrade KP biofilms and make the bacteria more sensitive to antimicrobials or the immune
system, thus promoting infection clearance [133-135]. However, the large molecular mass of
depolymerases may limit their tissue penetration, and as proteins, they are likely to stimulate an
immune response and might prompt the generation of neutralizing antibodies that would likely
reduce their effectiveness over time. Additionally, the effectiveness of depolymerases, as with
phage therapy in general, can be limited by the emergence of resistance due to modifications or
variations in bacterial surface-associated polysaccharides.

Phages can also be used as gene transfer agents that can deliver pre-determined “cargo” to
bacterial cells (Fig 5B). Initial efforts have focused on the delivery of CRISPR-Cas systems that

C. Extracellular Contractile Ejection Systems (eCIS)
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Fig 5. Looking ahead—The future of phage therapy for KP infections. (A) Phage-derived enzymes like lysins and depolymerases can degrade peptidoglycans and
carbohydrates, including those in the bacterial CPS and KP biofilm matrix. (B) Phages could be used as gene transfer agents to deliver predetermined “cargo” to
bacterial cells and use CRISPR-Cas systems to kill directly or edit the bacterial genome. (C) Extracellular Contractile Ejection Systems (eCIS) are syringe-like macro-
molecular systems that deliver toxins into adjacent cells. eCIS could be reprogrammed to change their specificity and/or express alternative payload molecules to com-
bat bacterial infections. (D) Phage genome editing can be performed through a process called “recombineering”. Recombineering enables modification, reduction, or
broadening of phage host range. (E) Computational tools are being developed to predict interactions between phages and potential bacterial hosts. Machine learning
and modeling allow rapid identification of candidate phages for a given bacterial infection, enabling the design of highly specific and optimized phage cocktails for use

in clinical settings.

https://doi.org/10.1371/journal.ppat.1012971.9005
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can either kill bacteria outright or eliminate undesirable genes from the bacterial population
[136]. More recently, a phage-derived particle was used to perform in situ base editing of E.
coli and KP colonizing the mouse gut [137]. Additionally, extracellular contractile injection
systems (eCISs) have been described as an additional phage-derived antimicrobial system (Fig
5C). These are syringe-like macro-molecular systems that deliver toxins into adjacent cells
and appear to have evolved from bacteriophage tails [138-140]. Like phages, these systems
recognize specific receptors in the target cell and subsequently release a broad range of toxins
that inhibit microbial growth. Recent studies have shown that eCISs can be “reprogrammed”
and engineered to deliver a variety of different payloads in a strain-specific manner. Given
the large number of eCISs currently described (>1,200) [139], these systems could constitute
anovel and untapped source of phage-based antimicrobial strategies for further development.
The potential of these phage-derived strategies to degrade KP biofilms and sensitize bacteria
to other antimicrobials are particularly attractive features, thus their characterization and
further development warrants additional study.

As modern medicine becomes increasingly personalized, the development of phage ther-
apy has prompted the use of phage genome editing (Fig 5D). These techniques have largely
focused on engineering genomes through recombination (i.e., recombineering), initially
through the use of phage lambda as a model system to integrate linear DNA into the viral
genome [141,142]. Additional methods such as BRED (bacteriophage recombineering of elec-
troporated DNA) have been developed to facilitate genome manipulation and precise muta-
tion of phage genes [143,144]. The integration of the CRISPR-Cas system has proven effective
in both enhancing recombination efficiency [145] and selectively editing phage genomes
[146]. Furthermore, plasmids encoding lambda-red recombinase have been employed as a
strategy to further increase recombination efficiency [100]. These diverse recombineering
approaches represent a substantial leap forward in the field of phage genome modification and
pave the way toward finer specificity of phage therapy to modulate phage host range.

An alternative approach to phage genome editing is the use of computational approaches
to rapidly predict and identify suitable phages based on bacterial and phage genome sequences
(Fig 5E). Two recently developed computational tools to predict interactions between phages
and potential bacterial hosts, iPHoP [147] and CHERRY [148], aim to accurately predict an
individual phage’s host at the genus and species level, respectively. In the context of phage
therapy, however, prediction of activity at the strain level is likely required. While initial stud-
ies of in silico prediction of KP depolymerase specificity showed some uncertainty and gen-
erated many incorrect predictions [99], a more recent in silico RBP protein clustering-based
method accurately forecasted a majority of productive infections in KP [67]. These predictions
were limited to tropism driven by CPS type, however, and did not account for alternative KP
receptors or phage resistance post-adsorption. Nonetheless, it appears that adsorption factors
alone could be sufficient to predict many phage-bacteria interactions [149,150]. Expansion
of these tools with larger collections of phages and KP strains would be beneficial to increase
their accuracy and robustness.

The implementation of machine learning and modeling approaches in experimental labs,
and potentially in the clinic, also opens new possibilities for the design of effective phage-
based therapeutics. For example, recently developed algorithms designed to determine
optimal phage cocktails to target specific E. coli strains based on predicted phage-bacteria
interactions could be easily adapted to KP [150]. Additionally, a model-based approach using
experimental data for four different multidrug-resistant KP isolates was recently used to select
optimal combinatorial phage regimes [151]. When functionally tested, the predicted regimes
were able to effectively reduce bacterial loads to a pre-specified target threshold. Access to
automated computational pipelines could help design optimized strategies that take into

PLOS Pathogens | https://doi.org/10.1371/journal.ppat. 1012971  April 8, 2025 17/28




PLOS PATHOGENS

account a large number of variables, including but not restricted to: phage RBPs, inter-phage
interactions [152], the presence and expression of phage receptors on targeted pathogens,
pharmacokinetics, pharmacodynamics, and patient-specific factors. We expect that the devel-
opment of automated methods to predict highly specific and optimized phage cocktails will
pave the way toward large-scale, precise, and personalized phage therapy.

Conclusions

The dramatic increase in multidrug-resistant KP strains worldwide, as well as their increasing
convergence with hypervirulent traits, calls for new strategies to fight these worrisome infec-
tions. The phage therapy field is booming, and the resulting enthusiasm should be harnessed to
propel the field forward to develop therapeutically effective protocols for clinical applications.
Open-source initiatives, community engagement, and active crosstalk between researchers

and clinicians are also crucial to bring phage therapy out of the laboratory and into the clinic.
Standardized procedures and testing, rational therapeutic design, and leveraging the power of
predictive computational tools will all facilitate this process. Additionally, the integration of
evolutionary approaches and mathematical modeling with clinically relevant observations can
help increase our understanding of what will make phage therapy an effective antimicrobial
strategy. We are working toward a future where we can reliably predict the evolutionary trajec-
tories of individual bacterial hosts upon exposure to phage predators, and can harness trade-
offs of phage resistance to limit bacterial virulence and potentiate the effects of antibiotics and
the immune system. We hope that rationally designed phage therapies will soon be possible and
that they will improve the treatment and control of KP infections around the world.
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