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Abstract

While in Northern hemisphere countries, the pandemic H1N1 virus (H1N1pdm) was introduced outside of the typical
influenza season, Southern hemisphere countries experienced a single wave of transmission during their 2009 winter
season. This provides a unique opportunity to compare the spread of a single virus in different countries and study the
factors influencing its transmission. Here, we estimate and compare transmission characteristics of H1N1pdm for eight
Southern hemisphere countries/states: Argentina, Australia, Bolivia, Brazil, Chile, New Zealand, South Africa and Victoria
(Australia). Weekly incidence of cases and age-distribution of cumulative cases were extracted from public reports of
countries’ surveillance systems. Estimates of the reproduction numbers, R0, empirically derived from the country-epidemics’
early exponential phase, were positively associated with the proportion of children in the populations (p = 0.004). To explore
the role of demography in explaining differences in transmission intensity, we then fitted a dynamic age-structured model
of influenza transmission to available incidence data for each country independently, and for all the countries
simultaneously. Posterior median estimates of R0 ranged 1.2–1.8 for the country-specific fits, and 1.29–1.47 for the global
fits. Corresponding estimates for overall attack-rate were in the range 20–50%. All model fits indicated a significant decrease
in susceptibility to infection with age. These results confirm the transmissibility of the 2009 H1N1 pandemic virus was
relatively low compared with past pandemics. The pattern of age-dependent susceptibility found confirms that older
populations had substantial – though partial - pre-existing immunity, presumably due to exposure to heterologous
influenza strains. Our analysis indicates that between-country-differences in transmission were at least partly due to
differences in population demography.
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Introduction

In late April 2009, the first cases of the novel swine-derived

H1N1pdm influenza A virus were detected in Mexico and the United

States, prompting the World Health Organization (WHO) to raise

the level of influenza pandemic alert to phase 5 [1]. By the end of

2009, the H1N1pdm virus had spread to more than 208 countries,

resulting in hundreds of thousands of cases and at least 18000 deaths

[2,3]. Following WHO and Centers for Disease Control and

Prevention (CDC) recommendations, generalized media coverage

and international mobilization, many countries initiated mitigation

measures and enhanced surveillance of H1N1pdm virus infection in

humans, providing an abundance of epidemiological data for this

epidemic [3,4]. As a result the H1N1pdm is one of the most

documented pandemics with enhanced surveillance established in

many regions of the globe, with the exception of Africa [5,6].

The H1N1pdm virus was introduced into most northern and

southern hemisphere countries during the spring and summer of

2009. This period is outside the typical influenza season in

temperate countries in the Northern hemisphere, but in the typical

winter season for influenza transmission for countries from

temperate regions of the Southern Hemisphere. In most Southern

hemisphere temperate countries, a full epidemic of H1N1pdm

influenza was observed and the pandemic strain quickly became

the predominant circulating influenza virus, replacing seasonal

strains in many countries [7].

Influenza transmission in a given community may depend on

several factors: e.g. climatic characteristics as temperature and

humidity [4,8,9], virus intrinsic transmissibility, acquired immu-

nity in affected populations, contact patterns in the community,

collective and individual measures limiting virus spread [10]. The

2009 H1N1 pandemic was a unique opportunity for comparing

the spread of a novel influenza virus in a community setting in

different countries with different population structures and contact

patterns. In this context, countries from temperate regions of the

Southern Hemisphere, which present different demographic
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patterns and experienced the virus during their usual winter

season, present an opportunity to evaluate the impact of these

characteristics on transmission.

Here we use mathematical modelling to assess the transmission

characteristics of H1N1pdm virus using epidemiological data from

Southern hemisphere countries in temperate regions. We address

the question of the origins of the observed differences between

countries by investigating the role of seasonality (with latitude used

as a proxy), population density and population demography (with

proportion of children used as a proxy). We then explore more

precisely the contributions of demography in the spread of the

disease by fitting different transmission models to the set of

countries.

Material and Methods

H1N1 influenza data
The epidemiological data analysed here were weekly case

incidence of laboratory-confirmed H1N1pdm or influenza-like-

illness (ILI) and the distribution of cumulative incidence by age-

group over the study period for seven Southern hemisphere

countries and one state (Argentina, Australia -whole country and

Victoria-, Bolivia, Brazil, Chile, New Zealand and South Africa).

The data were extracted from websites or public reports issued by

the countries surveillance systems. Country datasets and corre-

sponding sources are described and listed in Table 1. Neither daily

case incidence nor age-stratified weekly case incidence data were

available. Depending on the country, weekly incidence data were

either laboratory confirmed H1N1pdm cases (H1N1CC) (Argen-

tina, Australia, Bolivia, Brazil, Chile, New Zealand, South Africa)

or influenza-like-illness (ILI) (Australia, Chile, New Zealand,

Victoria). All available datasets were used in the analysis, even

when multiple datasets were available for a given country.

Cumulative distributions of cases by age were extracted from

the same data sources (Table 1). These were generally of

H1N1pdm confirmed cases, except for Australia and New

Zealand, where we used the age distribution of ILI cases.

Due to differences between countries in the age stratification of

available H1N1pdm data, country-associated age-groups were

broken down into the following: Argentina (0–5, 5–19, 20–49, 50–

59, $60 years old); Australia (0–5, 5–19, 20–49, 50–64, $65 years

old); Victoria (0–5, 5–19, 20–49, 50–64, $65 years old); Bolivia

(0–5, 5–19, 20–44, 45–49, $50 years old); Brazil (0–5, 5–14, 15–

49, 50–59, $60 years old); Chile (0–5, 5–14, 15–54, 55–64, $65

years old); New Zealand (0–5, 5–19, 20–49, 50–59, $60 years

old); South Africa (0–5, 5–19, 20–49, 50–64, $65 years old).

Demographic data
Demographic information was extracted from census data of the

national statistics institute of the corresponding countries (data are

presented in details and electronic URL for sources are listed in

Table S1 in Text S1).

Model
A deterministic model was constructed to describe the spread of

the virus in a population structured by age-groups. Model

parameters and their values are summarized in Table 2.

Five age-groups were defined in the model (NA = 5): young

children, children, young adults, adults, older adults (with

breakdowns as defined above). Population structure was described

by the vector Ni, with Ni representing the number of individuals in

age-group i. Total population size was noted NP.

Individuals in the population were assumed to be either

susceptible, infected or recovered (classical SIR model). Each

age group of the population was initialized with y0 (a fitted

parameter) infections at the beginning of the simulation (ten weeks

before the first week of observation). The model incorporated

heterogeneous mixing by age, with a variety of mixing patterns

being explored (more details are presented below and in section 1

of Text S1). The parameter b defined the transmission coefficient.

Susceptibility to infection was hypothesized to vary with age and

given by the vector ri . To avoid confounding with the parameter

b, the susceptibility of young children was fixed at 1 (r1 = 1) and

the susceptibility of other groups was estimated. Therefore, for a

given individual of age i, the risk of infection per contact with an

infected individual is given by bri.

The generation time was assumed to be Gamma distributed

[11,12] with mean m = 2.6 days and standard deviation s = 1.3

days [13]. Although some previous studies have suggested that

children infected with influenza may be more infectious than

adults, there was no evidence of any significant age-specific

transmission risk of H1N1pdm [13,14]. Consequently, no age-

specific infectiousness was considered in the model.

We also assumed that only a proportion of infected individuals

were effectively reported to the surveillance system, represented in

the model by a reporting rate preport (underreporting included here

both unreported symptomatic cases and asymptomatic cases). No

incubation period or reporting delay was considered, since so long

as the generation time distribution is captured accurately, ignoring

these factors does not affect transmission parameter estimates.

We finally assumed that ILI surveillance data included a

constant incidence of non-influenza related cases (baseline),

defined as BL.

Technical details of the model can be found in section 1 of Text S1.

Basic reproduction number and infection attack rate
The basic reproduction number of the virus spread, R0, was

computed as the largest eigenvalue of the next generation matrix K

of the model. The next generation matrix defines the next

generation of new infected from a previous generation of infected

[15] with element Ki,j representing the expected number of new

Author Summary

Although relatively mild, the 2009 H1N1 pandemic
reminded us once again of the on-going threat posed by
novel respiratory viruses and the need for understanding
better how such pathogens emerge and spread. From
April to September 2009, countries in temperate regions of
the Southern hemisphere experienced large epidemics of
H1N1pdm during their winter season, with the new virus
quickly becoming the predominant circulating influenza
strain. We use mathematical modelling to analyse
H1N1pdm epidemiological data from 8 southern hemi-
sphere countries. We aim at understanding better the
factors which may have influenced virus transmission in
these countries. We find that transmissibility of the virus
was relatively low compared with previous influenza
pandemics, largely because of strong pre-existing age-
dependent susceptibility to the virus (older people being
less susceptible to infection, perhaps due to pre-existing
immunity). We suggest that population demography had a
strong impact on the virus spread and that higher
transmission rates occurred in countries having a younger
population. Our results highlight the requirement to use
age-structured models for the analysis of influenza
epidemics and support the need for country-specific
analyses to inform the design of control policies for
pandemic mitigation.

H1N1pdm Transmission in Southern Hemisphere
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cases from age-group i generated by one infected individual of age-

group j. K was defined as:

Kij~briMij

with b being the contact rate, r the susceptibilities and M the

mixing matrix among age-groups, defined as the proportion of

contacts an infected individual in age class j makes with individuals

in age class i.

The infection attack rate pI was defined as the proportion of

individuals in the population having been infected after the

epidemic ends.

Parameter estimation
Parameters of the dynamic model were estimated in a

likelihood-based Bayesian setting using Markov Chain Monte

Carlo (MCMC) methods with a Metropolis Hastings sampler to

explore the space of parameters. The posterior median and 95%

credible interval were reported for each parameter. See Text S1

for more details.

Initially, parameters were estimated for each country indepen-

dently (country-specific fits). In order to better understand the role

of demography on H1N1pdm spread, estimation was also run for

all the countries together (global fits).

Model variants
We defined three model variants which differed in the

assumption made on mixing patterns between age-groups. In the

first two models, assortative mixing between age groups was

assumed [16]. For a given age group, individuals had a proportion

of their contacts h occurring in their own age-group, with the

remaining 1-h fraction of contacts occurring at random in the

whole population. Model variant one (M1) involved a simple

assortative mixing in which individuals mixed preferentially in

Table 1. Summary of epidemiological data.

Country Source Data description Source

Argentina Ministerio de Salud
de la Nación, Argentina

H1N1 confirmed cases http://www.msal.gov.ar/archivos/Info_SE_3_H1N1.pdf

Australia Australian Sentinel
Practices Research
Network

ILI rate per 10,000
consultations and H1N1
confirmed cases

http://www.racgp.org.au/Content/NavigationMenu/Advocacy/IssuesinGeneralPractice/
Publichealth/aspen/ASPREN_Update_No_25.pdf ; http://www.health.gov.au/internet/
main/publishing.nsf/Content/cda-ozflu-no2-10.htm

Victoria
(Australia)

Victorian Infectious
Diseases Reference
Laboratory

ILI rate per 10,000
consultations

www.vidrl.org.au ; Kelly H, Grant K (2009) Euro Surveill 14 [49]; http://www.vidrl.org.au/
surveillance/flu%20reports/flurpt09/pdf_files/flu0934.pdf

Bolivia Direccion General
de Salud, unidad de
epidemiológica

H1N1 confirmed cases Boletin 36, semana epidemiologica 32 ; http://www.sns.gob.bo/documentacion/
doc-publicacion/2009_8_27_1.pdf

Brazil Centre Estadual de
Vigilancia em Saude

H1N1 confirmed cases http://www.saude.rs.gov.br/dados/1259685495340Boletim%20Influenza%2025%
2011%2009%20final.pdf ; http://portal.saude.gov.br/portal/arquivos/pdf/
informe_influenza_se_36.pdf

Chile Ministerio de la Salud
de Chile

ILI rate per 100,000
population and H1N1
confirmed cases

http://www.redsalud.gov.cl/minsalaudios/reporte22octubre.pdf ;
http://www.redsalud.gov.cl/minsalaudios/reporte15diciembre.pdf

New Zealand Ministry of Health of
New Zealand +
Eurosurveillance

ILI rate per 100,000
population and H1N1
confirmed cases

Baker MG et al. (2009) Euro Surveill 14 [50] ; http://www.eurosurveillance.org/
viewarticle.aspx?articleid = 19319; http://www.health.govt.nz/news-media/media-releases/
pandemic-influenza-h1n1-2009-swine-flu-update-169

South Africa National Institute for
Communicable
Diseases (NICD)

H1N1 confirmed cases http://www.nicd.ac.za/

doi:10.1371/journal.ppat.1002225.t001

Table 2. List of model parameters and their values.

Parameter Notation Value Sources

Contact rate b Estimated -

Susceptibilities by age-group (r1, r2, r3, r4, r5) (1, r2, r3, r4, r5) Estimated -

Assortative mixing rate (model variant M1) h 0.25

Generation time w() Mean = 2.6, sd = 1.3 [13]

Number of individuals in age-groups (N1, N2, N3, N4, N5) Fixed for each country (cf table S1)

Number of individuals in considered country N Fixed for each country (cf table S1)

Reporting rate preport Estimated for each country -

Initial number of cases in the model y0 Estimated for each country -

Baseline for ILI BL Estimated for each country -

doi:10.1371/journal.ppat.1002225.t002

H1N1pdm Transmission in Southern Hemisphere
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their own age-group (with fixed probability h = 0.25) and

randomly with all age-groups with probability (1-h). Although

higher values for assortative parameter were proposed in previous

studies [16], h = 0.25 was chosen as it was consistent with mixing

patterns measured in the UK via diary studies [17].

Model variant two (M2) involved a more elaborate description

of mixing. Three different assortativity parameters were defined:

h1 = 0.15 for young children; h2 = 0.4 for older children; and

h3 = 0.14 for adults. The numerical values were estimated by

fitting the mixing matrix to the mixing patterns measured in the

UK [17].

For M1 and M2, the contact rate parameter (b) was assumed to

be common to all age-groups. Given that contact rates vary among

age-groups [17], this means that the estimates of age-dependent

susceptibility obtained for these model variants also implicitly

incorporate variation in contact rates as well as actual variation in

susceptibility arising from pre-existing immunity.

Model variant three (M3) differed from M1 and M2 as it used

an empirical contact matrix. The matrix was derived from the

POLYMOD study data published for casual contacts in United

Kingdom [17]. In order to derive appropriate matrices for each of

the studied countries, two assumptions were made. First, we

assumed that in a country in which a given age-group is more

prevalent than in the UK, any individual will have a higher

proportion of his contacts appearing in this age-group than

individuals from the same age-group in the UK. Second, we

assumed that contact rates varied between age-groups but were

constant across countries (see supplementary material).

Model parameters and their values (if these were not fitted) are

listed in table 2.

Model fitting
Firstly, we fitted model variant M1 to weekly case incidence

data and to the cumulative age distribution of cases for each

country independently, using a negative binomial likelihood with

fitted variance parameter (to allow for over-dispersion in the case

data). For each country, nine parameters were estimated:

reporting rate (preport), four age-related susceptibilities (ri)i = 2..5,

dispersion parameter for the negative binomial likelihood, baseline

for ILI incidence in the sample population (BL), initial number of

cases at the beginning of the simulation (y0) and reproduction

number (R0).

Secondly, to assess the extent to which a single model could

explain the patterns seen in different countries’ epidemics, we

fitted model variants M1 to M3 to all the countries simultaneously,

keeping most parameters common to all countries. For these

global fits, susceptibilities by age and contact rate were assumed to

be common to all the locations (five global parameters) whereas

reporting rate (preport), ILI incidence baseline (BL), and the initial

number of cases (y0) were fitted on a country-specific basis (four

country-specific parameters).

Further details of the models and fitting procedures are given in

the supplementary material. MCMC methods were used to obtain

parameter estimates. For the country-specific fits, MCMC samples

of 36106 were generated for each country with the first 100000

iterations discarded to allow the chain to converge. For the global

fits equilibration of the MCMC chains was slower, so we

generated samples of 66106 and discarded the first 26106 of these.

Descriptive statistical analysis of factors influencing R0

In order to assess which factors could influence the spread of the

virus in the different countries, the R0 estimates were regressed on

countries demographic age-distribution, latitude of the capital city

(except for South Africa where the biggest city was considered) and

densities of populations (see supplementary material). This analysis

was conducted for two different set of R0 estimates: the R0 values

estimated from the exponential growth of confirmed cases in the

early weeks of the epidemic in each country, using the renewal

equation [11,12] (supplementary material) and the median

posterior estimates from the country-specific fits. H1N1 confirmed

cases were used for those countries where such data was available

and ILI data was used for the one area (Victoria) where such data

were not available.

Results

The 2009 H1N1pdm influenza in the Southern
hemisphere

With the exception of South Africa, the H1N1pdm epidemic

started at the end of May (epidemiological weeks [EW] 20–22) and

finished by the end of September (around EW 40). South Africa

experienced a first wave of seasonal H3N2 influenza followed by

H1N1pdm influenza peaking in early August 2009 [6] (Table 1)

(Figures 1 and 2).

Cumulative age-specific incidence is summarized in Table S1 of

Text S1, as well as demographic data and sources.

Estimated empirical R0-values derived from the early exponen-

tial growth rate of the epidemic were positively correlated with the

proportion of children in the population (p = 0.004) as illustrated

in figure 3a. No significant association was found with latitude and

density (supplementary material).

Country-specific estimates
Estimates of R0, attack rate and reporting rate are summarized

in Table 3. For each country and dataset, Figure 1 compares the

fits of the model (grey lines) with the H1N1pdm incidence data.

The match to the age distribution of cases is shown in Figure 2,

and estimates of R0 for the 8 countries are plotted in Figure 3B.

Estimated posterior median values of R0 ranged from 1.2 and 1.8,

with the highest values (1.5 and 1.8 respectively) being obtained

from for Argentina and Chile (though for Chile, only the ILI data

gave a high estimate). We found estimated age-related suscepti-

bilities to vary markedly by country. With the exception of Bolivia

and Brazil, a consistent pattern of decreasing susceptibility with

age and higher susceptibility for children under 20 was found

(Figure 4).

We obtained estimated posterior median infection attack rates

of between 20% and 50% of the population (Table 3). These

values also varied markedly from one country to another: from

20% for Australia to 40% for Argentina and Brazil.

Global estimates
Common and country specific parameter estimates from the fits

of the global model are summarized for model variants M1-M3 in

Table 4, while fit quality to the incidence time series is illustrated

in Figures 1 and 2. Overall, the global fits reproduce temporal and

age trends in the surveillance data well, albeit not as precisely as

the fits of the country-specific model (see section 6 of Text S1 for

evaluation of model fitting). Peak incidences were slightly

underestimated for Argentina, Chile-ILI and New Zealand-

H1N1CC and overestimated for Australia-ILI, Victoria, Chile-

H1N1CC and South Africa. Likelihood comparison did not allow

one of the 3 model variants examined to be identified as superior

(section 6 of Text S1). The global fits well reproduced the age

distribution of cases for Argentina, Australia, Victoria and New

Zealand, although the contribution of adult cases were underes-

timated for Bolivia and Brazil, and overestimated for South Africa

and Chile (Figure 2). Resulting R0 estimates were similar for the

H1N1pdm Transmission in Southern Hemisphere
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three model variants, with still significant (albeit much reduced

compared with the country-specific model) variation between

countries: the highest values were obtained for South Africa and

Bolivia and the lowest ones for New Zealand, Australia and

Victoria (Figure 3B).

Lastly, age-dependent susceptibilities to H1N1pdm were still

found to decrease with age (Figure 4B). This effect was higher in

model M1 and M2 suggesting that children had both higher

susceptibility to the virus and higher numbers of contacts.

Estimates from model M3 also suggested that resulting differences

in relative susceptibilities among adult age-groups might largely be

due to variation in contacts rates between these age-groups.

Only two country-specific parameters were fitted for the global

fits: the initial number of cases (y0) and the reporting rate (preport). As

y0, and preport mainly influence epidemic timing and the scaling

required to match surveillance incidence data, the variation in R0

Figure 1. Surveillance data and model estimates for weekly incidence of cases. For each country, graphs show observed case incidence
from surveillance data (black points), the 95% credibility region on incidence from the country-specific fits (grey region) and predicted incidence for
the posterior median set of parameters obtained from the global fits (dashed lines) for model variants M1 (blue), M2 (green) and M3 (red). Weekly
incidence from the models is plotted in all cases, with lines being drawn between weeks for visual clarity. Depending on the country, observed case
incidence are either confirmed H1N1pdm cases (H1N1CC) or influenza like illness rate (ILI) - showing ILI rate per 100,000 population for Chile and New
Zealand and ILI rate per 10,000 consultations for Australia and Victoria.
doi:10.1371/journal.ppat.1002225.g001

H1N1pdm Transmission in Southern Hemisphere
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seen between countries and the qualitatively good fits obtained

support the idea that demographic differences between countries

may have had a substantial impact on H1N1pdm transmission.

Discussion

Our results suggest transmission of H1N1pdm in 2009 varied

significantly between the eight countries/states included in our

analysis. Differences were found in transmissibility (R0 median

estimates ranged between 1.2 and 1.8) and in the size of the

epidemic (estimated median infection attack rates ranging 20–

50%).

Estimates of R0 are relatively low compared with previous

estimates from past pandemics, for which values in the range 1.7–

2.2 have been more typical [18–24], though it should be noted

that some of the higher values of R0 obtained for previous

pandemics assumed a longer mean generation time than we do

here. Our estimates are comparable to typical flu seasons (R0,1.3)

[25] and consistent with other studies for H1N1pdm in 2009

obtained from other countries [26–30].

Our results further reinforce existing evidence that children

(,20 years old) were substantially more susceptible to infection

with H1N1pdm than adults [31–33], with adults having 30–80%

the susceptibility of children, depending on the model variant

Figure 2. Surveillance data and model estimates for the age-distribution of cases. Observed cumulative cases distribution among age-
groups (grey rectangles) and model median posterior estimates (coloured thin bars). The dark grey bars correspond to country-specific fits, whereas
blue, green and red bars represent the results for M1, M2 and M3 model variants of the global model, respectively.
doi:10.1371/journal.ppat.1002225.g002

H1N1pdm Transmission in Southern Hemisphere
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examined. The country-specific fits led to differences in suscep-

tibility estimates among countries, maybe indicating that some

over-specification exists in the country-specific model. However,

this might also suggest that levels of prior existing immunity differ

among the studied populations, which has been documented in

some countries [31,34,35], playing a role in the variation in

patterns of H1N1pdm spread observed. If real, such differences in

pre-existing population immunity may have contributed to the

unexplained variance of the global fits relative to the country-

specific fits. It should be noted that models M1 and M2 assumed

simple assortative mixing by age with no age-dependent variation

in contact rates, so that estimates of age-dependent susceptibility

may be confounded with variation in contact rates with age.

Model M3 used data from a diary survey of contact patterns [17]

and thus incorporated higher contact rates in children, and the

resulting estimated differences in susceptibility between adults and

children were therefore lower for that model variant. In addition,

in a context of high media coverage and public concern, it is

possible that cases in children might have been more likely to lead

to health-care seeking behaviour, affecting estimates.

Nevertheless, our finding that susceptibility decreased with age

is consistent with recent serological study results which demon-

strated a significant proportion of immune adults prior to the start

of the 2009 H1N1 epidemics [31,34,35]. Age-dependent suscep-

tibility might arise from the effect of immune system maturation or

cross-reactive immunity due to prior infections with other (non

H1N1pdm) influenza subtypes/strains. In a completely naive

population, the reproduction number would therefore be expected

to be substantially larger. The lack of serological data during the

pandemic prevented explicit incorporation of pre-existing immu-

nity in the model [36], though age-dependent susceptibility

implicitly represents its effects. Sensitivity analyses in which we

assumed pre-existing immunity at the beginning of the pandemic

suggested including immunity would substantially affect our

estimates of R0 (given the estimates provided here are implicitly

in the presence of substantial pre-existing immunity) , but also of

attack rate.

Although H1N1pdm was a new virus, our results further

reinforce the evidence base that there was substantial pre-existing

partial cross-immunity to the virus prior to the 2009 epidemic,

particularly in adults. Cross-immunity, an important feature of

seasonal influenza epidemiology, was not expected to play such a

key role in a pandemic situation. Clearly the experience of H1N1

in 2009 has highlighted the need for more research – both

experimental and theoretical - on heterosubtypic immunity (and

perhaps non-HA mediated immunity).

Pre-existing immunity impeded the estimation of the classic

basic reproduction number (R0) from the data examined here. Our

R0 estimates are really estimates for R[0], the reproduction

number at the beginning of the epidemic (at time 0), rather than

for the reproduction number in the absence of prior immunity.

However, for ease of notation (and because one might argue that

transmission may never occur in a truly immunologically naı̈ve

population), we have chosen still to refer to the reproduction

number of the 2009 virus at the start of each country’s epidemic as

R0.

Each of the three tested mixing matrices was clearly a

simplification of the true mixing patterns that might be observed

in the studied countries. M1 and M2 assumed a simple

assortativity model (moderate preference for mixing preferentially

within one’s own age group). The value of 0.25 assumed for the

assortativity parameter is broadly consistent with the levels of

assortativity seen in the mixing matrices provided by the UK

POLYMOD survey [17]. However, in order to test whether this

choice influenced the estimates, we undertook a sensitivity analysis

and looked at values in the range 0–0.5. This indicated that

neither reproduction numbers nor susceptibility estimates were

strongly affected by varyingh.

The models presented here were intentionally parsimonious.

Our aim was to compare in the simplest way possible the initial

Figure 3. Reproduction numbers. (A) Estimated empirical R0-values
derived from the early exponential growth rate of the epidemic versus
proportion of children in the eight studied countries/states. R0-values
estimated from data on H1N1 confirmed cases were used in the
regression analysis except for Victoria for which only ILI data was
available. (B) Distribution of estimated reproduction numbers by
country obtained in country-specific and global fits. For each country,
the posterior median estimates of R0 for country-specific and global fits
are plotted with 95% credible intervals. The grey circles correspond to
country-specific estimates, whereas blue squares, green stars and red
triangles represent estimates for M1, M2 and M3 model variants of the
global fits, respectively. For those countries where two datasets were
available, the two estimates are plotted. For the global fits, because R0

differences among countries derived from population demography
only, fitting resulted in one estimate only even when both ILI and
confirmed case data were available.
doi:10.1371/journal.ppat.1002225.g003

H1N1pdm Transmission in Southern Hemisphere

PLoS Pathogens | www.plospathogens.org 7 September 2011 | Volume 7 | Issue 9 | e1002225



epidemic of a novel influenza in different countries. The models

developed here cannot generate multiple waves of transmission,

and do not capture potentially important behavioural changes that

may have affected transmission and disease surveillance during the

pandemic [37–39], such as early risk avoidance and higher rates of

health-care seeking behaviour early in the pandemic. In addition

we did not allow for the potential impact of school holidays and

seasonal climate variation on transmission [40–42], which may

have improved the models fits. Lastly, only local transmission was

considered here. Imported cases were not considered in the model

as one would expect importations to be a substantial proportion of

cases only in the first weeks before the epidemic starts and that the

transmission would thereafter be predominantly local. However,

by exploring multiple model variants we have demonstrated that

estimates of R0 and attack rates are largely robust to uncertainty in

the parameterisation of age-specific mixing patterns in the

population.

The differences in pandemic surveillance [43] in the countries

considered may be the most influential factor affecting the

reliability of our estimates and the variation found between

countries. Surveillance to detect virologically confirmed cases of

influenza was likely to have been highly non-systematic in several

countries and variable throughout the pandemic, meaning the

relationship between measured incidence and true incidence of

infection may have been highly non-linear. In particular, many

countries which initially undertook highly intensive case finding in

2009 moved to less intensive surveillance once case numbers grew

too large for routine virological testing to be undertaken.

Syndromic surveillance of ILI, by comparison, is typically more

systematic but suffers from ILI being non-specific for influenza. All

surveillance systems were subject to the effects of changes in

health-care seeking behaviour over time. While we estimate the

proportion of infections appearing in surveillance incidence data

(the reporting rate), we did not have the statistical power to do

anything other than assume that reporting rates were constant

over time.

Perhaps the most interesting aspect of our results is that

demographic differences between countries may have contributed

strongly to the differences in observed H1N1pdm spread. In

particular, we found countries with higher proportions of children

Table 3. Estimated parameters for country-specific model (median posterior with 95% credible interval indicated in parenthesis).

Country R0 (95% CI) Infection attack rate (95% CrI) Reporting rate*

Argentina CC:1.54 (1.50,1.58) 0.51 (0.50,0.62) 661024

Australia CC:1.25 (1.22, 1.26) 0.26 (0.25,0.28) 761023

ILI:1.15 (1.14, 1.16) 0.18 (0.17,0.19) 261022(adj:0.5–5)

Victoria ILI:1.18(1.16, 1.21) 0.21 (0.19,0.24) 261022(adj:0.1–1)

Bolivia CC:1.44 (1.40, 1.49) 0.39 (0.35,0.45) 361024

Brazil CC1: 1.40(1.30, 1.45) 0.45(0.41,0.49) 261025

CC2:1.35(1.29, 1.41) 0.46(0.40,0.52) 161024

Chile CC: 1.25 (1.19,1.33) 0.19(0.16,0.22) 161023

ILI:1.78(1.46, 2.02) 0.31 (0.28,0.35) 561024(adj:861022)

New Zealand CC:1.34 (1.27,1.38) 0.38 (0.35,0.40) 261023

ILI:1.23 (1.19,1.28) 0.32 (0.28,0.8) 261023(adj:0.1)

South Africa CC:1.37 (1.36, 1.38) 0.30(0.26,0.32) 861024

*When fitting ILI weekly incidence per 100,000 population, reporting rate was adjusted from sample population size (100,000) to country population size to provide
estimates comparable with those reported for confirmed cases. When fitting ILI weekly incidence per 10,000 consultations, reporting rate was adjusted using a range of
sample population size (10,000–100,000).
doi:10.1371/journal.ppat.1002225.t003

Figure 4. Estimated age-dependent susceptibilities. Estimated
susceptibilities (posterior median with 95% credible intervals) are
plotted according to age in the 8 countries/states for (A) country-
specific fits and (B) global fits (M1, M2 and M3).
doi:10.1371/journal.ppat.1002225.g004
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(under 20) had higher estimated R0 values and attack rates. Fits for

the global models with shared parameters between countries are

clearly poorer than the country-specific fits, but nevertheless

capture much of the country to country variation. That said, fit

quality for Argentina and for South Africa may indicate other

factors playing a role in determining the observed patterns of

transmission (or alternatively may result from imperfections in

surveillance). Several other factors have been demonstrated to

impact the Influenza virus transmission, notably seasonal climatic

variations, such as absolute humidity and temperature [8,44].

Although the countries examined here have substantial geograph-

ical differences between them (e.g. capital city latitudes between

15uS and 41uS and mean population densities between 3 and 24/

km2), no significant association between estimated R0 and latitude

or densities of populations were found (Section 8 and Figure S8 in

Supplementary material). More generally, our estimates of

reproduction numbers did not differ strongly from those obtained

from analyses of the spring/summer wave in countries from the

Northern Hemisphere (US, Mexico and UK) [16,27,45], suggest-

ing a limited impact of seasonal variation in H1N1pdm

transmissibility. Prior immunity could also explain differences

between countries as pointed out by recent serological surveys

showing that immunity to H1N1pdm varied by country of tested

individuals [31,34,35,46–48] .

Results presented here suggest there may be country-to-country

differences in epidemiology (driven in part by demographic

variation, but not entirely so), suggesting some need to allow for

appropriate modification of control policies on a country by

country basis. In particular, targeting vaccination at children may

be more optimal for countries with populations with a high

proportion of school-age children. They also support the

importance of developing accurate age-structured models for the

analysis of influenza epidemics and the potential benefit of

extending real time data collection by age-group, on serology

and/or reporting rate.

To conclude, this study is one of the first attempts to gain insight

into the dynamics of disease transmission via inter-country

comparison. Our analysis has shown that, although differences

in spread of H1N1pdm were observed during the Southern

hemisphere winter wave, many features of transmission were

shared between countries and could be explained with largely

common parameters for all countries. We showed that differences

between countries could be partially explained by differences in

population demography. Our results confirm that susceptibility to

the virus decreased with age but also that higher contact rates in

children may have partly shaped the way H1N1pdm influenza

spread in 2009.
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