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Abstract

The human membrane cofactor protein (MCP, CD46) is a central component of the innate immune system. CD46 protects
autologous cells from complement attack by binding to complement proteins C3b and C4b and serving as a cofactor for
their cleavage. Recent data show that CD46 also plays a role in mediating acquired immune responses, and in triggering
autophagy. In addition to these physiologic functions, a significant number of pathogens, including select adenoviruses,
measles virus, human herpes virus 6 (HHV-6), Streptococci, and Neisseria, use CD46 as a cell attachment receptor. We have
determined the crystal structure of the extracellular region of CD46 in complex with the human adenovirus type 11 fiber
knob. Extracellular CD46 comprises four short consensus repeats (SCR1-SCR4) that form an elongated structure resembling a
hockey stick, with a long shaft and a short blade. Domains SCR1, SCR2 and SCR3 are arranged in a nearly linear fashion.
Unexpectedly, however, the structure reveals a profound bend between domains SCR3 and SCR4, which has implications for
the interactions with ligands as well as the orientation of the protein at the cell surface. This bend can be attributed to an
insertion of five hydrophobic residues in a SCR3 surface loop. Residues in this loop have been implicated in interactions with
complement, indicating that the bend participates in binding to C3b and C4b. The structure provides an accurate
framework for mapping all known ligand binding sites onto the surface of CD46, thereby advancing an understanding of
how CD46 acts as a receptor for pathogens and physiologic ligands of the immune system.
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Introduction

The human CD46 receptor, also known as membrane cofactor

protein (MCP), is present on all nucleated cells [1]. It belongs

to a family of proteins known as the regulators of complement

activation (RCA), which cluster on chromosome 1q32 [2,3]. In

addition to CD46, the RCA family includes decay-accelerating

factor (CD55/DAF), complement receptors 1 (CR1/CD35) and 2

(CR2/CD21), the C4-binding protein, and factor H (FH). CD46

acts as a key regulator in the classical and alternative complement

activation cascades of the innate immune system by serving as a

cofactor for the factor I - mediated cleavage of C3b and C4b [4].

This process protects host cells from inadvertent lysis by the

complement system [3]. The relevance of CD46 has expanded

beyond the innate immune system in recent years as it has become

clear that CD46 can regulate T-cell immunity, and is in particular

able to control inflammation [5]. Consequently, reproductive

processes, multiple sclerosis, and inflammatory responses in the

brain have all been functionally linked to CD46 [5,6,7,8].

In addition to its role in complement activation and regulation

of the adaptive immune response, CD46 is used as a cellular

receptor by several viruses and bacteria. Some measles virus (MV)

[9,10] and adenovirus (Adv) [11,12,13] strains attach to cells by

engaging CD46. In addition, group A Streptococci [14,15], some

Neisseria strains [16,17] and human herpes virus 6 (HHV6) [18,19]

all use CD46 as a receptor. While other members of the RCA-

cluster are also targeted by viruses [20,21], the number of

pathogens that attach to cells by using CD46 remains unsurpassed.

This has led to the description of CD46 as a ‘‘pathogen’s magnet’’

[22]. The prominence of CD46 in pathogen interactions may be

attributed, at least in part, to the protein’s ubiquitous expression

in the host. In some cases, interactions with pathogens have also

been shown to down-regulate cellular levels of CD46, thereby

increasing complement sensitivity of infected cells [23,24,25]. A

PLoS Pathogens | www.plospathogens.org 1 September 2010 | Volume 6 | Issue 9 | e1001122



recent study provides evidence for a direct link between CD46 and

components of the autophagy machinery [26]. Recognition of

pathogens by CD46 is thought to trigger autophagy, which serves

as a critical step to control infection. However, some pathogens are

known to exploit autophagy in host cells.

Common to all the proteins expressed from the RCA cluster is

their modular construction, which is primarily based on con-

catenated short consensus repeats (SCR) [3]. Each SCR module

contains about 60 amino acids that fold into a compact b-barrel

domain surrounded by flexible loops [27]. While the modules

display high sequence variability, they all contain four conserved

cysteine residues that form two disulfide bridges at the top and

bottom of the repeat. The number of repeats present in the

members of the RCA family ranges from four in CD55 and CD46

to 30 in CD35. Many structures of fragments of RCA family

members are known, and they exhibit significant diversity both in

their loop structures and also in their interdomain orientation

[28,29]. The four SCRs in CD46 constitute the bulk of its

extracellular region. The repeats are connected to a short linker

region rich in serines, threonines and prolines (STP region), a

single membrane-spanning segment, and a cytoplasmic tail.

Alternative splicing generates multiple isoforms of CD46 that all

have identical N-terminal repeats but exhibit variation in the STP

region and the cytoplasmic tail [30].

The crystal structure of the N-terminal two repeats, SCR1 and

SCR2, of CD46 (CD46-2D) revealed essential features of this

region, including a pronounced bend between the two repeats and

significant flexibility at the interdomain interface [31]. Although

CD46-2D is heavily glycosylated, one side of the two-domain

fragment was found to be entirely devoid of glycans. Subsequent

crystal structures of CD46-2D in complex with the Adv fiber knob

[32,33] and with the MV hemagglutinin [34] demonstrated that

both viral attachment proteins bind to this glycan-free surface. In

both cases, engagement by the virus leads to ‘‘straightening’’ of the

CD46-2D protein into a linear conformation. Furthermore, both

viral attachment proteins form contacts with CD46-2D that

predominantly involve residues at the SCR1-SCR2 interface. The

implications of the structural rearrangement of CD46 upon ligand

binding are not understood.

Structural information about the binding of complement

proteins C3b and C4b to CD46 is not available. However,

biochemical mapping studies strongly implicate domains SCR2,

SCR3 and SCR4 in this interaction, with most of the predicted

contacts located on SCR3 and SCR4 [35,36,37]. Notably, the

regions of CD46 that are thought to interact with C3b and C4b

overlap but are not identical [37]. As the cellular C3b and C4b

proteins as well as HHV6 engage regions that include the SCR3

and/or SCR4 domains, modeling studies have aimed to predict

the structure of unknown portions of CD46 in order to provide a

basis for the mapping of binding epitopes [37,38]. Although some

features of the SCR domains are conserved and can be predicted

with reasonable accuracy, loop regions and interdomain orienta-

tions are notoriously difficult to model. These latter features are

however central components of the protein and, to a large extent,

determine its overall conformation and interaction properties.

In order to advance an understanding of how CD46 interacts

with its many ligands, we determined the three dimensional

structure of an extracellular segment of CD46 that comprises all

four SCR domains (CD46-4D). The structure provides a basis for

identifying binding sites for several CD46 ligands that bind to the

C-terminal region of the protein. It also reveals an unexpected

kink between domains SCR3 and SCR4, which has profound

implications for the conformation of CD46 on the cell surface, and

for the recognition of its ligands.

Results

Structure determination
Glycosylation of CD46 plays an important role in mediating its

interactions, at least with some proteins [39]. Proper glycosylation

probably also helps to stabilize the overall conformation of the

CD46-2D fragment [31]. In order to preserve the glycosylation of

CD46-4D, we produced the protein in a mammalian cell line (see

Methods). However, efforts to determine the crystal structure of

unliganded CD46-4D were unsuccessful, perhaps due to the heavy

glycosylation and the known flexibility between domains SCR1

and SCR2 [31]. Although several crystal forms could be obtained,

none of these diffracted beyond 15 Å (M. Larvie and T. Stehle,

unpublished results). The Ad11 knob, which can easily be

crystallized in its unbound form and engages in a high-affinity

complex with the SCR1 and SCR2 domains of CD46-2D [32],

was then used to form a complex with CD46-4D for crystalliza-

tion. This strategy produced crystals that diffracted to 2.84 Å

resolution, allowing us to trace the polypeptide chains for the

entire complex (Table 1 and Methods). The Ad11 knob is a

trimeric complex composed of three protomers. The asymmetric

unit of the crystals contains two Ad11 knob protomers that are

located in different trimers, and are each complexed with a single

CD46-4D molecule. For each protomer, crystallographic three-

fold rotation axes in the P63 space group then generate a trimeric

knob structure ligated with three CD46-4D molecules (Fig. 1).

Overall organization of the complex
At the center of the complex lies the trimeric Ad11 knob

structure, which, in support of previous findings [32,40], engages

domains SCR1 and SCR2 but does not interact with domains

SCR3 and SCR4 of CD46 (Fig. 1). The SCR1-SCR2 segment

adopts a rod-like conformation that is similar but not identical to

the one seen in the earlier crystal structure of Ad11 knob in

complex with CD46-2D [32] (Fig. 2A). The SCR1 domain and the

SCR1-SCR2 interface make nearly identical contacts with the

Ad11 knob in both structures, including the central salt bridge

between CD46 residue Glu63 and Ad11 knob residue Arg280

(Figs. 2B,C). However, the position and orientation of SCR2 is

quite different in the two complexes (Figs. 2A, D). In the Ad11

Author Summary

The human membrane cofactor protein (MCP, CD46) is
expressed on all nucleated cells and serves as a marker
that prevents host cells from destruction by the immune
system. It functions as a cofactor that helps to inactivate
the C3b and C4b molecules, which are central components
of the complement system. In addition to its role in
regulation complement activation, CD46 is also used by a
large number of pathogens, including measles virus and
adenovirus, as a receptor to allow these pathogens to
attach to the cell surface and initiate an infection. We have
determined the three-dimensional structure of the bulk of
the extracellular region of CD46 using X-ray crystallogra-
phy. This structure provides detailed information about
the location of previously identified residues that play a
role in the interactions with C3b, C4b, and several
pathogens, advancing an understanding of the function
of the CD46 protein as a host and pathogen receptor.
Moreover, the structure also reveals an unexpected, bent
conformation of the protein that has implications for how
the binding sites are presented at the cell surface.

Structure of CD46 Ectodomain
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knob - CD46-2D complex, the SCR2 domain rests on the IJ loop

of a second Ad11 knob protomer, forming several contacts

including two hydrogen bonds, with the knob. By contrast, SCR2

has moved away from the knob in the Ad11 knob - CD46-4D

complex, and the number of contacts have been reduced

significantly. As the SCR2 domains are involved in different

crystal contacts in the CD46-2D and CD46-4D complexes, we

conclude that the interactions of this domain with the Ad11 knob

are at least partially determined by crystal packing effects and not

crucial for binding. Our data therefore suggest that SCR2 merely

rests above the Ad11 knob but does not engage in critical

interactions, in line with mutational studies that show that contacts

between Ad11 knob and the base of SCR1 are most critical for

contact formation [40,41]. We also conclude that CD46 retains

some flexibility at its SCR1-SCR2 interface even when bound to

the Ad11 knob.

Structure and glycosylation of CD46-4D
The CD46-4D chain folds into an elongated structure that is

about 115 Å long (Fig. 1). Domains SCR1, SCR2 and SCR3 are

arranged in nearly linear fashion, with interdomain angles of 148

and 149 degrees, respectively. However, with an interdomain

angle of only 120 degrees between domains SCR3 and SCR4, the

SCR4 domain deviates profoundly from the long axis of the

protein (Fig. 1). The overall structure of CD46-4D can therefore

best be described as resembling a hockey stick, with the N-terminal

three domains forming the ‘‘shaft’’ and SCR4 forming the ‘‘blade’’

(Fig. 1). The observed conformation of CD46-4D is nearly

identical in both copies of the protein, despite differing crystal

contacts.

Sequence analysis predicts that CD46-4D carries three N-linked

glycans (at Asn49 in SCR1, Asn80 in SCR2, and Asn239 in

SCR4). Structures of CD46-2D had shown that Asn49 and Asn80

are glycosylated [31,32,33,34]. In accordance with this, we

observe clear electron density for single N-acetyl glucosamine

(NAG) residues at both positions, allowing us to incorporate these

moieties into the model. Although the electron density at Asn239

is not clear enough to accurately model a carbohydrate into it, its

shape and location strongly suggests the presence of a NAG. Thus,

all three potential N-linked glycosylation sites of CD46-4D are

utilized. Modeling a physiologic glycan structure onto the protein

shows that all three glycans would face into the same direction,

and would likely shield the concave ‘‘inner’’ side of CD46 entirely

from interactions (Fig. 3A and Methods). The STP region of

CD46 comprises about 30 amino acids that are not included in our

structure. These residues feature sites of O-linked glycosylation

and likely serve as a spacer between the base of SCR4 and the

membrane. To date, no structural information about this region is

available.

Domain structures and interdomain interfaces in CD46-
4D

The prototypical SCR module is primarily composed of four

longer b-strands (B, C, D and E) that form a barrel-like structure.

The barrel is augmented with a set of smaller b-strands (A, B’, D’

and E’) (Fig. 3B), although not all strands are always present in an

SCR. Structural features of SCR1 and SCR2 of CD46, including

the domain interface, have been described previously [31,32]. As

expected, the overall folds of the SCR3 and SCR4 modules are

quite similar to those of other SCRs such as SCR1 (Figs. 3C–E).

The two domains can be superimposed onto SCR1 with low r.m.s.

deviations (ranging from 2.2 to 2.8 Å), resulting in nearly identical

locations of key features such as the conserved tryptophan side

chains and the disulfide bonds that are hallmarks of each SCR

(Figs. 3B–E). We note that SCR3 carries a long, almost entirely

hydrophobic insertion in its CD’ loop (connecting b-strands C and

D’), causing this loop to protrude markedly from the domain

(Fig. 3D).

The interdomain interfaces determine the overall conformation

of the protein. Domains SCR2 and SCR3 are stacked together

head-to-tail, producing a nearly linear two-domain fragment with

interdomain contacts mostly involving the CD’ loop of SCR2 and

the B’C and DE loops of SCR3 (Fig. 4A). Lys125 makes contacts

primarily with SCR2 residues, and Val126 is involved in

interactions with SCR3. The interface is stabilized by a hydrogen

bond between SCR3 residue Asp178 and the main chain nitrogen

of Gly96 in SCR2, and by non-polar contacts between Gly96 and

the Tyr149 side chain in SCR3. The interface buries an area of

about 480 Å2 from solvent, which is comparable to the area buried

between domains SCR1 and SCR2 in unliganded CD46 (340 Å2)

[31].

The interface between SCR3 and SCR4 (Fig. 4B) is unique

among the three CD46 interdomain interfaces as it has by far the

largest buried surface area (729 Å2) and features a profound kink.

These characteristics can be directly attributed to the protruding,

hydrophobic CD’ loop at the base of the SCR3 domain

Table 1. X-ray data collection and refinement statistics.

Crystal form

Space group P63

Unit cell dimensions

a, b, c (Å) 108.16, 108.16, 222.99

a, b, c (u) 90, 90, 120

Data collection

Wavelength (Å) 1.0

Resolution (Å)a 38.8222.84 (2.99–2.84)

Unique reflections 33537

Redundancya 3.9 (3.4)

Completeness (%)a 97.1 (93.8)

Rcryst (%)a 12.8 (53.1)

I/sIa 8.4 (2.0)

Model statistics

Non-hydrogen atoms 7682

Protein 7029

Carbohydrates 84

Solvent 378

B-factor overallb (Å2) 51.8

Protein 52.0

Carbohydrates 95.3

Solvent 37.1

Resolution (Å) 38.8222.84

Rwork/Rfree (%) 21.0/22.9

Number of test reflections 1682

RMS deviations

Bonds (Å) 0.007

Angles (u) 0.91

aValues for highest resolution shells are given in parentheses.
bcomposite B-factors containing TLS and residual B factor contributions, mean

Bresidual: 32.0 Å2.
doi:10.1371/journal.ppat.1001122.t001
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(Fig. 3B,D). Since this loop contains four proline residues, we term

it the ‘‘proline-rich loop’’. The interface is generated by two

tyrosines, Tyr213 and Tyr214 at the top of SCR4, that form a

cradle-like platform on which the proline-rich loop of SCR3 rests.

There are numerous contacts between residues in the proline-rich

loop and hydrophobic portions of the two tyrosine side chains as

well as SCR4 residue Lys193. The only polar residue in the

proline-rich loop, Asp164, lies close to two lysine residues in

SCR4, Lys193 and Lys211, and forms weak charge-charge

interactions with both. The conformation of the proline-rich loop

is incompatible with a more linear arrangement of the SCR3 and

SCR4 modules, and since it mediates a large number of

interdomain contacts we conclude that this loop is responsible

for the profound kink between these two domains. Its unusual

length, proline-rich sequence, and key role in interdomain contacts

suggest an important function, perhaps by serving as a contact

point for complement proteins [37] or by helping to orient the

CD46-4D protein at the cell surface (see Discussion).

Comparison with the structure of FH bound to C3b
The crystal structure of C3b in complex with the N-terminal 4

repeats of FH has been reported recently [42]. As C3b serves as a

ligand for both CD46 and FH, a comparison of the CD46-4D and

FH structures offers useful insights into the location of contact

surfaces and overall conformations of proteins constructed from

SCR domains. In the C3b-FH complex, domains SCR2, SCR3

and SCR4 of FH engage a large surface that spans the entire side

of C3b [42] (Fig. 5). Interestingly, the FH structure also revealed a

kink between domains SCR3 and SCR4 at a region that mediates

contacts with C3b. With an r.m.s. deviation of 1.43 Å (60 residue

pairs), the SCR3 domains of FH and CD46-4D superimpose well.

However, this superposition clearly shows that the overall

Figure 1. Overall structure of CD46-4D in complex with the Ad11 knob. Ribbon representation of the Ad11 knob trimer, with individual
protomers (monomers) shown in blue, green and grey. The knob is bound to three copies of CD46-4D, shown in red. The three-fold axis of the knob lies
in a vertical direction. The slightly asymmetric view was chosen to highlight the overall conformation of the CD46-4D molecule on the right hand side.
doi:10.1371/journal.ppat.1001122.g001
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conformations of the four domain segments of FH and CD46 are

rather different. The CD46-4D structure is significantly more bent

both at the SCR2-SCR3 and SCR3-SCR4 interfaces. It is not

known whether the SCR3-SCR4 region is also bent in unliganded

FH, or whether the observed bend is caused by contacts with C3b.

However, the bend at the SCR3-SCR4 interface of CD46 clearly

exists in the absence of ligand and is stabilized by an elongated

CD’ loop that is unique to the SCR3 domain of CD46 (Fig. 5). As

discussed below, the preformed bent CD46 conformation could

facilitate binding to C3b.

Implications for interactions of CD46 with C3b and C4b
Information on C3b and C4b binding to CD46 is primarily

based on epitope mapping and mutagenesis experiments, as well as

the analysis of molecules lacking specific SCR domains [35,36,37].

Taken together, these data indicate (i) that SCR1 is not required

for binding C3b or C4b, (ii) that both complement proteins

interact with a large portion of the remaining CD46 structure, and

(iii) that the binding sites for C3b and C4b are overlapping but

distinct. We have mapped all sites that were previously identified

as important for binding to C3b and C4b (see Figure 7 in reference

[37]) onto the protein surface, excluding amino acids that play a

role in function but not direct binding. Intriguingly, the sites for

the natural ligands C3b and C4b mostly involve the glycan-free

aspects of CD46 and cluster in several smaller areas on SCR2 and

SCR3 as well as a large region of SCR4, near the SCR3-SCR4

interface (Fig. 6A). Thus, as was seen in the interactions of CD46

with Adv and MV [32,33,34], complement binding appears to be

limited to glycan-free regions of CD46.

The CD46 sequence contains three unique regions that are rich in

proline residues and that were predicted earlier to interact with C3b/

C4b: residues 127-LCTPPPKI-135 at the SCR2-SCR3 interface,

residues 159-PAPGPDP-165 in SCR3, and 243-DPPVPKCL-250

in SCR4 [37]. All three regions are partially surface-exposed and

available for interactions. The second sequence is especially

intriguing as part of it corresponds to the unique insertion in the

CD’ loop of SCR3 (Fig. 3B,D). This loop is an integral part of the

bent SCR3-SCR4 interface (Fig. 4B), and it may therefore play a

central role both in determining the overall conformation of CD46

and in mediating interactions with C3b and C4b.

Figure 2. Interactions between Ad11 knob and CD46-4D, and comparison with the structure of the knob in complex with CD46-2D.
(A) Overall contact region for one CD46 molecule (red) bound to two Ad11 knob protomers (blue and green). CD46 domains SCR1 and SCR2 contact
the extensive loops of the knob protomers. The HI and DG loops are from the blue protomer, whereas the GH and IJ loops are from the green
protomer. Superimposed onto the CD46-4D structure (red) is a ribbon drawing of the CD46-2D structure (grey), which was also determined in
complex with Ad11 knob [32]. The superposition was performed using Ad11 knob residues only. The three main contact regions (areas 1, 2 and 3) are
boxed, and are shown in atomic detail in panels (B), (C) and (D), respectively. Hydrogen bonds and salt bridges (distance,3.5 Å) present in complexes
with CD46-2D and CD46-4D are represented with black dashed lines, whereas similar interactions only present in the complex with CD46-2D are
shown in orange dashed lines.
doi:10.1371/journal.ppat.1001122.g002
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Few amino acid mutations affected binding of C4b to CD46,

and not cofactor activity [37]. Amino acids Asn94, Leu95 and

Gly96 were found to be relevant only for interactions with C4b,

and not C3b. These residues are located within the CD’ loop at

the base of SCR2, near the SCR2-SCR3 interface, and Gly96

does in fact participate in contacts with SCR3 (Fig. 4A). Thus C4b

appears to engage a region closer to the N-terminus of CD46,

while also making contact with SCR4 residues.

The extensive C3b-binding epitope covering a large area on

SCR4 (Fig. 6A) partially overlaps with a positively-charged region

involving a large number of lysine and arginine residues that all lie

on one side of SCR4 or near the SCR3-SCR4 interface (Lys190,

Lys193, Arg195, Lys203, Lys210, Lys211, Lys224, and Lys251). It is

conceivable that some of the basic residues towards the base of

SCR4 that are not implicated in C3b binding (e.g., Lys224, Lys251)

mediate interactions with negatively-charged membrane lipids.

Interaction of CD46 with viral and bacterial ligands
Binding sites of Adv and MVH on CD46 have been well

characterized by cocrystallization of complexes [32,33,34]. Both

viruses bind to a similar region of CD46, but they do so by making

distinct contacts, with different amino acids. In each case, contacts

are limited to SCR1 and SCR2, and they are thus spatially

separated from the C3b and C4b binding sites, which do not

involve SCR1 at all and are located near the base of the CD46-4D

protein (Fig. 6B). Given the large size of the complement proteins,

it is nevertheless likely that interaction with either viral protein will

directly compete with complement binding.

CD46 also serves as a receptor for Streptococcus on keratinocytes

[14]. Interactions are mediated by the streptococcal surface

protein, M, a long, filamentous protein that is also able to engage

other members of the RCA family. Using domain exchange

experiments and chimeric CD46/CD55 molecules, Giannakis

et al. [38] showed that binding of the M protein is dependent only

on domains SCR3 and SCR4 of CD46. Sequence comparison of

CD46 with other RCA family members for which M protein

binding has been mapped to individual residues [43,44] suggests

that M protein primarily interacts with a region of SCR4 that

partially overlaps with binding sites for C3b and C4b (compare

Fig. 6B with Fig. 6A). However, C3b-mediated complement

activity was detectable even after addition of M protein [38],

indicating that the binding sites for C3b and M protein are not

identical.

The binding sites of Neisseria and HHV-6 have been mapped to

individual domains only. The SCR3 and STP domains of CD46

are required to mediate adherence of Neisseria [17], while

interactions of HHV-6 with CD46 depend on repeats SCR2

and SCR3 [19]. In both cases, therefore, interactions appear to be

distant from the binding sites for Adv and MV, and they are also

expected to compete with the binding of C3b or C4b to CD46.

Figure 3. Structure of CD46-4D. (A), Overall structure of CD46-4D, with domains SCR1-SCR4 shown in different colors. The protein carries
glycosylation at positions Asn49 (SCR1), Asn80 (SCR2) and Asn239 (SCR4). Although only single NAG residues are visible at Asn49 and Asn80, more
extensive glycosylation has been modeled to present a view of the protein that resembles its physiologic state (see Methods). (B) Structural
alignment of all four repeats of CD46. The conserved cysteine and tryptophan residues, which are hallmarks of SCR domains, are highlighted in yellow
and blue, respectively. The five-residue insertion of the unique CD’ loop of SCR3 is shown in orange. Sites of N-linked glycosylation are highlighted in
orange. Beta strands are indicated with arrows, and are labeled with letters. The alignment was performed with Modeller (http://salilab.org/modeller/
modeller.html) using a gap penalty of 3. (C–E). Superpositions of domains SCR2 (yellow, panel C), SCR3 (orange, panel D) and SCR4 (red, panel E) onto
SCR1 (grey). Side chains of conserved cysteine and tryptophan residues of each domain are shown in atomic detail to visualize the agreement of the
core domains. Also shown as stick models are the three asparagine residues that carry glycosylation. The unique CD’ loop in SCR3 is labeled.
doi:10.1371/journal.ppat.1001122.g003
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Discussion

Precise regulation of immune defense mechanisms is essential to

protect host tissue from injury. This is achieved in part by

mechanisms that prevent the inappropriate activation of comple-

ment on autologous tissues. The RCA family of proteins plays a

key role in this process by interacting with fragments of

complement proteins C3 and C4. The CD46 protein inhibits

complement activation by binding separately to C3b and C4b and

promoting their proteolytic inactivation by factor I [4]. In

addition, CD46 also serves as the cell attachment receptor for a

number of human pathogens [22].

We have determined the three-dimensional structure of all four

SCR domains of CD46, which constitutes the bulk of the

extracellular region of this cell surface receptor protein, in

complex with the Ad11 knob. The conformation of CD46-4D

resembles a hockey stick, with an unexpected bend between

domains SCR3 and SCR4. This bend can be attributed to a

Figure 5. Comparison of CD46-4D with the structure of the N-terminal four repeats of FH. The structures of CD46-4D (red) and FH (PDB
code 2WII, blue) [42] were superimposed based on residues in SCR3 only. This yielded an r.m.s. deviation of 1.43 Å for 60 pairs of residues. Shown in
grey is the C3b ligand that was crystallized in complex with FH. The individual SCR domains of CD46-4D and FH are labeled in red and blue,
respectively.
doi:10.1371/journal.ppat.1001122.g005

Figure 4. Interdomain interfaces. (A) Interface between domains SCR2 (yellow) and SCR3 (orange). (B) Interface between domains SCR3 (orange)
and SCR4 (red). In both cases, residues that participate in contact formation are shown in atomic detail. Hydrogen bonds (distance,3.5 Å) are
represented with dashed lines. The orientations of both panels are similar to that shown in Figure 3A.
doi:10.1371/journal.ppat.1001122.g004
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Figure 6. Ligand binding surfaces in the CD46-4D protein. Two views of the CD46-4D structure (grey), differing by 180 degrees along a
vertical axis, are shown in each case. (A) Surface representations of CD46-4D, with regions implicated in C3b- (red), C4b- (orange) and C3b + C4b-
binding (blue) shown in color [35,36,37]. Individual residues are indicated. (B) Surface representations of CD46-4D, with regions known to interact
with Ad11 and MV [34] shown in blue and green, respectively. Regions that interact with both viruses are highlighted in black. Residues predicted to
contact the Streptococcus M protein (M-prot) [38] are shown in purple.
doi:10.1371/journal.ppat.1001122.g006
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unique five-residue insertion into the CD’ loop of SCR3

(Figs. 3B,D). The insertion is not compatible with a linear

arrangement of the SCR3-SCR4 interface but instead provides a

platform that stabilizes the bent structure. The smaller SCR1-

SCR2 interface possesses some flexibility [31], and flexibility may

also be a feature of the similarly-sized SCR2-SCR3 interface.

However, our structure suggests that the SCR3-SCR4 interface

has little, if any, flexibility as it has a much larger buried surface

area, exhibits low temperature factors, and contains many rigid

amino acids. The role of the CD’ loop in SCR3 thus appears to be

in forming a brace that molds the SCR3-SCR4 unit of CD46 into

a bent conformation. Inspection of sequences of RCA family

members shows that no homolog of CD46 contains a similarly

elongated and hydrophobic loop [45].

Previous studies identified a number of residues that play a role in

mediating interactions of CD46 with its many ligands. Our structure

now places these data in proper context by displaying CD46 ligand

binding surfaces on the extracellular portion of the molecule.

Interactions of CD46 with Adv and MV are exclusively mediated by

the SCR1-SCR2 region, and these interactions have been described

earlier [32,33,34]. Our analysis indicates that interactions with C3b

and C4b involve several regions on domains SCR2, SCR3 and

SCR4. These regions are located on the convex surface of the

curved receptor molecule, and they are devoid of glycosylation. The

most extensive binding site for C3b is located on one side of SCR4,

and appears to depend on a number of charged residues. This

region partially overlaps with a binding site for C4b. Smaller contact

regions for both C3b and C4b are located at the base of SCR2, near

the SCR2/SCR3 interface. Thus, the large C3b and C4b proteins

probably contact a significant portion of the surface of CD46 that is

defined by the SCR2-SCR4 fragment, similar to the contacts

observed in the recent crystal structure of the N-terminal four SCR

domains of FH in complex with C3b [42] (Fig. 5). Therefore, the

bent conformation of CD46 could be a highly significant deter-

minant for the recognition of complement proteins. In contrast to

soluble FH, which contains 20 SCR domains, the CD46 protein is

much smaller and attached to the membrane. The presence of a

preformed bend in the protein conformation could facilitate

association of complement proteins to CD46 on the cell surface,

reducing, or perhaps eliminating, the requirement for domain

rearrangements during C3b and C4b binding.

The structure reported here does not include the short STP

region, which connects SCR4 to the single transmembrane

spanning sequence of CD46. We can therefore not provide a

definitive view of how the CD46 molecule is arranged on the cell

surface. The proline-rich nature of the STP region suggests that it

has limited flexibility, perhaps serving as a stalk that provides some

distance between SCR4 and the membrane surface. Two extreme

possibilities for the conformation of CD46 on the cell surface can

be envisaged (Fig. 7). In one of these, the SCR4 domain and the

STP region project vertically from the cell surface, generating a

protein arrangement in which the glycans face toward the

membrane and the N-terminal SCR1 domain is near the cell

surface (Fig. 7A). Interactions of the glycans with the membrane

could help to orient the molecule on the cell surface, with the

glycan-free region being highly accessible for interactions with

even large ligands such as complement proteins C3b and C4b.

Moreover, the proximity of the SCR1 domain to the membrane,

which serves as the main contact point for Adv and MV, would

facilitate penetration of the cell membrane by those viruses, and in

particular fusion of MV and cell membranes. In the second

scenario, the STP region is bent, and the SCR4 lies more or less

parallel to the cell surface (Fig. 7B). The SCR1-SCR2 region

would project into solution, and would readily be available for

interactions with Adv and MV, but also more distant from the cell

surface. If such an arrangement were to exist at the cell surface, it

might preclude binding of C3b (and perhaps C4b) to CD46 as the

predicted sites for C3b binding on SCR4 would face towards the

membrane, and thus would not be easily accessible to the large

C3b protein.

In order to expose the complement binding sites on SCR4,

CD46 would need to adopt a conformation in which the SCR1

domain would be close to the membrane (Fig. 7A). Multivalent

interaction of the Adv knob with CD46 in this conformation

would require either movements within the STP region toward an

alternative CD46 conformation (Fig. 7B), which could be limited

by the proline rich nature of this region, or some plasticity in the

cell membrane for virus binding to multiple receptor molecules.

Trimeric binding of the knob to CD46 molecules adopting a

conformation similar to that shown in Fig. 7B could be

accomplished in concave membrane microdomains. Alternative

splicing variants of the STP region could influence the orientation

Figure 7. Conformation of CD46 at the cell surface. Two views of the entire CD46 protein, indicating possible orientations on the cell surface.
The ribbon drawings show the CD46-4D structure, with domains SCR1-SCR4 colored as in Figure 3. Native glycosylation was modeled as described in
the Methods section. The STP region (grey box) comprises about 30 amino acids that are not included in our structure. These residues carry O-linked
glycosylation and likely serve as a spacer between the base of SCR4 and the membrane. Arrows indicate likely sites of interaction with C3b (panel A)
and viruses (panel B).
doi:10.1371/journal.ppat.1001122.g007
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of the CD46 molecule on the cell surface. It has been shown that

alternative splicing in this region has significant implications for

complement regulatory function [46,47] as well as MV binding

and fusion [47,48]. The overall structure of the CD46 extracellular

region presented here differs drastically from earlier models that

pictured CD46 as an elongated, rod-like structure, and suggests a

more dynamic conformation of this receptor molecule on the cell

surface.

Materials and Methods

Protein expression and purification
A cDNA encoding residues 1 to 286 of the CD46 precursor

protein was subcloned into the expression vector pBJ5-GS [49].

This vector was transfected into CHO Lec 3.2.8.1 cells [50], and

stable cell clone transfectants secreting the CD46-4D protein to

the culture medium were selected with methionine sulfoximine, a

glutamine synthetase inhibitor. Transfected cells were cultured in

Ex-Cell 302 medium (JRH Biosciences) supplemented with

100 mM methionine sulfoximine, GS supplement (JRH Bioscienc-

es), 50 units/ml penicillin G, 50 mg/ml streptomycin, 7.5 mM

HEPES at pH 7.3 and 1% dialyzed fetal bovine serum. After

harvesting, the culture supernatant was centrifuged and filtered.

CD46-4D was then purified by Concanavalin A affinity chroma-

tography (Con A Sepharose, GE Healthcare), gel filtration

(Superdex 200, GE Healthcare), and anion exchange chromatog-

raphy (MonoQ, GE Healthcare).

Ad11 fiber knob amino acids 118–325 were expressed in E. coli

Rosetta2 (DE3) cells and purified via nickel affinity chromatog-

raphy and gel filtration, as described earlier [32]. The complex

was formed by incubating both proteins at 4uC for 2 hrs. A 1.2

molar excess of CD46-4D was used, based on the earlier

observation that one trimeric knob can bind three CD46 ligands

[32]. Separation of the complex from excess, unbound CD46-4D

was performed by size exclusion chromatography (Superdex 200

HR column (GE Healthcare, Uppsala, Sweden) in gel filtration

buffer containing 20 mM HEPES, 150 mM NaCl at pH 7.4.

Crystallization and structure determination
Well-diffracting plate-like crystals of Ad11 knob in complex with

CD46-4D were obtained at 4uC using a precipitant solution

containing 20% polyethylene glycol 1000, 0.2 M ammonium

phosphate at pH 8.0 with the use of a microseeding protocol [51].

Poorly diffracting crystals grown at 20uC in 20% PEG 6000,

200 mM ammonium phosphate pH 8.0 were used for seeding.

Crystals belong to space group P63, with two copies of Ad11 knob

protomers and two CD46-4D chains present in the asymmetric

unit. The crystals were flash frozen in liquid nitrogen using

precipitant solution supplemented with 25% PEG 200 for

cryogenic protection. Diffraction data were collected at the Swiss

Light Source (beam line X06SA) and ESRF (beam line BM14).

Diffraction images were processed using XDS [52] and SCALA

[53], producing a data set that extends to 2.84 Å with good

statistics. The structure determination was carried out by

molecular replacement with Phaser [54]. Coordinates for the

Ad11-knob protomer as well as the SCR1 and SCR2 domains of

CD46 [32] were used independently as search models, after

removal of surface loops that had elevated temperature factors in

each case. This strategy produced two clear solutions for the

complex, indicating the presence of two copies of Ad11 knob

protomers and two CD46 molecules in the asymmetric unit. After

initial rigid body refinement using NCS restraints in Phenix [55],

2Fo-Fc and Fo-Fc difference electron density maps revealed the

location of the SCR3-SCR4 portions in both copies of CD46.

These domains were then included into the model. The structure

was built using Coot [56] and O [57], and refined using

REFMAC5 [58], Phenix [55] and Autobuster [59]. The entire

model could be built with the exception of residues 81–84 of SCR2

in chain D, which probably have multiple conformations in the

crystal. Coordinates and structure factor amplitudes have been

deposited with the Protein Data Bank (PBD ID code 3O8E).

Figure 5 was prepared using Molscript [60], all other figures were

made with PyMol [61]. Superpositions were done with LSQKAB

[53] and the SSM routine in Coot [56].

Glycan modeling
CD46-4D has three N-linked glycosylation sites, at Asn49,

Asn80 and Asn239. In order to produce a realistic estimate of size

and distribution of the glycan structure of native human CD46-

4D, we used the GlyProt online server [62] and modeled hybrid

and complex glycans linked to the three Asn residues with NAG

electron density.
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