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Abstract 
Malaria is a life-threatening mosquito-borne disease caused by the Plasmodium parasite, 

responsible for more than half a million deaths annually and principally involving children. 

The successful transmission of malaria by Anopheles mosquitoes relies on complex suc-

cessive interactions between the parasite and various mosquito organs, host factors, and 

restriction factors. This review summarizes our current understanding of the mechanisms 

regulating Plasmodium infection of the mosquito vector at successive plasmodial develop-

mental stages and highlights potential transmission-blocking targets and strategies.

1. Introduction
Mosquitoes are vectors for a number of human pathogens that cause severe disease, such 
as malaria, Zika, chikungunya, dengue, and yellow fever [1]. According to the most recent 
World Health Organization (WHO) report, malaria caused an estimated 249 million cases and 
608,000 deaths worldwide in 2022, representing an increase of 5 million cases over 2021 num-
bers [2]. Six species of the Plasmodium protozoan parasite have been shown to cause human 
malaria: Plasmodium falciparum, P. vivax, P. ovale, P. malariae, P. knowlesi, and P. cynomologi 
[3]. In Africa, P. falciparum is the most commonly fatal species and is mainly transmitted by 
adult female members of the Anopheles gambiae species complex [4]. This complex comprises 
eight morphologically identical sibling species that vary in their geographical prevalence  
[5–7]. Apart from the invertebrate mosquito vector, the life cycle of Plasmodium also involves 
the vertebrate human host; however, all of the previous attempts that have focused on the 
human host have failed to produce a vaccine that can effectively eradicate malaria [8]. Despite 
the progression to advanced-clinical trials, most available vaccines cannot be considered 
sufficient as a stand-alone measure to worldwide malaria eradication [9]. Moreover, emerging 
parasite resistance against the anti-malarial drugs jeopardizes their efficiency [10, 11]. For 
instance, the emerging Plasmodium resistance to the fast-acting antimalarial drug artemisinin 
has led to a significant reduction in the drug’s efficacy, resulting in lower treatment success 
rates and prolonged illness [12]. Thus, control efforts have also been focused on transmission- 
blocking strategies that are designed to prevent the parasite from infecting the mosquito 
vector. One promising strategy is based on generating genetically engineered mosquitoes 
resistant to Plasmodium infection [13], a strategy that requires extensive knowledge of both 
mosquito and parasite biology. Here, we review our current understanding of Anopheles–Plas-
modium interactions and potential manipulations to block the mosquito’s vectorial capacity.
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2. Plasmodium development in the lumen of the mosquito gut

2.1. Gametogenesis
The sexual reproductive phase of the Plasmodium parasite begins when the mosquito ingests, 
along with mosquito saliva, an infected gametocyte-containing blood meal from a vertebrate 
host. Once the ingested gametocytes reach the mosquito midgut, they are exposed to the 
mosquito-derived byproduct of the tryptophan degradation, xanthurenic acid (XA), along 
with a temperature drop and pH elevation, and they respond by differentiating into mature 
gametes in a process known as gametogenesis [14–16]. Gametogenesis starts with the round-
ing up of the parasites within the ingested erythrocytes, preceding the “inside-out” egress of 
the parasites into the mosquito gut. This egress involves a sequential membrane rupture that 
starts with the rupture of the inner parasitophorous vacuole membrane and is followed by the 
rupture of the external erythrocyte membrane [17,18].

Gametogenesis differs between male and female gametocytes. Recent transcriptomic stud-
ies have reported that the histone variant H3.3 protein, which is enriched in female gameto-
cytes, is responsible for the repression of the male-specific genes to favor female properties 
[19]. Male gametogenesis, which is known as exflagellation, involves three rapid consecutive 
DNA replication cycles that give rise to eight motile microgametes within 15 min after activa-
tion [18,20]; in contrast, female gametogenesis results in a single non-motile female macrog-
amete that is ready for fertilization [21].

A well-orchestrated molecular mechanism occurs in Plasmodium gametocytes to 
initiate gametogenesis. XA-mediated boosting of guanylyl cyclase (GC) activity increases 
the level of the second messenger 3′−5′-cyclic guanosine monophosphate (cGMP) in the 
gametocyte [22]. Despite the presence of two membrane GC proteins (GCα and GCβ) in 
P. falciparum [23], only GCα seems to be involved in cGMP production during gameto-
genesis, since disrupting GCβ does not prevent XA-stimulated gamete formation [24]. 
Recent studies in Plasmodium yoelii using CRISPR/Cas9 genome editing have shown 
that this XA-stimulated cGMP production is mediated by a membrane protein that spans 
multiple membranes. Known as gametogenesis essential protein 1 (GEP1), this protein 
interacts with GCα, enhancing its activity [25]. Another membrane protein known as 
G-protein-coupled receptor 180 (GPR180) promotes this cGMP elevation in P. berghei 
[26]. Protein kinase G (PKG) responds to the elevated levels of cGMP by phosphorylat-
ing a multipass membrane protein, recently named important for Ca2+ mobilization 1 
(ICM1), which stimulates the mobilization of stored calcium into the cytosol [27–29]. 
This increase in cytosolic Ca2+ activates several calcium-dependent protein kinases 
(CDPK), which in turn translate this signal into various cellular responses required for 
gametogenesis. For instance, CDPK1 in P. falciparum is critical for both male and female 
gametogenesis. In the absence of CDPK1, female gametocytes are incapable of round-
ing up post-activation, as opposed to male gametocytes, which can round up but do not 
engage in exflagellation [30]. On the other hand, CDPK2 is only essential during male 
exflagellation [31]. Another major CDPK in male gametogenesis is CDPK4, which was 
recently shown to be responsible for essential processes, including DNA replication, 
mRNA translation, and cell motility [32].

In addition to CDPKs, other families of protein kinases are also implicated in Plasmo-
dium male gametogenesis. The male-specific mitogen-activated protein kinase 2 (MAP-2) in 
P. falciparum has been reported to be essential for proper axonemal beating [33]. Recently, 
cyclin-dependent kinase-related kinases (CRKs) have also been found to be critical for male 
exflagellation, with deletion of CRK5 in P. falciparum resulting in defective male gametogene-
sis [34].
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2.2. Gamete fertilization
After their egress from the ingested erythrocytes, Plasmodium male and female gametes fuse to 
form a diploid zygote within the first hour after intake of a blood meal [20,35]. Several surface 
proteins present on both male and female gametes are involved in this process (Fig 1). Two gam-
ete proteins, P48/45 and P230, of the six-cysteine protein family form a complex on the surface 
of the gamete that is required for male fertility and subsequent fusion with the female macrog-
amete in P. falciparum [36,37]. Another surface six-cysteine protein, known as P47, is solely 
expressed on the female macrogamete surface and is necessary for female fertility in P. berghei 
but not P. falciparum [38,39]. Moreover, deleting the highly conserved hapless 2 protein (HAP2, 
also known as generative cell-specific 1) in P. berghei male microgametes does not prevent the 

Fig 1. The Plasmodium life cycle in the mosquito vector. Following an infected blood meal, the ingested Plasmodium gametocytes develop into male and 
female gametes that can fuse together to form a zygote. The zygote then differentiates into a motile ookinete and invades the midgut epithelium after travers-
ing the peritrophic matrix separating the ingested blood meal from the epithelial cells. Right after it reaches the extracellular space between the epithelium 
and the basal lamina, the ookinete develops into an early oocyst, which in turn undergoes sporogony to give rise to a mature oocyst holding thousands of 
sporozoites. Following rupture of the oocyst, the released sporozoites invade the salivary glands and are ready for transmission to a new host. Proteins medi-
ating the various phases of the life cycle are mentioned in the panels below the corresponding developmental stages. Created in BioRender. Saab, S. (2025) 
https://BioRender.com/p65s417.

https://doi.org/10.1371/journal.ppat.1012965.g001
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male and female gametes from adhering to each other, but it inhibits their fusion [40]. In addi-
tion to HAP2, HAP2 paralog (HAP2p) is essential for the fertilization of P. falciparum gametes. 
Deleting either of these two membrane fusogens, which are located throughout the flagella of 
the male microgametes, will prevent gamete fertilization [41]. In addition, the histone chaper-
one protein FACT-L (named after the large subunit of the human protein, facilitates chromatin 
transcription [FACT]) plays a crucial role in male gamete fertility and subsequent gamete fusion, 
but the mechanism by which this nuclear protein affects fertilization is still not clear [42]. Recent 
evidence underlines the requirement for additional membrane proteins, Pb115 and Pbs54, for 
the attachment of male and female gametes in P. berghei [43,44].

Most of the previously mentioned Plasmodium surface proteins have been studied for their 
transmission-blocking vaccine (TBV) potential, and continuous efforts have been made to 
identify various domains in P230, P48/45, P47, and HAP2 that could be used for inducing 
transmission-reducing antibodies in the host [45–50].

2.3. Development of the zygote into a motile ookinete
Following gamete fusion, the diploid zygote undergoes DNA replication, resulting in a tet-
raploid phase that persists up to the formation of the haploid sporozoites within the oocysts. 
This process has been shown to be regulated by the NIMA-related kinases Nek-2 and Nek-4, 
which in turn are essential for ookinete differentiation [51].

At 18–30 h after a blood meal, the zygote differentiates into a motile ookinete stage, which 
invades the midgut epithelium of the mosquito after traversing the peritrophic matrix, the 
semipermeable chitinous layer separating the blood bolus from the midgut epithelial cells (Fig 1) 
[52–54]. Studies of the dynamics of zygote-ookinete development in An. coluzzii mosquitoes by 
live immunofluorescence microscopy have demonstrated that P. falciparum passes through several 
intermediate stages before becoming a mature ookinete. Formation of mature ookinetes peaks at 
23 h following the ingestion of infected blood and persists in the gut up to 36 hpost-infection [55].

Recent single-cell RNA-seq data have linked these various stages to their gene expres-
sion profiles, with the essential genes for DNA replication and metabolism detected in early 
zygotes, and those required for host invasion identified in later ookinete stages [56]. Also, 
studies in P. berghei have shown that only the maternally inherited alleles are active in the 
zygote-ookinete stages; the paternally inherited genes are expressed later on, during midgut 
invasion [57]. Such gene expression profiles are translated into several cell structure modifi-
cations, including the establishment of a special organelle known as the inner membrane com-
plex (IMC), located beneath the Plasmodium cell membrane, as well as the cell polarization 
that occurs during zygote-to-ookinete differentiation [58].

While the transition between the various Plasmodium developmental stages is strongly 
coordinated by various apicomplexan Apetala-2 transcription factors [59–61], translational 
regulation has also been reported to play an essential role in repressing the expression of cer-
tain mRNAs [62]. Recently, Hirai et al. have identified an RNA binding protein in P. berghei 
known as Pb103, which has the two zinc finger domains required for zygote differentiation, 
most probably through translational repression [63]. In addition to translational regulation, 
post-translational modifications are also crucial for zygote differentiation. Studies using P. 
yoelii have pointed to several pellicle proteins, including IMC subcompartment proteins 1 and 
3 (ISP1 and ISP3), IMC‐residing palmitoyl‐S‐acyl‐transferase (PAT) DHHC2, and the cyto-
skeletal microtubule β-tubulin, being involved in the proper arrangement of the cytoskeletal 
subpellicular microtubules through a process that requires palmitoylation to promote zygote 
elongation [64]. Thus, inhibiting palmitoylation might be a promising way to prevent Plasmo-
dium development [65].
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2.4. Anti-plasmodial immune responses in the lumen of the mosquito 
midgut

Upon the ingestion of an infected blood meal, the mosquito gut microbiota, mainly 
composed of gram-negative bacteria [66,67], proliferate and play a protective role against the 
Plasmodium parasite by immune priming and the secretion of factors that can inhibit parasite 
development. Hence, elimination of the microbiota in antibiotic-treated An. gambiae mosqui-
toes leads to a significant increase in P. falciparum oocyst numbers, thus rendering the mos-
quitoes more susceptible to the parasite [66]. Accordingly, an Enterobacter species isolated 
from Anopheles arabiensis in Zambia can directly kill Plasmodium through the production of 
reactive oxygen species (ROS) [68]. Furthermore, the Chromobacterium species, which was 
initially isolated from Aedes aegypti mosquitoes in Panama, exerts an anti-Plasmodium effect 
by secreting romidepsin, a histone deacetylase inhibitor, which inhibits Plasmodium [69,70]. 
In addition, Serratia marcescens bacteria isolated from mosquito midguts also secrete unchar-
acterized metabolites that can directly inhibit the Plasmodium ookinete stage, independent 
of the mosquito vector [71]. Recently, certain strains of Serratia ureilytica, isolated from wild 
An. sinensis in Tengchong, China, have been shown to produce an anti-plasmodial lipase that 
can target the early gametocyte stage of the parasite in the mosquito midgut, thus preventing 
ookinete formation [72].

Apart from their direct effects, the midgut microbiota can also indirectly protect a host 
against Plasmodium by triggering the expression of the mosquito immune genes. After a 
blood meal, the gut microbiota proliferates and releases immune elicitors that can activate the 
immune deficiency (Imd) pathway, which targets the P. falciparum ookinete stage through 
multiple effectors [73–76]. The activation of the Imd signaling pathway results in the nuclear 
translocation of the NF-κB transcription factor Rel2, triggering the expression of several 
immune genes, including anti-Plasmodium factors and AMPs [74]. Defensins, cecropins, atta-
cin, and gambicin are the four different classes of AMPs identified in the An. gambiae genome 
[77]. These AMPs target a wide range of pathogens, including Plasmodium, gram-positive 
and gram-negative bacteria, fungi, and yeasts [74]. The Imd pathway acts in concert with the 
Toll signaling pathway, contributing to the expression of defensin 1, cecropin 1, and gambicin 
[78]. While activating the Imd pathway abolishes P. falciparum infection in three different 
Anopheles species, it has no effect on P. berghei, highlighting the specificity of various immune 
pathways for various pathogens [75]. Furthermore, the antiparasitic role of the Imd signaling 
pathway has been further emphasized in genetically modified An. stephensi overexpressing 
Rel2 in both the midgut and the fat bodies, which renders the mosquitoes resistant to P. falci-
parum [79].

Recently, DNA methylation was shown to play a crucial role in regulating the midgut 
anti-plasmodial immune responses driving the differential susceptibility of various Anophe-
les albimanus phenotypes to P. berghei [80]. Interestingly, the transgenic depletion of several 
microRNAs in An. gambiae using microRNA sponges modulates the expression of the midgut 
immune genes, making the mosquitoes more resistant to parasitic infection [81].

3. Plasmodium ookinete invasion of the mosquito midgut 
epithelium

3.1. Ookinete invasion of the mosquito gut
The ookinete first crosses the chitin-containing peritrophic matrix by releasing chitinase and 
then invades the epithelial cells through a complex process that requires several interactions 
between the parasite and the mosquito factors [82] (Fig 1). The epithelial cell invasion is medi-
ated in part by enolase on the ookinete surface, which interacts with the ingested plasminogen 
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and the epithelial cells, allowing midgut invasion to occur [83]. Other ookinete-surface 
proteins also facilitate the traversal of the midgut epithelium. For example, P25/28, P47, and 
Plasmodium infection of the mosquito midgut screen 43 (PIMMS43) help the ookinete evade 
the mosquito’s immune responses. At the same time, PIMMS2 is essential for midgut invasion 
[84–87].

Apart from the proteins expressed on its surface, mature ookinetes also secrete other 
micronemal proteins that mediate midgut invasion. These proteins include the secreted 
ookinete adhesive protein (SOAP), circumsporozoite- and TRAP-related protein (CTRP), 
cell- traversal protein for ookinete and sporozoites (CelTOS), Plasmodium perforin-like 
protein 3-5 (PPLP3-5), chitinase, and GPI-anchored micronemal antigen (GAMA) [88–95]. 
In addition, the A domain of CTRP is crucial for the ookinete’s gliding motility, which in turn 
makes possible the penetration of the mosquito midgut [96].

Recently, another member of the perforin-like proteins, PPLP4, was also reported to have 
a role in traversing the epithelia [97]. Along with the parasite proteins, peritrophic matrix- 
associated fibrinogen-related protein 1 (FREP1), which is released by the epithelial cells, can 
directly bind to ookinetes, enabling them to penetrate both the peritrophic matrix and the 
epithelium [98]. The fibrinogen-like domain of FREP1, which is responsible for its direct 
interaction with Plasmodium gametocytes and ookinetes, is highly conserved between the 
various Anopheles species and is an effective TBV candidate [99,100].

Recently, Plasmodium α-tubulin-1, expressed on the apical end of the ookinetes, was 
shown to interact with FREP1 to direct the ookinetes toward the peritrophic matrix, thus facil-
itating parasite invasion [101]. Blocking the direct interaction between FREP1 and the parasite 
through anti-fibrinogen-like domain or anti-α-tubulin-1 antibodies significantly reduces P. 
falciparum infection in An. gambiae mosquitoes, making the FREP1-tubulin interaction a 
robust transmission-blocking target [99,101]. Interestingly, An. gambiae alanyl aminopepti-
dase N1 (AgAPN1), which is expressed on midgut epithelial cells, can also play an essential 
role in facilitating the invasion by P. berghei and P. falciparum ookinetes [102]. Despite this 
significant research, more work is still needed to elucidate more fully the interactions between 
AgAPN1 and the parasite; however, determining the crystal structure of AgAPN1 has been of 
great help in working out how to target this enzyme with domain-specific antibodies that are 
promising for transmission-blocking [103,104].

Ookinetes have been suggested to penetrate the midgut epithelium through both inter-
cellular and intracellular routes by using their ability to move by gliding. Use of either of 
these invasion routes was recently shown to be a mosquito species-specific process [105]. 
Studies with P. yoelii have linked this gliding motility to the IMC sub-compartment protein 
1 [ISP1]-mediated polarization of guanylate cyclase β from the cytoplasm to the “ookinete 
extrados site”, a site posterior to the apical structure in mature ookinetes, thereby activating 
the cGMP-dependent PKG signaling pathway that is responsible for the gliding motility 
[106].

While in the ookinete stage, the parasite passes through a major population bottleneck, 
making this stage a target for future antimalarial transmission-blocking interventions [107]. 
Surface or secreted ookinete proteins that are involved in motility and invasion are robust 
candidates for TBVs [108,109]. In addition to vaccines, transmission-blocking strategies also 
include the generation of transgenic mosquitoes engineered to block the parasite and prevent 
its invasion [110]. For instance, transgenic An. stephensi expressing exogenous single-chain 
antibodies (scFv) that act against chitinase or Pf25, along with the sporozoite circumsporo-
zoite protein (CSP), can successfully clear P. falciparum sporozoites from mosquitoes [111]. 
Also, CRISPR/Cas9-mediated FREP1 knockout in An. gambiae suppresses both human and 
rodent parasite infection [112].
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3.2. Immune responses within the epithelial cells
Despite its ability to digest and penetrate the peritrophic matrix, the parasite remains pro-
tected in part from epithelium-elicited immune responses, thanks to cross-linkage of the 
mucus layer proteins by immunomodulatory peroxidase and the intestinal dual oxidase [113]. 
Another redox system mediates a more robust anti-plasmodial immune response, known as 
midgut-epithelial cell nitration, that can further modify the ookinete and make it a target for 
the complement system [114].

Nitration is a two-step reaction involving the synthesis of nitric oxide (NO), followed by 
a peroxidase reaction [115]. The synthesis of NO after Plasmodium infection requires the 
upregulation of nitric oxide synthase (NOS) downstream of the JAK-STAT signaling pathway. 
NOS plays a critical role in reducing Plasmodium oocyst survival [116]. Also, a heme peroxi-
dase (HPX2)/NADPH oxidase 5 (NOX5) system, induced by the Jun-N-terminal kinase (JNK) 
signaling pathway, is responsible for mediating epithelial nitration and subsequent ookinete 
surface modification. These reactions mark the ookinete for targeting by the mosquito’s 
complement-like system through recruitment of the complement-like thioester-containing 
protein 1 (TEP1) as the ookinetes reach the extracellular space between the epithelium and the 
basal lamina and become exposed to the hemolymph [114,117]. Certain Pfs47 variants specific 
for the African Plasmodium strains can suppress midgut epithelial nitration in An. gambiae 
mosquitoes through binding to a certain Pfs47 midgut receptor (P47Rec), thereby enabling 
evasion of the mosquito’s immune response [118–120]. Recent studies addressing the mech-
anistic function of P47Rec have revealed the involvement of heat shock protein 70 cognate 
3 (Hsc70-3) in inhibiting the caspase-mediated apoptosis of the invaded midgut cells and 
therefore disrupting epithelial nitration [121].

3.3. Hemolymph immune responses against the ookinete stage
After bypassing the local immune responses induced in the midgut, ookinetes become 
exposed to systemic immune responses on the basal side of the epithelium that are triggered 
in the fat body and hemocytes [122]. For instance, abdominal tissues such as the fat body 
can respond to the diffusion of NO and hydrogen peroxide from the mosquito midgut to 
the hemolymph by releasing anti-plasmodial AMPs and other factors [123]. Hemocytes can 
also be activated, after the nitration of infected epithelial cells, to release vesicles containing 
unknown factors that promote the binding of TEP1 to the ookinete [124], targeting the para-
site for elimination through either lysis or melanization (Fig 2) [125,126].
Although TEP1 expression was first attributed to hemocytes, recent studies have suggested 
that other organs, such as the fat body, are also involved in this process [127,128]. After the 
full-length TEP1-F is secreted, a portion of it is cleaved into TEP1cut to become activated 
[129]. TEP1cut is then stabilized in the hemolymph by a disulfide-linked heterodimer made up 
of two leucine-rich repeat proteins (LRRs), leucine-rich repeat immune protein 1 (LRIM1) 
and Anopheles Plasmodium-responsive leucine-rich repeat 1 (APL1C) (Fig 2). Interestingly, 
a knockdown of LRIM1/APL1C not only results in a higher number of oocysts in the midgut 
but also in a nonspecific deposition of TEP1 cut on mosquito tissues, suggesting the participa-
tion of LRIM1/APL1C in avoiding an autoimmune response [130–133]. APL1 is encoded by 
a family of three genes, APL1A, APL1B, and APL1C. APL1A is induced by the Imd pathway 
and is P. falciparum-specific; in contrast, APL1C is induced by the Toll pathway and is P. 
berghei-specific [134,135]. APL1C acts against both extracellular ookinetes and circulating 
sporozoites of rodent Plasmodium, but not human [136].

TEP1 function is further promoted by the non-catalytic CLIP serine protease (cSPH) 
known as SPCLIP1, which mediates the accumulation of TEP1cut on the microbial surface, 
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Fig 2. Mosquito immune responses against the early ookinete stage. Plasmodium ookinete midgut invasion induces 
nitration, modifying the parasite surface for TEP1 recruitment. TEP1 is secreted into the hemolymph in its full form 
(TEP1-F). Upon activation, TEP1-F is cleaved by an unknown factor into the active cut form (TEP1cut), which is 
stabilized in the hemolymph by binding to the APL1C/LRIM1 heterodimer. Recognition of the ookinete results in the 
deposition and accumulation of TEP1 cut on the parasite surface which is promoted by SPCLIP1 due to the cleavage of 
more TEP1-F by an unknown TEP1 convertase. TEP1-marked ookinetes are then targeted for lysis or, in rare cases, 
melanization, which mainly occurs in certain refractory backgrounds (left panel). Melanization requires a cascade of 
catalytic and noncatalytic CLIP serine proteases that regulate the cleavage of PPO zymogen into active PO, the key 
protein in melanin synthesis. Altogether, thus far, TEP1 seems to be the factor farthest upstream, followed by the core 
cSPH module (SPCLIP1-CLIPA8-CLIPA28) that acts upstream of the catalytic CLIPC9. Downstream of the CLIPC9 
comes CLIPBs, with CLIPB4 and CLIPB17 seeming to be the farthest upstream; the cascade then bifurcates into two 
different branches: one converging on CLIPB8 and the other on CLIPB10. Dashed arrows indicate that the steps require 
further characterization (right panel). Created in BioRender. Saab, S. (2025) https://BioRender.com/r16n889.

https://doi.org/10.1371/journal.ppat.1012965.g002

https://BioRender.com/r16n889
https://doi.org/10.1371/journal.ppat.1012965.g002


PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1012965 March 31, 2025 9 / 30

PLOS PathOgenS 

thereby triggering lysis or melanization [137]. Another cSPH, CLIPA2, has also been shown to 
negatively regulate TEP1 activity by preventing its cleavage into TEP1cut [138]. It is well estab-
lished that the complement-like system plays a crucial role in parasite elimination; however, 
the process by which the TEP1/LRIM/APL1C complex induces pathogen lysis has not been 
fully dissected and warrants further investigation.

In addition to TEP1-mediated lysis, the melanization reaction observed in certain refrac-
tory genetic backgrounds makes An. gambiae mosquitoes highly resistant to Plasmodium 
ookinetes [139–141]. The deposition of melanin on the surface of a pathogen depends on a 
series of biochemical reactions that require active phenoloxidases (POs), which are released 
into the hemolymph as prophenoloxidase (PPO) zymogens. PPO cleavage is regulated by a 
cascade of CLIP domain serine proteases, which represent a large family of five subgroups (A 
to E) in An. gambiae mosquitoes [142,143]. Previous genetic studies have identified several 
cSPHs of subfamily A as playing a major nonredundant role in P. berghei melanization. For 
instance, SPCLIP1 (CLIPA30), CLIPA8, and CLIPA28 form a core cSPH module that posi-
tively regulates P. berghei ookinete melanization [137,144,145]. Such cSPHs are activated in an 
ordered manner downstream of TEP1, with SPCLIP1 being the farthest upstream, followed by 
CLIPA8 and then CLIPA28 [145]. Two CLIP-domain serine proteases, CLIPA2 and CLIPA14, 
have been shown to act as negative regulators of the melanization response [138,146]. In addi-
tion to cSPHs, several catalytic CLIP serine proteases of subfamilies B and C have also been 
identified as playing an essential role in the melanization response in An. gambiae mosquitoes. 
Individually silencing CLIPB4, CLIPB8, CLIPB10, CLIPB14, CLIPB17, or CLIPC9 partially 
reverses P. berghei melanization in refractory An. gambiae mosquitoes [144,147–149]. Recent 
in vivo studies have shown redundancy in the antimicrobial function of CLIPBs, which can be 
partially explained by a bifurcation of the cascade downstream of CLIPB4 and CLIPB17 into 
two branches, one converging on CLIPB8 and the other on CLIPB10 (Fig 2) [150]. Based on 
their capacity to cleave Manduca sexta PPOs in vitro, CLIPB4, CLIPB9, and CLIPB10 have 
been classified as prophenoloxidase-activating proteins (PAPs), which are inhibited by serine 
protease inhibitor 2 (serpin 2 or SRPN2) [148,151,152]. The core cSPH module acts upstream 
of the catalytic proteases, despite the cleavage of CLIPA8 by several recombinant CLIPBs in 
vitro [150], highlighting the complexity of this network.

Conversely, the C-type lectin 4 (CTL4) and MA2 (CTL2) play regulatory roles in pro-
tecting the parasite from melanization. For instance, silencing CTL4 in An. gambiae triggers 
TEP1-mediated melanization of P. berghei ookinetes [140,153,154], and CRISPR/Cas9-based 
CTL4 knockout An. gambiae mosquitoes show an enhanced ability to melanize P. falciparum 
ookinetes in a TEP1-independent manner [141]. Injecting recombinant CLT4/CTLMA2 into 
CTL4-silenced An. gambiae mosquitoes reversed the increase in the PO activity, suggesting 
a common role for the CLT4/CTLMA2 heterodimer in the melanization response [155]. The 
mechanisms governing CTL4-mediated protection of the ookinete from melanization and 
how cSPHs intervene to regulate PPO cleavage are still unclear and require further study.

A recent single-cell transcriptomic study in An. gambiae has demonstrated that the 
CLIP-domain serine proteases, CTL4/CTLMA2 and LRIM1, which are involved in the regula-
tion of melanization, are highly expressed in the fat body, but PPOs are exclusively produced 
by hemocytes [156], suggesting that the mechanisms limiting Plasmodium infection also 
involve a systemic immune response.

Apart from the humoral immune responses, hemocytes are also critical for killing malaria 
parasites such as P. berghei that infect rodents. Hemocyte depletion in An. gambiae drastically 
increases the number of P. berghei parasites in the mosquito [127]. In addition to TEP1, hemo-
cytes can also express other factors that either facilitate or limit Plasmodium development 
[156–160]. For example, a functional assay performed by Lombardo et al. [160] has shown 
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that An. gambiae hemocytes express genes that function as P. berghei agonists, including a 
putative LRR protein, lipopolysaccharide-induced tumor necrosis factor alpha factor-like 6 
(LL6), laminin A homolog, peptidase and trypsin-like domain-containing transmembrane 
protein, and a vesicular-type ATPase. They also express P. berghei antagonists, including von 
Willebrand factor-type A domain protein, collagen type IV protein, hexamerin 2 beta homo-
log, fibrinogen-related FBN8, and a CLIPB [161]. Smith and colleagues have reported similar 
findings in their proteomic analysis of An. gambiae, which revealed that phagocytic hemocytes 
play a dual role in P. falciparum infections by expressing anti-plasmodial immune effectors 
such as TEP1, defensin1, HPX2, and two components of the Ras family, the small GTPases 
Ras-related and Ras-homolog family member A, as well as Plasmodium protective factors such 
as lysozyme c-1 (LYSC1), scavenger-receptors SCRASP1 and SCRBQ2, LRIM15, and preta-
porter (Prtp) [162]. Interestingly, several members of the fibrinogen-related proteins (FREP 
or FBN) that are mainly abundant in the hemolymph, including FBN8, FBN9, FBN30, FBN39, 
act as Plasmodium antagonists [161,163–165].

4. Plasmodium development in the hemolymph and hemolymph-
triggered immune responses

4.1. Oocyst development and sporogony
After reaching the extracellular space separating the midgut epithelial cells from the basal 
lamina, the ookinete rounds up and develops into an oocyst, which in turn undergoes 
extensive mitotic divisions known as sporogony [166]. The mechanism triggering the 
developmental progression from ookinete to oocyst is still unclear; however, several mos-
quito and Plasmodium genes have been shown to be involved (Fig 1). Recently, three novel 
ookinete-expressed genes, PIMMS01, PIMMS57, and PIMMS22, were found to be critically 
involved in the development of the oocyst from the ookinete stage [167]. Moreover, the 
oocyst capsule also includes several mosquito-derived proteins, including laminin, matrix 
metalloprotease 1 (MMP1), and lysozyme c-1 (LYSC1), that assist the oocyst in hiding 
from the mosquito’s immune responses, thus favoring oocyst development [168]. Other 
parasite-derived proteins in the oocyst capsule, including the P. berghei oocyst capsule 
protein 380 (PbCap380), oocyst capsule-associated protein 93 (PbCap93), and the ookinete 
surface and oocyst capsule protein (OSCP), are essential for oocyst development and main-
tenance, and knocking out the genes encoding such proteins results in a reduced oocyst 
number [169–171].

Interestingly, a proteomic study has revealed unique, temporally regulated signatures in 
early, mid, and late oocysts in the rodent parasite [172]. For instance, expression of CSP as an 
oocyst capsule component after the onset of sporogony in rodent parasites is necessary for its 
escape from the melanization immune response in An. stephensi mosquitoes [173]. Sporogony 
eventually produces oocysts containing thousands of sporozoites by 14 days after the intake of 
a blood meal [168]. Recently, adipokinetic hormone signaling has been shown to be involved 
in facilitating P. falciparum sporogony [174]. Live fluorescence imaging of oocysts under-
going sporogony has revealed that sporozoite release is preceded by capsule thinning and 
small opening formation, thereby facilitating the sporozoites’ egress [175]. Although several 
proteins, including parasite-derived CSP and oocyst rupture protein (ORP) 1 and 2 [176], 
have been reported to be required for the oocyst rupture, the molecular mechanism driving 
this capsule thinning and the consequent sporozoite excystation remain poorly understood. 
Residence in the mosquito vector in limited numbers for about 2 weeks, along with their 
immobility, render the oocyst stage an appropriate transgenic target for blocking parasite 
transmission, but little is yet known about anti-oocyst effectors.
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4.2. Immune responses against oocysts
Since they reside between the midgut epithelial cells and the basal lamina for about 2 weeks, 
oocysts become extensively exposed to the immune factors that are involved in ookinete kill-
ing. However, oocysts seem to be the most resilient parasite stage in the mosquito [168,176]. 

Fig 3. Mosquito late-phase immune responses against the oocyst stage. The main cellular immune response known 
to be triggered against the oocyst stage involves hemocyte differentiation driven by the action of the LITAF-Like 3 
and STAT pathway. Hemocytes are the unique suppliers of PPOs, and PPO2, PPO3, and PPO9 limit oocyst survival 
without triggering melanin deposition (left panel). However, the oocyst stage can evade most of the hemolymph- 
mediated immune responses by exploiting its capsule components, such as laminin, collagen, LYSC1, MMP1, and 
CSP (right panel). Created in BioRender. Saab, S. (2025) https://BioRender.com/q60q481.

https://doi.org/10.1371/journal.ppat.1012965.g003

https://BioRender.com/q60q481
https://doi.org/10.1371/journal.ppat.1012965.g003
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Recently, oocysts of P. yoelii were shown to evade An. stephensi immune responses through 
the circumsporozoite protein (CSP). CSP disruption makes the parasite visible to the immune 
system through midgut nitration and hemocyte recruitment, with subsequent activation of 
the TOLL signaling pathway and oocyst TEP1-dependent melanization (Fig 3) [173]. Interest-
ingly, in An. gambiae, PPO2, PPO3, and PPO9 limit the survival of P. berghei oocysts without 
triggering melanization, hinting at alternative functions that are not related to the classical 
roles of POs [127]. Recently, the oocyst stage has been shown to also be susceptible to the 
melanization immune response, in which co-silencing CLIPA2 and CLIPA14, the negative 
regulators of melanization, triggers the melanization of both P. berghei and P. falciparum 
oocysts [177]. Despite the fact that only late-stage P. berghei oocysts were melanized, this was 
not the case for P. falciparum, in which both early and late oocysts were found to be melanized 
[177].

Other studies have indicated that the STAT pathway and LITAF-like 3 limit early P. berghei 
and P. falciparum oocyst development through processes involving midgut and carcass nitra-
tion along with hemocyte differentiation (Fig 3) [116,178]. Interestingly, a unique stem-cell 
mediated response downstream of the JAK-STAT pathway has been shown to be responsible 
for eliminating oocysts [179]. Taken together, these studies suggest the involvement of sys-
temic immune responses in limiting oocyst development through hemocyte participation, not 
only as effectors but also as signaling mediators. Nevertheless, further research is required to 
understand the communication mechanisms that exist between hemocytes and other mos-
quito organs.

During their development in the abluminal portion of the gut, oocysts make use of their 
extracellular cell wall (capsule) to evade the mosquito’s immune system [175]. The oocysts 
consume mosquito resources when undergoing sporogony, which involves a drastic increase 
in the size of the oocysts [180] along with the enlargement of the midgut basal lamina that 
envelops the oocysts. Interestingly, it has been reported that multiple blood feedings enhance 
oocyst growth and shorten the period of oocyst maturation [180–182]. Nevertheless, a recent 
study has shown that subsequent blood feedings reduce the oocyst number of rodent, but not 
human, Plasmodium parasites. This effect occurs because of the rupture of the basal lamina 
following blood meal-induced epithelium distention, which promotes direct exposure of the 
P. berghei oocysts to the mosquito’s complement-like system, an immune response that P. 
falciparum can evade [181].

Most of the previously mentioned mosquito-derived components of the oocyst capsule 
that favor oocyst maturation, such as laminin, collagen, LYSC1, and MMP1 [182–186], are 
highly expressed in hemocytes and can negatively regulate the complement-like system and 
melanization (Fig 3). Overall, these effects suggest that under certain conditions, hemocytes 
may be involved in oocyst protection. In addition, mosquito lipophorins, which are ingested 
by oocysts [187], can also enhance the survival of P. berghei oocysts [188].

In recent decades, several studies have revealed a plethora of mechanisms underlying the 
hemocyte-mediated immune response, with a main focus on their anti-plasmodial func-
tions; however, their agonistic functions have received less attention. Furthermore, most of 
these studies have been performed using the rodent malaria parasite P. berghei, but it is well 
established that the mosquito’s immune system responds differently to P. berghei and the 
human malaria parasite P. falciparum [122,189,190]. To gain a better understanding of the role 
of hemocytes in Plasmodium infection, future studies should consider the compatibility of 
the experimental models (i.e., the Plasmodium and mosquito species used). Furthermore, to 
develop effective strategies for combating malaria by using genetically modified mosquitoes 
(GMOs), further studies are needed to focus on abolishing the mechanisms governing Plas-
modium’s evasion of immunity.
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4.3. Sporozoite invasion of the salivary gland
After their release into the hemolymph, the circulating sporozoites passively reach the basal 
lamina of the salivary glands (Fig 1) [191]. Salivary glands consist of three lobes attached to a 
common duct and are surrounded by epithelial cells arranged in a single layer [192]. Infecting 
this tissue provides the parasite access to the host, but it also represents a physical barrier to 
transmission [193]. Prior to the entry of the sporozoites into the salivary gland cavity, recog-
nition and epithelial cell-crossing processes occur. These processes involve specific Anopheles 
receptors and other factors responsible for the initial attachment and invasion, as well as para-
site proteins, including the surface proteins CSP, thrombospondin-related anonymous protein 
(TRAP), and membrane antigen/erythrocyte binding-like protein (MAEBL) [194].

CSP-mediated recognition involves salivary gland glycans and proteins such as CSP- 
binding protein (CSPBP). TRAP interacts with mosquito Saglin and salivary gland surface 
protein 1 (SGS1) and mediates directional migration [176]. Recent evidence shows that the 
P. berghei sporozoite protein, claudin-like apicomplexan microneme protein (CLAMP), is 
an essential participant in salivary gland traversal and sporozoite gliding motility, with the 
underlying mechanism involving the shedding of TRAP [195]. Also, the mosquito-encoded 
epithelial serine protease (ESP), expressed on the basal side of the epithelial cells, is essential 
for invasion of the sporozoite salivary gland [196]. Furthermore, RNAi-mediated silencing 
of a salivary gland-transcribed transmembrane glucose transporter (AGAP007752) results in 
significantly decreased sporozoite numbers, presumably because of its putative function as a 
sporozoite receptor [197]. Interestingly, a small peptide known as salivary gland and midgut 
binding peptide 1 (SM1) has been identified via a phage display peptide library and found to 
be distinctive in its ability to bind to epithelial receptors in the mosquito midgut and salivary 
gland, thereby interfering with parasite transmission [198].

4.4. Mosquito immune responses against sporozoites
Sporozoites represent the parasite stage that experiences the greatest exposure to the hemo-
lymph, since these final-stage parasites migrate to the heart and make use of the flow of the 
hemolymph as a transport medium to reach the salivary glands [199]. During this journey, 
they are entirely exposed to both humoral and cellular immune factors. As a result, in models 
involving An. dirus-P. vivax and Ae. aegypti-P. gallinaceum, only about 20% of the sporozoites 
produced in the oocysts actually reach the salivary glands, and the rest disappear in the hemo-
lymph ([199,200]. Nevertheless, hemocyte-mediated immune responses, including phagocy-
tosis, nodulation, encapsulation, and melanization in An. gambiae, An. albimanus, and Ae. 
aegypti only partially contribute to the elimination, respectively, of P. berghei, P. vivax, and P. 
gallinaceum sporozoites; instead, lysis is suggested as the major mechanism of their killing 
(Fig 4) [199,201–203].

The primary function of the mosquito heart is to pump the hemolymph around the mos-
quito’s body [204]. However, after infection, hemocytes accumulate around periostial regions, 
which are sites of high hemolymph flow, facilitating contact between circulating pathogens 
and hemocytes, and therefore phagocytosis (Fig 4) [201,205]. Interestingly, P. berghei spo-
rozoites also accumulate in the periostial regions, where they undergo fragmentation [201]. 
Although hemocytes have been suggested to be the primary cell type involved in these pro-
cesses, other cell types located in periostial regions, such as pericardial cells, could also play a 
significant role in parasite killing. Immune factors such as lysozyme and cecropin, produced 
in pericardial cells, could be involved in the lysis of pathogens accumulated in the heart  
[206–208]. In addition, other factors such as NO, ROS, and lysozymes are produced by peri-
cardial cells and hemocytes, and they are implicated in establishing interactions between these 



PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1012965 March 31, 2025 14 / 30

PLOS PathOgenS 

cells [206,208–210]. However, whether these cells are involved directly or whether they coop-
erate with hemocytes in the elimination of sporozoites, as well as the mechanism(s) involved 
in this interplay, are largely unknown and warrant further study.

Fig 4. Mosquito immune responses against the sporozoite stage. Following the rupture of the mature oocysts, the 
released sporozoites become directly exposed to all the cellular and humoral immune responses in the hemolymph. Apart 
from hemocyte-mediated phagocytosis, sporozoites can also be subjected to fat body-secreted AMPs that can play an 
essential role in sporozoite lysis (right panel). After infection, the high hemolymph flow drives the hemocyte accumula-
tion around the periostial region, promoting direct contact between circulating pathogens and hemocytes, and therefore 
phagocytosis. Also, AMPs are produced in pericardial cells and may be involved in the lysis of sporozoites that accumulate 
in the heart (right panel). AMPs, lysozyme-related genes, C-type lectins, serine proteases, leucine-rich immune proteins, 
and TEP1 are all expressed in the mosquito salivary glands; however, their effect on the sporozoite stage needs to be further 
investigated (left panel). Created in BioRender. Saab, S. (2025) https://BioRender.com/c22y701.

https://doi.org/10.1371/journal.ppat.1012965.g004

https://BioRender.com/c22y701
https://doi.org/10.1371/journal.ppat.1012965.g004
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To date, only a few studies have highlighted the mosquito’s immune responses against 
sporozoites within the salivary glands. In An. gambiae and An. coluzzii, RT-PCR studies 
as well as serial analysis of gene expression (SAGE) and RNA-seq studies have revealed 
the induction of several immune-related genes by P. berghei, including AMPs, TEP1, and 
CTLMA2 [197,211,212]. A comparative transcriptomic analysis between P. vivax-infected and 
uninfected An. dirus salivary glands has demonstrated an elevated immune response in the 
infected glands, with up-regulation of several known AMPs as well as leucine-rich immune 
proteins and C-type lectins, among others (Fig 4) [213]. Moreover, several lysozyme-related 
genes, lectins, secreted serine proteases, and other uncharacterized secreted proteins have 
been identified in Anopheles salivary glands [214]. Remarkably, the transcriptional response 
at the organ level (salivary glands) after bacterial immune challenge is different from that 
induced systemically [215]. The studies just mentioned clearly indicate that Anopheles salivary 
glands not only serve as a physical barrier that has to be bypassed by Plasmodium and other 
microorganisms but also exert local immune activity that is induced after invasion/challenge. 
The relative contribution of the local salivary gland immune responses against sporozoites, 
where they remain up until the infectious bite occurs, has yet to be unveiled.

5. Sporozoite transmission to the host
As mosquitoes probe for blood, the infectious mature sporozoites exit the mosquito vector, 

accompanied by a mosquito saliva protein cocktail co-injected into the host [216]. Apart from 
facilitating the blood meal through their immunomodulatory, coagulation, anti-inflammatory, 
anti-hemostatic, and vasodilatory functions, a number of these sialome factors also affect the 
sporozoites’ transmission and infectivity in the vertebrate recipients [217,218]. Remarkably, 
the number of sporozoites injected into the mammalian host is by far smaller than the number 
of parasites found in the salivary glands [193], yet it correlates with the initial load [219]. Spo-
rozoite infectivity in the host is initially locally affected either directly by mosquito factors that 
bind to the parasite [220] or indirectly by the initial dermal immune reaction that is prompted in 
response to the injected parasite, the mosquito proteins, and the mechanical damage caused by 
the bite [221]. Mosquito GILT, named after its similarity to human gamma interferon-inducible 
thiol reductase, binds to sporozoites and decreases their motility in mice [220], while sporozoite- 
associated mosquito saliva protein 1 (SAMSP1) positively affects sporozoite entry into host cells, 
thereby facilitating sporozoite infectivity [222]. Although the effectiveness of the host’s immune 
response against mosquito factors in influencing the subsequent parasite infectivity is controver-
sial [223,224], accumulating recent evidence has demonstrated that some of these factors have 
immunomodulatory activity, with the potential to be harnessed as vaccine targets [216,225,226]. 
In this context, experiments on mice involving immunization with saliva-derived antiserum 
have resulted in a reduction in host-parasite infection as a result of decreased vascular perme-
ability, mostly attributed to the secreted salivary gland protein AgTRIO [223]; in contrast, the 
sporozoite-associated factor (SAP) seems to affect sporozoite infectivity by modulating the host’s 
inflammatory responses [225]. Also, the saliva microRNA (miRNA) repertoire of hematophagous 
insects has been proposed to contribute to antiparasitic host responses [227]. Interestingly, the 
An. coluzzii miRNA patterns are distinct for the saliva and the salivary glands, with some of them 
being identical to human miRNAs with immune-regulatory roles [227,228]. However, as far as 
mosquitoes are concerned, the effect of these non-immunogenic factors during rapid blood-meal 
acquisition remains elusive and favors hypotheses regarding host immune regulation with long-
term evolutionary advantages to the host [227]. Finally, the presence of the microbiota in salivary 
glands and saliva, and the transfer of specific bacteria during blood meals into mammalian hosts 
highlight additional saliva factors that could potentially influence Plasmodium transmission [229].
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6. A possible role for salivary gland proteins in host-to-vector 
transmission

The mosquito salivary proteins blended into the blood meal have recently been shown 
to play a crucial role in facilitating parasitic infection of the mosquito gut. For example, 
the salivary mosquito protein known as Saglin was shown to mediate Plasmodium infec-
tion in the mosquito gut; however, the mode of action of this protein is still not known 
[230]. In addition to Saglin, the Anopheles salivary apyrase has been shown to facilitate 
fibrinolysis, thus promoting Plasmodium parasite infection through the activation of the 
tissue plasminogen activator in the blood bolus [231,232]. These studies highlight the 
potential of such mosquito salivary proteins to be harnessed as malaria transmission- 
blocking targets, either through knocking out such factors or exploiting salivary gland 
promoters to drive the expression of antiparasitic effectors. For instance, the use of trans-
genic Anopheles mosquitoes capable of targeting the fibrinolytic system by expressing 
human plasminogen activator inhibitor 1 (PAI-1) has been successful in reducing Plasmo-
dium transmission to mosquitoes [233].

7. Mosquito immune memory and adaptive ability
Despite their lack of adaptive immunity, mosquitoes possess an innate immune mem-

ory that protects them against a repeated exposure to the same pathogen during a sec-
ond encounter, a phenomenon known as immune priming [234]. Mosquitoes that were 
previously infected with P. berghei or P. falciparum have shown a reduction in the number 
of oocysts during the second exposure to the same parasite [235–238]. The mechanisms of 
immune memory in mosquitoes are not clear; some mechanisms have been proposed that 
involve hemocytes and midgut epithelial cell immune responses. One of these mechanisms 
posits direct contact of the microbiome with the epithelial cells when the ookinetes invade 
the midgut epithelium, triggering a systemic immune response that involves hemocyte 
differentiation [237,238]. This response produces an increase in the granulocyte subpopu-
lation, changes in hemocyte morphology, and an overexpression of anti-plasmodial genes, 
including TEP1 and LRIM1. Thus, the mosquito triggers an enhanced immune response 
against the parasite during the second encounter [238]. Furthermore, midguts from 
mosquitoes infected with Plasmodium have shown high rates of DNA synthesis [235,236], 
and the inhibition of this process results in the abolition of protection during the second 
encounter with the parasite [236]. It has been suggested that some immune genes could 
be expanded as a result of endoreplication to increase their expression during a second 
encounter [236].

Although mosquitoes’ repertoire of pattern recognition receptors (PRRs) is limited, they 
provide a broad recognition for most pathogens. In addition to classic PRRs such as lectins 
and others, insects encode an immunoglobulin superfamily member called Down syn-
drome cell adhesion molecule (DSCAM) [234]. Through alternative splicing, DSCAM can 
produce more than 30,000 isoforms [239]. In mosquitoes, the splicing of some DSCAM 
isoforms is favored, depending on the pathogen, and this repertoire correlates with the 
affinity and activity against each pathogen [240]. Some DSCAM isoforms can discrimi-
nate between Plasmodium species and provide species-specific protection; however, it is 
not clear whether they interact with other effector molecules to kill the parasite [240,241]. 
Furthermore, it is unclear whether the isoform repertoire is maintained for a sufficient 
time after the immune challenges to provide immune memory. Innate immune memory in 
insects is probably the consequence of many mechanisms working together, which need to 
be deeply explored.
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8. Conclusion
A great body of literature pinpoints the critical processes that facilitate Plasmodium invasion 
of the mosquito vector, yet many questions remain open and require deeper exploration to 
allow us to understand more thoroughly how various immune responses are coordinated 
to eliminate the invading parasites. However, the capacity of Plasmodium to overcome the 
well-orchestrated immune responses by the mosquito necessitates a focus of current research 
on developing transmission-blocking strategies for reducing mosquito vector competence. 
Recent efforts have been directed at generating genetically modified mosquitoes that are 
resistant to Plasmodium [79,112,141,242]. Other recent advances in dissecting the parasite’s 
complex life cycle in the mosquito vector have helped to identify potential TBV targets. How-
ever, to eradicate malaria, such strategies must be combined with an effective malaria vaccine 
and preventive drugs.
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