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Abstract 
Accentuated Lines (ALs) in tooth enamel can reflect metabolic disruptions from physiolog-

ical or psychological stresses during development. They can therefore serve as a retro-

spective biomarker of generalized stress exposure in archaeological and clinical research. 

However, little consensus exists on when ALs are identified and inter-rater reliability is 

poorly quantified across studies. Here, we sought to address this gap by examining the 

reliability of accentuated (AL) markings across raters, in terms of both the presence  

versus absence of ALs and their intensity (HAL= Highly Accentuated, MAL= Mildly Accen-

tuated, RL= Retzius Line). Ratings were made and compared across observers (with 

different levels of experience) and pairs of raters (who agreed on AL coding through con-

sensus meetings) (N = 15 teeth, eight observers). Results indicated that more experience 

in AL assessment does not necessarily produce higher reliability between raters. Most dis-

agreements in intensity ratings occurred in categories other than HAL. Furthermore, when 

AL assessment was performed by pairs of raters, reliability was significantly higher than 

individual assessments (Gwet’s AC1 = 0.28 to 0.56 for line presence assessment; Gwet’s 

AC1 = 0.48 to 0.64 for line intensity assessment). Based on these results, we recommend 

a workflow called IRRISS (Improving Reliability and Reporting In Scoring of Stress- 

markers) to increase rigor and reproducibility in histological analysis of dental collections. 

The introduction of IRRISS is well-timed, given the surge in studies of teeth occurring 

across anthropological, epidemiological, medical, forensic, and climate research fields.
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Introduction
Early-life stress exposure is a known risk factor for health issues later in life, including 
physical and psychiatric disorders across the life course [1–4]. Indeed, exposure to stressors 
during childhood, whether of a physical (e.g., illness, nutritional deficiency) or psychological 
nature (e.g., abuse, neglect, other trauma) can increase the risk of childhood- and adult-onset 
disorders by twofold or more [2,5]. Identifying children who were exposed to early life stress, 
particularly during prenatal and perinatal life (two potentially sensitive periods when stress 
exposure may have more enduring effects), remains a central challenge for clinical research-
ers and medical specialists [2,6,7]. The search to identify more objective and reliable ways of 
measuring the timing and severity of stress exposure during early life led Davis and colleagues 
[8] to propose the use of deciduous teeth for this purpose, given that teeth retain a permanent 
record of somatic growth – and growth disruptions related to stress exposure – in their micro-
structure [8, 9].

In brief, tooth enamel contains distinct types of incremental growth patterns in its micro-
structure, a characteristic shared with other biological structures and organisms, including 
bones, shells, and wood (Fig 1) [10–12]. Short-period increments (known as cross striations) 
follow a daily rhythm corresponding to the circadian rhythm in enamel matrix formation 
[10,13]. Long-period increments, known as Retzius lines [10,14], follow a circaseptan (nearly 
weekly) formation rhythm or periodicity [15–18]. Retzius line periodicity reflects oscillations 
of biological rhythms specific to each individual’s circaseptan rhythm, often ranging from 6-9 
days [15,16,19]. These incremental growth patterns are evident in both deciduous and perma-
nent teeth and reflect an individuals’ biorythm and somatic growth rate [12,14,19].

Although dental development is under strong genetic control, the cells that deposit the 
enamel matrix (ameloblasts) are sensitive to disruptions of homeostasis [9,12,13,20]. Sys-
temic disruptions to homeostasis can produce various dental defects [21–26], as well as an 
alteration to the enamel and dentine microstructure [27–30]. Accentuated Lines (ALs), also 
known as stress lines or Wilson bands [9,13,20,21,23–25], are one major type of alteration; 
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Fig 1. Schematic overview of dental microstructure. Daily incremental rhythm, near-weekly rhythm, and stress-related increments are visible in histological 
sections of tooth enamel (Figure made by the authors using BioRender®).

https://doi.org/10.1371/journal.pone.0318700.g001
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these alterations run parallel to Retzius lines and are often irregularly spaced. ALs can appear 
thicker or darker than the normal rhythmic Retzius lines, and can often be visible deep into 
the enamel (rather than Retzius lines, which in thin sections are mainly visible closely to the 
outer enamel surface). Similar to Retzius lines and daily increments, ALs can be visualized in 
teeth using conventional white light microscopy (12, 23). Although the aetiology of these lines 
is an ongoing line of scientific enquiry, scientists often use the term ‘stress lines’, as the timing 
of AL formation often coincides with a documented event or period of some type of stressor, 
including life history or transitional events (e.g., mode and duration of delivery [31–34], 
menarche, and parturition [35–37], health conditions (e.g., nutritional deficiencies, fevers 
and injuries [9,28,38–40] medicine administration [19,41]), or psychological stressors (e.g., 
traumatic life events; stressful life events [35,39,42,43].

Because enamel does not remodel or regenerate after formation, these ALs are perma-
nently recorded and can serve as a retrospective marker of stressor exposure [14,44]. Given 
that deciduous teeth start developing in utero and continue forming during the first years of 
life, overlapping with known sensitive periods for brain development [45–47], ALs visible in 
deciduous teeth could provide important retrospective data about stress exposure in utero and 
during early life that may impact later health. ALs therefore have a high diagnostic potential 
as a biomarker in medical [8,42], forensic [48] and anthropological studies [44] to identify 
people and populations exposed to growth disruptions caused by early life stress exposure.

The variation in AL appearance, whether dark or broad, diffuse to narrow, and sharp, to 
bright (Fig 2), may be influenced by many factors, such as the timing, type, and intensity of 
the stress exposure, the tooth type studied (incisor vs. molar), the position of the line within 
the tooth (cuspal vs. lateral enamel), as well as sample preservation, preparation techniques 
and equipment used for assessment [20,49–51]. Thus, ALs are measured on a continuous 
scale, ranging from mildly to highly visible [9,30,52–55]. The most notable AL is the neonatal 
line (NNL), which corresponds to physiological changes associated with birth [56]. Scien-
tists observed the presence of the NNL as early as 1936 [34,57]. Since then ALs found their 
way particularly in fundamental studies on dental anatomy, human evolution, and biological 
anthropology [12,14]. However, in recent decades, there has been a surge in efforts to incor-
porate ALs in teeth as retrospective archives of stress exposures. Many fields of study, includ-
ing forensics [58–61], medicine [8,42,62–65] and climate science [42,66–69] have measured 
ALs in data collection efforts. One reason for the increasing popularity of studying ALs is that 
they are thought by some to provide an objective biomarker that can retrospectively assess 
early-life stress exposure [8]. However, the wide variety in AL appearance makes assessment 
subjective and therefore challenging.

In this regard, AL assessment is no different from histological analysis in medical or foren-
sic research, which often requires the interpretation of subjective variables and the expression 
of features and lesions [70, 71]. Such subjective variables can range from dermatological lesion 
scorings of size, shape, colour, and border elevation, [72] and oncology studies relying on 
visual tumour grade classification [73]. Differences in study measurements between raters 
may therefore vary based on the level of disagreement or error introduced by inconsisten-
cies between data collectors [74]. Between-rater agreement in feature assessment is generally 
thought to improve by outlining clear scoring criteria and having more experienced raters 
[74].

Although researchers have categorized ALs based on their length, intensity, and structure 
irregularity [9,20,29,55], it is unclear how much consistency exists between dental histolo-
gists for both the presence and intensity of AL assessment. In a citizen science project called 
‘Diary of a Tooth,’ Gamble and Ferrell [75] examined variation in how members of the public 
– or citizen scientists – identified an AL. Preliminary findings from this project revealed a 
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tendency for consensus between raters when lines were highly prominent, but underscored 
the challenges of assessing ALs, particularly for untrained participants.

Most studies on AL assessment mention that line counts were performed multiple times 
by the same rater [64,76–78] or by two independent raters who calibrated their results 
[29,37,52,79]. When multiple teeth from the same individual are included in studies, ALs 
can be matched between teeth, because portions of crowns that form during the same time 
can register the same AL pattern [29,80–82]. In such cases, the presence of ALs between 
time-overlapping teeth can serve as a confirmation of AL presence and therefore improve the 
reliability of AL presence. However, it is unclear how much AL scoring differs between raters 
and how much assessment deviates when performed by different research groups, where 
training styles and experiences may differ, especially when assessments are made on single 
teeth without calibrating ALs across a dentition. Varying disagreements between raters could 
be problematic both for archaeological datasets (often with sample sizes of n < 30) and for 
clinical data collection efforts with potentially thousands of samples, as the robustness of data 
is heavily dependent on its reliability. Because AL measurement has increased substantially as 
a high-value biomarker for retrospective stress exposure, it is crucial to assess the reliability 

Fig 2. Example of variation in dental microstructure between two deciduous tooth sections shown at x20 magnification. NNL = 
Neonatal line. E = Enamel. D = Dentine. EDJ =  Enamel Dentine Junction. The NNL is generally clearly distinguishable in tooth thin 
sections but can vary in its manifestation. For example (A) shows the NNL as a wide and diffuse line. In contrast, (B) shows the NNL 
as sharp and narrow. Other Als in deciduous teeth are rarely as clear and unambiguous as the NNL. In some cases, these other ALs 
cannot be distinguished from regular incremental deposition lines (i.e., Retzius lines) with certainty.

https://doi.org/10.1371/journal.pone.0318700.g002

https://doi.org/10.1371/journal.pone.0318700.g002
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of AL assessments so rigorous protocols on correct implementation can facilitate accurate, 
reliable, and meaningful data collection.

In this study, we addressed these issues by assessing inter-rater reliability in ratings of ALs 
between eight biological anthropologists from different research groups, with varying levels of 
experience in dental histology. Our goal was to assess inter-rater reliability between individ-
uals, examine how inter-rater reliability varies when assessing the intensity of AL manifes-
tation, and quantify the level of reliability between pairs of raters. To achieve these goals, we 
first determined the reliability of AL markings between individual raters with varying levels of 
experience, asking:

• (1a) How reliable are ratings between individual raters when evaluating the presence of AL?

• (1b) How reliable are ratings when assessing the intensity of the AL?

Second, we examined the reliability of pair ratings in comparison to individual ratings, 
asking:

• (2a) How reliable are ratings between two individuals assessing the presence and intensity of 
AL when provided measurement guidelines based on AL length?

• (2b) Do these pair-derived consensus ratings yield higher reliability than ratings across 
individuals?

By answering these questions, we aimed to critically evaluate if current data collection 
practices of AL assessment are sufficient to address the research questions being posed across 
diverse disciplines, and transparently examine the potential need for change in methodologi-
cal standards.

Materials and methods

Rater profiles
Eight biological anthropologists (SAML, MLL, KG, MOH, KMG, JAG, RJF, DGS) with expe-
rience in dental histology assessed ALs for this study. Each rater completed a questionnaire, 
providing detailed information about their level and type of experience in AL assessment 
(Table 1). We categorized rater experience levels through a combination of their level and 
type of experience in relation to the objectives of this study. As shown in the ‘AL identification 
experience’ category, all raters had AL identification experience, defined as having counted 
their presence in tooth slides, and having observed them while performing other histo-
morphometric analyses of dental tissues (such as measurements of daily and longer period 

Table 1. Overview of rater profiles.

Rater 
ID

Affiliated
lab

Senior-
ity level

Dental histology 
experience (years)

# dental histology 
slides assessed

AL identifica-
tion experience

Experience with AL 
position measures

Published on AL mea-
sures in deciduous teeth

DGS OSU Senior 12 + 500 + Yes No No
RJF N/A Senior 12 + 500 + Yes Yes Yes
SAML MGH/HMS Mid 7-12 200-500 Yes Yes Yes
KMG GW Mid 7-12 200-500 Yes Yes Yes
JAG Manitoba Mid 7-12 <200 Yes Yes No
KG OSU Junior 3-5 <200 Yes No No
MLL MGH/HMS Junior 5-7 <200 Yes No No
MOH KENT Junior 5-7 200-500 Yes No No

https://doi.org/10.1371/journal.pone.0318700.t001

https://doi.org/10.1371/journal.pone.0318700.t001
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increments). Four of the raters had experience with AL position measuring, defined as having 
specific experience with measuring the position of accentuated lines within the enamel and 
calculating the timing of their formation in relation to the age of the individual, rather than 
merely counting or observing ALs.

All raters were highly familiar with the concept of ALs and had previously worked on thin 
sections where ALs were visible. While some raters specifically focused on stress assessment 
through ALs in their research (SAML, KMG, KG, RJF, JAG) [52,53,76,81,83–85], others 
primarily conducted counts or used ALs as reference points for calculating crown formation 
times (GS, MOH, MLL) [86–88]. Four of the raters had experience measuring the position of 
ALs; of those, three had experience specifically measuring and calculating the position of ALs 
in deciduous teeth (versus permanent teeth) (Table 1). Based on the data from the question-
naires, we established three main categories of experience and seniority level: senior, mid, and 
junior (Table 1).

Sample selection and slide sharing
In this study, we focused on a subset of exfoliated primary teeth donated to an ongoing 
modern cohort study (called the Stories Teeth Record of Newborn Growth, or STRONG, Prin-
cipal Investigator: E.C. Dunn), as there is a clear demand for the analysis of large numbers of 
primary teeth in medical research [8,42,64,89,90]. STRONG is a quasi-experimental research 
study designed to investigate if children’s teeth record evidence of their mother’s exposure to a 
calendar-dated major stressful life event: the Boston Marathon bombings and manhunt event 
events. STRONG participants (n = 285 mother-child pairs of children born between April 
1, 2012, and November 4, 2013) were identified through hospital- and community-based 
methods and were reimbursed for donating up to 5 teeth to the study. Ethical approval for 
the STRONG study was obtained from the Mass General Brigham Institutional Review Board 
(IRB) on December 16, 2019 (protocol ID 2019P003570). Recruitment began on December 
18, 2019, and ended on March 28, 2022. The collection of exfoliated primary teeth is ongo-
ing. Informed consent for using human specimens and data collected via questionnaires and 
electronic medical records was obtained from parents via written informed consent and child 
verbal assent.

For the current study, we selected samples of single-cusped deciduous teeth (incisors and 
canines) for which both prenatal and postnatal enamel was still preserved, to allow for enough 
enamel to be present for AL assessment. ECD, SJS and AGH had access to information that 
could identify individual participants during and after data collection, whereas all eight raters 
(Table 1) were blind to all phenotype data from the STRONG study, including participants’ 
level of marathon/bombings stress exposure. All research adhered to the Declaration of 
Helsinki and the Health Insurance Portability and Accountability Act, as well as standards of 
reporting.

All teeth in the STRONG collection were embedded in polyester epoxy resin. We cut labial- 
lingual sections with a slow-speed diamond-wafering blade precision saw (Isomet 4000). 
We fixed the cut sections on petrographic microscopy slides, and subsequently ground and 
polished each using a graded series of grinding and polishing pads reaching a final thickness 
of around 100um [91, 92]. We imaged the sections with an Olympus BX61 upright brightfield 
microscope coupled with an Olympus VS120 slide scanner and Orca R2 monochrome (16-bit) 
camera with plan apochromatic objectives. Images of the tooth slides assessed in this study are 
available via Harvard Dataverse (https://doi.org/10.7910/DVN/PBIOZ1).

One rater (SAML) did a general assessment of a subset of the STRONG collection and 
selected 15 tooth slides from 15 different individuals, aiming to include slides with evidence 

https://doi.org/10.7910/DVN/PBIOZ1
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via ALs of prenatal stress, postnatal stress, or both. The goal was to avoid a high percentage 
of slides without ALs to prevent artificially inflated reliability between raters indicating an 
absence of ALs. All raters reviewed all 15 slides without any knowledge of individual life 
histories.

As participating raters were from multiple research groups, countries, and continents, 
we shared images in.vsi format as pyramidal files using QuPath, a cross-platform, open-
source software for digital histology and whole slide image analysis [93]. Virtual pyramidal 
slides allowed raters to examine each slide using 20x and 40x objective magnifications, 
enabling them to freely zoom in and out, adjust contrast, and thoroughly explore histolog-
ical features. The intention was to replicate the experience of traditional transmitted light 
microscopy with physical slides, rather than restricting access to a single fixed image of 
limited resolution.

Data collection – two approaches
We devised two separate approaches to answer our research questions. Each approach was 
designed to mimic data collection practices commonly described in published work on ALs 
(Table 2). In Approach 1, to address research questions 1a and 1b, we provided the eight raters 
with a first set of 10 slides. We recorded how each rater individually marked and scored AL 
presence and intensity. We asked every rater to mark the neonatal line in the enamel in each 
micrograph and identify other ALs they saw as either highly accentuated (HAL) or mildly 
accentuated (MAL) in the enamel and the dentine. All raters were given guidelines on what 
constitutes a HAL or MAL (Table 2), based on the length of the features [9]. Scoring criteria 
were based on intensity, following commonly used terminology in the literature (see details 
in Table 2). In Approach 2, to address research questions 2a and 2b, we provided a subset of 
six raters with a second set of 5 slides, and partnered each rater, creating 3 pairs of raters. We 
paired raters strategically to ensure objectivity, specifically selecting pairs based on their lim-
ited track-record of working together; this approach minimized potential biases arising from 
familiarity with each other’s scoring styles, and thus was aimed at enhancing the reliability of 
the study results. We asked each rater to individually identify and rate ALs in the set of slides, 
and subsequently discuss their ratings of these slides with their partner while jointly assessing 
the same slides to provide a consensus pair rating.

Table 2. Definitions of AL scorings for Approach 1 and Approach 2.

Definitions of AL for Approach 1
Reliability of AL markings between raters with varying 
levels of experience

Definitions of AL for Approach 2
Reliability of individuals vs. pair ratings

Based on intensity, following generally used terminol-
ogy in literature

Based on the length of the line visible 
throughout the enamel area

Category 1:
HAL

A standard definition of AL: Feature occurring in 
response to growth-disrupting physiological stress, and 
appearing in all concurrently forming teeth. They run 
parallel to ‘normal’ striae of Retzius and are often irregu-
larly spaced. They tend to appear thicker, darker, and/or 
can be visible deeper into the enamel thickness compared 
to regular striae of Retzius [14,20,38,77,94].

The AL is visible for at least 75% of its 
length from the Enamel Dentine Junction 
(EDJ) to the Outer Enamel Surface  
(OES), and is significantly different in 
appearance from the surrounding matrix  
[9,20,29,37,51,53,64,78,79,81,94,95]

Category 2:
MAL

Those ALs which are less intensely accentuated and more 
doubtful (in line with descriptions noted in [30,52,53].

At least 50-75% traceable along the enamel 
forming front from the EDJ to OES and 
noticeably different from the surrounding 
matrix [30,55]

https://doi.org/10.1371/journal.pone.0318700.t002

https://doi.org/10.1371/journal.pone.0318700.t002
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Data merging
One rater (SAML) compiled all the ratings and cross-compared micrographs to match all 
identified HAL and MAL scorings between the raters, giving the identified lines a code (Stress 
1, Stress 2) to allow calibration of the marked increments between all raters. When a rater did 
not score a line as accentuated where another did, we classified that raters’ absence of marking 
as a third category ‘Retzius line’ (RL), referring to the rhythmic growth lines representing the 
normal, incremental pattern of enamel deposition [14]. In other words, if rater 1 identified an 
AL, but rater 2 did not, then rater 2’s identified line was coded as RL for the position of this 
feature, as they considered this feature a normal growth increment rather than an AL. Unlike 
when using a citizen science approach, where raters have limited or no experience [75], we 
considered each rated line to be a growth mark (whether accentuated or not). Deciduous 
anterior teeth only rarely show clear, consistent Retzius lines throughout the enamel, unlike 
deciduous molars. Hence, we agreed to mark the third category as RL, as vaguely visible fea-
tures in tooth enamel, if not accentuated, will likely be Retzius lines.

We created a dataset for analysis as follows. First, to assess the reliability in ratings for 
the presence (vs. absence) of an AL, ratings of MAL and HAL were collapsed into a single 
“AL” category. Second, to assess the reliability in ratings for the severity of the line, we ana-
lyzed the original scorings of MAL, HAL, and inferred RL categories. Because line visibility 
may be less sharply defined in dentine compared to enamel, and lines present in dentine 
may seem broader and darker [19,53], we rated all ALs marked in the dentine (n = 29) as 
HAL. Therefore, no intensity-related analyses were done for ALs in the dentine. Further-
more, we excluded ratings when raters marked a broader line as two separate lines (e.g., 
neonatal line doubling; n = 3) to avoid counting the same feature twice. Lastly, we excluded 
two cases where a rater marked a crack in dentine as an AL, which followed the direction 
of matrix deposition.

Statistical test of inter-rater reliability
We used Gwet’s AC1 to measure reliability in identifying ALs between individuals and pairs. 
Gwet’s AC1 was used rather than traditional kappa statistics (e.g., Cohen’s kappa) because 
our data could be sensitive to the “Kappa’s paradox” [96] where high levels of reliability are 
artificially and substantially reduced due to a high prevalence in one category of measure 
(i.e., Retzius Lines). Gwet’s AC1 statistic is more robust to high prevalence in one category by 
utilizing an expected disagreement rate rather than an agreement rate [97, 98]. Because kappa 
statistics are more widely used and have readily available thresholds for interpretation (S1 
Table), Light’s kappa was also calculated and shown in S2 Table. However, it must be noted 
that Gwet’s AC1 is generally higher than kappa statistics. Although thresholds for kappa sta-
tistics are sometimes similarly applied to Gwet’s AC1, recent work has called for caution with 
direct comparisons [98]. As there are no new thresholds created for the correct interpretation 
of Gwet’s AC1 yet, we follow the example of others [99] by reporting both kappa statistics and 
Gwet’s AC1 for comparison. Keeping in mind that threshold classifications are subject spe-
cific, what can be considered “good” interrater reliability in one field, for example psychology 
or sociology, might be unacceptable in medical or forensic contexts [74,100]. Hence, kappa 
thresholds should be considered as a guideline for interpretation rather than fixed unarguable 
categories.

For Gwet’s AC1, we calculated unweighted AC1 for presence/absence. For intensity ratings, 
which are ordinal, it was appropriate to calculate the linear weighted AC1. Weighted reliability 
coefficients are employed when it is necessary to account for varying magnitudes of difference 
in ratings (i.e., level of intensity), thereby giving more importance – or weighting – to larger 
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differences (i.e., HAL vs. RL). Our categorization of AL marking (HAL, MAL, or RL) was 
as an ordinal variable from least (not) accentuated (Retzius Line, RL) to most accentuated 
(HAL). Therefore, disagreement between raters on RL vs HAL ratings was penalized more 
than disagreement between the RL/MAL and MAL/HAL ratings when using a weighted AC1. 
While ALs exist on a spectrum of intensity rather than fixed categories, we treated a disagree-
ment in the choice between RL and MAL as linearly equivalent to a disagreement between the 
MAL and HAL choices. All statistical analyses were conducted in R using the irr and irrCAC 
packages [101–103].

Results

Approach 1: Reliability of AL markings between raters with varying levels 
of experience
Combined, the eight raters identified a total of 125 features across the first 10 slides, com-
prising both HAL, MAL and RL (Fig 3). Raters who had the highest number of ALs (MAL 
or HAL) in their assessment had the lowest number of RLs recorded and vice versa. Raters 
individually observed between 1 to 6 HALs. The observed total counts for MAL ratings were 
much more varied across raters (ranging from 7 to 84).

The average line presence reliability between all raters using Gwet’s AC1 was 0.31 
(Table 3, with additional details plotted by reliability coefficient in S3 Fig). Taking expe-
rience into account, junior raters had the highest between-rater reliability (AC1 = 0.66), 
compared to mid-career (AC1 = 0.20) and senior raters (AC1 = 0.15).

Fig 3. Total ratings of features reported by eight raters in ten histological slides for Approach 1. The x-axis indicates the type of his-
tological feature rated. The y-axis indicates the frequency count of the feature for a given rater. Each color represents one rater, with color 
choice being random. Raters who were most inclusive in their AL ratings (e.g., rater 6) had the lowest number of Retzius lines reported, 
meaning they interpreted the highest number of features as accentuated. Those who were the most stringent in their assessment with the 
lowest number of ALs (e.g., Rater 7, in orange) had the highest number of Retzius lines, as they more seldomly deemed features to be 
accentuated.

https://doi.org/10.1371/journal.pone.0318700.g003

https://doi.org/10.1371/journal.pone.0318700.g003
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The average weighted reliability of AL intensity ratings between all raters was moderate 
(AC1 = 0.60). When considering experience level, senior and mid-raters had similar reli-
ability (AC1 = 0.51 and AC1 = 0.55, respectively), whereas junior raters had higher reliability 
(AC1 = 0.80). Hence, even though reliability ratings were higher for weighted measures com-
pared to unweighted measures, the same pattern persisted where junior ratings had higher 
reliability than the other groups. The reliability of AL presence and intensity ratings remained 
relatively consistent across tooth regions, including prenatal enamel, postnatal enamel, and 
dentine, meaning that tissue type did not seem to influence rating reliability.

Disagreement between all raters was highest when deciding if a feature was either mildly 
accentuated or not accentuated at all; 92 out of all 125 counted ratings were classified as either 
MAL or RL (73.6% of all ratings). It was far less common to have a full disagreement on AL 
assessment between raters (meaning where one rater indicated a line was HAL, while a second 
rater labelled it MAL, and a third labelled it RL (N = 22; 17.6%). Notably, 17 (77%) of these 
‘cross-rater disagreement’ cases were due to a single rater differing in their assessment from 
the other raters. For example, when seven out of eight raters all agreed the line was an AL, 
either as HAL or as MAL, one rater marked an absence of AL altogether (RL). There were also 
instances of the opposite, where all agreed on the absence of a feature while one rater marked 
a HAL. In 4 cases, two raters differed from other raters (e.g., 6 raters marked HAL, 1 rater 
marked MAL, 1 rater marked RL).

Unweighted reliability assessments of AL intensity between all raters and tooth regions 
were lower than weighted AC1 results, as expected; this difference was because the weighted 
reliability score emphasized larger disagreements (HAL vs RL). As the largest amount of 
disagreement between raters were less “severe” (i.e., MAL vs. RL, rather than RL vs. HAL), 
weighed AC1 results ratings provide a better statistic to evaluate levels of agreement on highly 
accentuated feature presence.

Approach 2: Reliability of individuals vs. pair ratings
In the second dataset with stricter defined rating guidelines, as shown in Table 4, we saw a 
similar overall pattern of results, where reliability of average line presence (versus absence) 
between all individuals was lower than the reliability of line intensity (with additional details 
plotted by reliability coefficient in S4 Fig).

When looking at the reliability between two paired raters, there was distinct variation. 
Whereas two pairs (Junior +  Junior; Senior +  Mid) had fair reliability, one pair of Mid +  

Table 3. Gwet’s AC1 scores related to results of objective 1 on the reliability of raters according to level of experience and line intensity.

Line Presence Reliability:
Gwet’s AC1 (CI)

Line Intensity Reliability:
Unweighted Gwet’s AC1 (CI)

Line Intensity Reliability:
Linear Weighted Gwet’s AC1 (CI)

All Raters (n = 8) 0.31 (0.25,0.36) 0.44 (0.39, 0.49) 0.60 (0.55,0.65)
Seniority – – –
Senior (n = 2) 0.15 (-0.01,0.31) 0.30 (0.18, 0.43) 0.51 (0.41,0.60)
Mid (n = 3) 0.20 (0.10,0.30) 0.37 (0.29,0.46) 0.55 (0.47,0.62)
Junior (n = 3) 0.66 (0.57,0.76) 0.70 (0.62.0.78) 0.80 (0.73,0.86)
Tissue (All Raters; n = 8) – – –
Prenatal Enamel 0.32 (0.22,0.41) 0.46 (0.39,0.52) 0.64 (0.58,0.70)
Postnatal Enamel 0.30 (0.21,0.38) 0.42 (0.35,0.49) 0.57 (0.50,0.65)
Dentine 0.32 (0.20,0.45) – –

CI =  95% Confidence Interval.

https://doi.org/10.1371/journal.pone.0318700.t003

https://doi.org/10.1371/journal.pone.0318700.t003
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Junior had the lowest reliability. This result is partially in line with the previous results that the 
average reliability between junior raters was high, while raters with deviating levels of experi-
ence can have lower reliability. Differences between weighted and unweighted line intensity 
reliability coefficients were minimal for all rater groupings. These results show that even 
though individuals within a pair could have individually diverging ratings, after a consensus 
meeting their final data collection became more comparable to those of other pairs, resulting 
in a higher reliability score across pairs. Compared to individual assessments, pair reliability 
doubled for line presence (from Gwet’s AC1 0.28 to 0.56) and increased by 33% for line inten-
sity assessment (from Gwet’s AC1 0.48 to 0.64).

The total number of HAL observed among individual raters was 4 – 9, while the observed 
counts for MAL ratings across raters was 1–10 (Fig 4). After team members made consensus 
ratings, the total number of HALs observed among teams was 7 – 9, with the observed counts 
for MAL still having higher variance across teams (1 – 8). Visual representations of the ratings 
of team members on their histological sections are shown in the S1 and S2 Figs.

Discussion
Three main findings emerged from this study. First, in individual assessments of AL eval-
uations, with no quantifiable rating guidelines, raters with less experience showed higher 
reliability between themselves compared to groups of raters with more experience in dental 
histology. Second, consensus ratings between pairs of raters had higher reliability than indi-
vidual ratings. Third, MAL ratings were possibly less reliable than HAL ratings, both individu-
ally and in pair assessments.

The findings of our study are both consistent and inconsistent with prior literature. AL 
markings are known to be challenging to assess due to the high level of variation in their appear-
ance, and therefore, little consensus exists on how they should be scored [20,29,55]. Our study 
examined and confirmed low consensus in individual rating approaches. The raters on our team, 
despite having a high level of familiarity with ALs, seem to have different approaches to AL iden-
tification, even when given the same scoring criteria. These findings are notably consistent with 
previous work showing similar challenges in AL assessment in the lay public [75]. Thus, both 
experienced and inexperienced raters have challenges in AL assessment.

Our finding that senior raters can have lower reliability than junior raters challenges state-
ments that greater experience can lead to higher agreement and reliability in image analysis 

Table 4. Overview of Objective 2 results on the reliability of individual vs pair ratings.

Line Presence Reliability
Gwet’s AC1 (CI)

Line Intensity Reliability
Unweighted Gwet’s AC1 (CI)

Line Intensity Reliability
Linear Weighted Gwet’s AC1 (CI)

All raters (n = 6) 0.28 (0.13,0.42) 0.45 (0.33,0.58) 0.48 (0.33,0.64)
Within pairs
Pair 1 (n = 2) KG +  MLL

Junior +  Junior
0.43 (0.08,0.78) 0.40 (0.09,0.72) 0.41 (0.05,0.77)

Pair 2 (n = 2) RJF +  JG
Senior +  Mid

0.47 (0.13,0.80) 0.51 (0.21,0.82) 0.56 (0.26,0.86)

Pair 3 (n = 2) SAML +  MOH
Mid +  Junior

0.23 (-0.15,0.62) 0.38 (0.07,0.70) 0.41 (0.08,0.75)

Between pairs after Consensus (n = 3) 0.56 (0.32,0.79) 0.59 (0.37,0.81) 0.64 (0.43,0.86)

Difference of reliability score after consensus* +0.28 +0.14 +0.16
CI =  95% Confidence Interval;
*+ values in the last row indicate an improvement in score.

https://doi.org/10.1371/journal.pone.0318700.t004

https://doi.org/10.1371/journal.pone.0318700.t004
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Fig 4. Total ratings of AL types reported by six raters in five histological slides in Approach 2. In both panels, the x-axis indicates the type of histological 
feature rated, and the y-axis indicates the frequency of the feature for a given rater. (A): Total ratings of AL types for individual raters before consensus, with 
each color presenting one rater, listed in random order. (B): Total ratings of AL types for three pairs of raters after consensus, with each color presenting one 
pair in random order. Those raters or pairs who were most inclusive in their AL ratings (e.g., (A) rater 6, (B), pair 1) reported the lowest number of Retzius 
lines, meaning they interpreted the highest number of features being accentuated compared to the other raters.

https://doi.org/10.1371/journal.pone.0318700.g004

https://doi.org/10.1371/journal.pone.0318700.g004
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assessments [74,104,105]. Our results suggest that providing more training and experience 
with AL assessment may not guarantee improvement in reliability in AL evaluations. We 
suspect differences between senior and junior raters may reflect different approaches to ‘inclu-
siveness’ in data collection. That is, the raters in our study were from various laboratories, and 
although they collaborate with each other and overlap in research activities, their training and 
experience occurred in different research groups. Moreover, we found diversity in how inclu-
sive raters were in their markings, especially when it came to the milder features (i.e., MAL). 
Some individuals, mainly junior raters, were more prone to exclude subtle features, whereas 
others were inclined to add them into the dataset as possible stress markers. Faced with uncer-
tainty, junior raters may have decided to leave subtle features out rather than include them. 
Senior raters, however, having seen more variation in the manifestation of ALs, seem to have 
varying approaches towards including vs. excluding milder features.

Our finding that pair ratings were more reliable than individual ratings may be due to sev-
eral factors. For one, consensus meetings may encourage team members to adhere to scoring 
criteria. That is, teams may be less likely to include doubtful features in their joint ratings, 
thus following scoring criteria more stringently. Team members also commented that con-
sensus meetings encouraged them to be more vigilant. They noted ALs that might be missed 
by a single rater, and sometimes even prominent ALs, were less likely to slip past their notice 
when two raters were assessing the slide together. Furthermore, in Approach 2, the differ-
ences between weighted and unweighted line intensity reliability coefficients were minimal 
for all rater groupings. Similarities in these reliability coefficients suggest that given additional 
guidelines for ratings (as we did for Approach 2), the distribution of RL/MAL/HAL was more 
balanced, or raters had more consistent agreement and disagreement patterns across all three 
categories.

In addition to these three major findings, several other important findings emerged from 
this study. In both approaches, we found disagreements between MAL and RL were more 
prominent than MAL/HAL and RL/HAL ratings. Higher disagreement on subtle features may 
be a logical consequence of the most prominent lines being generally spotted by all raters, 
regardless of the level of experience and the individual scoring styles. These findings were also 
noted by Gamble & Ferrell’s 2019 citizen science project [75].

The disagreement on subtle markings might also relate to the tooth types we studied. Dif-
ferentiating MALs from normal growth lines could be more challenging in deciduous anterior 
teeth than in deciduous molars or permanent teeth. In our experience, Retzius lines are rarely 
clearly visible in deciduous anterior teeth. Therefore, should several successive mild features 
be present in the tooth, it may be challenging to categorize such features consistently and 
reliably. We noticed such difficulties both in prenatal and postnatal enamel.

A close examination of the micrographs also revealed that some disagreements were not as 
substantial as they might seem when considering isolated data points. For instance, in the cervical 
enamel area of a sample section (Fig 5), raters consistently observed multiple HALs closely posi-
tioned in sequence. Some raters identified these closely spaced lines as three HALs, while others 
noted two. Despite this discrepancy, all raters correctly identified a line at the exact location within 
the specific tooth. This discrepancy in the number of identified HALs led to a statistically signifi-
cant difference in ratings, with one HAL being classified as not accentuated by others (RL). How-
ever, the consensus among raters suggests a common understanding of the presence of an AL at 
the specific timeframe of enamel formation of this specific tooth. It is important to emphasize that 
had the individual to whom this tooth section belongs indeed experienced a stress event during 
cervical enamel formation – and the research question was “Does the exposure to a stress event 
correlate with the formation of an AL?” – all raters would have indeed identified ALs correlating 
with the timing of the stress event. Therefore, the use of teeth as a stress exposure biomarker would 
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not be hampered by a difference in data collection among raters. The example in Fig 5 also hints at 
a phenomenon cognitive psychology studies refer to as ‘visual clutter’ or visual crowding’, wherein 
people’s perception of individual features or items becomes more challenging when the items are 
grouped together rather than when each item is presented in isolation [106–108]. Although we did 
not specifically investigate this cognitive bias in our study, it is plausible the reliability of identifying 
ALs is lower when tooth sections exhibit a high number of closely spaced accentuated lines com-
pared to those with accentuated lines presented in isolation.

Our study’s approach has several strengths. First, we had a large group of specialists from 
different organizations partake in data collection. Traditionally, studies on ALs only have only 
one or two histology specialists, generally from the same group or lab, performing the assessment. 
By combining data from multiple groups, we obtained a good representation of different styles 
and approaches to inclusiveness of feature assessment. Second, we analyzed dental samples from 
participants enrolled in a modern study, rather than selecting samples from an archaeological 
context, allowing our study findings to generalize to dental samples collected from other modern 
samples. Cohort studies often recruit a large number of participants to complete in-depth and 
detailed population-level analyses. Community-based studies like ours often recruit (agnostic 
to exposure or outcome status) a large number of participants from the community to complete 
in-depth assessments, with the goal of obtaining results that could be generalizable to the popu-
lation. Numerous modern community-based as well as cohort studies (which follow participants 
recruited from the community or elsewhere over time) are also collecting deciduous teeth, includ-
ing the Environmental influences on Child Health Outcomes (ECHO) study and the Adolescent 
Brain and Cognitive Development (ABCD) study in the United States; the Raton Perez collection 
in Spain; and the Tooth Fairy collection in France [109–112]. Our results may generalize to these 
and other studies seeking to characterize ALs in modern, population-based samples.

Our study also has some limitations. Due to the time-consuming nature of histological assess-
ment, and the limited number of specialists available worldwide, we were constrained in the 

Fig 5. Example of a section used in this study demonstrating the difference between pair ratings. (A) Overview of a histological tooth section with the enamel in 
brown and dentine in dark black. The occlusal surface is facing down, with the dentine horn being exposed due to wear. The cervical enamel area shows clear ALs 
(red arrow). (B) Magnification of the indicated area with ALs from (A). (C, D, E) Ratings of pairs 1, 2, and 3, where each pair of two raters jointly marked the buccal 
enamel for AL presence and intensity. All pairs agreed on the NNL (red) and the presence of 1 MAL (off-white) as the first AL following the NNL. All pairs also 
marked the presence of multiple HALs in the cervical enamel (green) but had differences in how many HALs should be included in data collection.

https://doi.org/10.1371/journal.pone.0318700.g005

https://doi.org/10.1371/journal.pone.0318700.g005
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total number of slides we could evaluate. However, the sample size was comparable to samples 
often available in archaeological or anthropological studies. We also did not examine the effect 
of tooth type, sample thickness, or the use of polarized images of AL reliability scoring. In the 
future, reliability studies could be expanded to incorporate polarized images; such filters are 
regularly incorporated in data collection to increase visibility of histological features and may 
provide insights into the reliability of AL scoring. Future studies can also incorporate other tooth 
types, permanent dentitions, and samples from archaeological contexts, which have their own 
challenges, including the ability to detect ALs after the process of natural decay (or damage after 
long periods of deposition in archaeological samples). Finally, future studies could also focus on 
AL assessment in virtual dental histology, the inter-rater reliability between virtual dental histol-
ogy with conventional histology, and where inter-rater reliability on tomography data could be 
affected by chosen data treatment and post-processing steps [113].

Our study also prompts consideration of several critical issues that need to be addressed 
when using teeth to reconstruct exposure to early life stress. The first issue concerns improv-
ing the reliability of ALs as markers of early life exposure, as our results clearly demonstrate 
that merely gaining more experience does not suffice. The second issue concerns the identifi-
cation of what should count as an indicator of stress exposure. At the current state of research, 
it is not fully clear if milder ALs should be included in the search of stress biomarkers, or 
if only strongly observable features should be recorded. Studies choosing to include only 
the most prominent features would likely have higher reliability between raters. However, 
these studies may miss milder features, which could correlate with milder but still important 
physiological responses [9]. Depending on the research question, researchers may want to use 
teeth as biomarkers for exposure to repeated mild stressors. However, doing so comes with 
challenges. For instance, given the known challenges with AL assessment, histologists agree 
that published counts of ALs should be considered a ‘minimum’, rather than an absolute total 
[114], as not all stressors experienced by individuals result in ALs [81], nor will they all be 
spotted accordingly during analysis. Thus, conventional overarching criteria for identifying 
ALs may exclude subtler histological features [115], as those generally focus on what this 
study classified as HALs. Large cohort studies, where medical records and self-reported or 
records-based data on stressful life events can be matched with AL presence and intensity (as 
the STRONG study is doing) could increase understanding of how dental histology can be 
used as a retrospective record of mild and severe forms of stress exposure. A better grasp on 
the meaning and importance of these ‘lower threshold’ stress markers may also come from 
using multimodal approaches applied to MAL assessment (e.g., Raman spectroscopy) com-
bined with life history data [51,63]. When large datasets become available, especially through 
modern cohort studies where deciduous teeth can be collected in large quantities with detailed 
individual life history data, deep learning might also improve our knowledge of the identifica-
tion, classification and interpretation of accentuated line features [116–119].

Based on the reliability issues we uncovered in AL ratings, and to improve future data 
collection rigor and robustness, we recommend the following workflow to both increase 
reliability between dental histologists as well as assure robust data collection strategies and 
reproducibility (Table 5). We call this workflow the ‘IRRISS’ approach - Improving Reliability 
and Reporting In Scoring of Stress-markers. Three core principles are at the heart of IRRISS: 
(1) Objective team assessment, (2) Transparency in data collection, and (3) Transparency in 
reporting reliability scores. These recommendations can be prospectively applied, meaning 
used to evaluate the quality of methods for studies performed in the future. These recom-
mendations could also be considered retrospectively, when previously collected datasets on 
AL frequency and intensity are used as comparative datasets to newly acquired data using the 
IRRISS approach. Such a retrospective application is mainly relevant when single teeth were 
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used for assessment [63,64,84], whereas studies including multiple teeth per individual and 
cross-matched accentuated lines within a dentition already have an additional strong reliabil-
ity calibration [29,80,81]. Either way, users can indicate explicitly in their work the extent to 
which they followed the IRRISS approach.

The assessment of inter-rater reliability, and subsequent improvement of reliability, is 
crucial if scientists want to implement the use of ALs as stress signatures in research. AL 
frequency and intensity assessment has thus far predominantly been used in anthropological 
[37,79,81,122,123], and archaeological contexts [20,29,52,76,78,84,95,124] to understand past 
lifeways, stress exposure, and populational health, on relatively small sample sizes (regularly 
ranging from N = 10 to 100). However, AL assessment of deciduous teeth is emerging in 

Table 5. Recommended workflow for the IRRISS (Improving Reliability and Reporting In Scoring of Stress-markers) approach.

Recommendation Impact on scientist’s/lab’s workflow Impact on the field
1 Have at least two specialists inde-

pendently assess each histological 
section.

Common, although not standard practice in dental histology. Given that var-
ious research groups report two raters as their practice, this recommendation 
should not impact or cause additional work.

Ensures that collected data is a representation of 
the judgment of at least two specialists, thereby 
reducing the likelihood of outliers in data 
collection arising from individual preferences 
regarding the inclusiveness of features.

2 Report reliability scores (and 
which statistic was used) between 
the two independent scorings.

Raters should consult with a data analyst or statistician to determine the best 
way to measure reliability based on the number of raters and possible scores 
(e.g., weighted vs. unweighted, Cohen’s vs. Lights).

Provides readers with a quantified under-
standing of the ease of measurement and the 
reliability levels of accentuated lines within a 
specific tooth collection. Such data facilitates an 
assessment of the extent to which the obtained 
data may be useful as a comparative dataset, 
for general versus specific research needs in the 
future.

3 Publish the final consensus 
between the two specialists along-
side the individual values.

For transparency, independent scorings published can be added to supple-
mentary material. When reporting reliability scores, there is no minimum 
sample size recommended for reliability tests, but researchers should con-
duct a sample size calculation if they want to detect statistically significant 
reliability scores and be transparent in their reporting [100,120].

Greater transparency in reporting research 
findings will encourage others in the discipline 
to follow the example, creating an overall higher 
quality in data collection, reproducibility, and 
quality control among researchers.

4 Describe clearly what scoring 
criteria were used to define AL 
variables, how they are defined, 
and why those were chosen.

When research questions focus on severe stress exposures, raters might opt 
to only focus on the most distinct or visible accentuated lines. The choice of 
what criteria are followed should be clearly described in the methods section 
of a research paper. We recommend following guidelines on what defines a 
HAL based on [9], as their definition constitutes a quantifiable description of 
line length, increasing reliability among raters. When only HALs are marked 
in a sample, the chance to report on MAL frequencies is however missed.

Clear reporting in AL scoring recognizes that 
such measurements exist on a spectrum of 
intensity, offering clarity and insight into the 
essential criteria specialists consider for includ-
ing features in datasets. Such reporting can also 
facilitate greater replication of study findings 
by allowing other researchers to use the same 
criteria.

5 Include lower threshold stress 
measurements, such as maximum 
1 subcategory (highly accentuated 
(HAL) and mildly accentuated 
(MAL), whereby HAL is classified 
as above, and mild defined as by 
[30], when appropriate.

When research questions focus on stress exposure across a broader spectrum 
(e.g., mild to severe) including MAL as a subcategory will be useful. MALs 
scoring will likely have higher disagreement than HAL scoring. However, 
because MALs might be important for a specific research question, we 
recommend they be included in data collection, but only if issue 4 above is 
followed. More than 1 sub-category to differentiate milder accentuated lines 
will likely result in low reliability in rating assessment and is therefore not 
recommended. When including both HAL and MAL, we recommend using 
both weighted and unweighted reliability coefficients to better understand 
disagreement and agreement patterns.

Providing clarity and insight into specialists’ 
perspectives on establishing a threshold for 
categorizing features as ‘mild’ or ‘highly’ accen-
tuated contributes to a more comprehensive 
interpretation of stress measurements in the 
field.

6 Publish in an open access repos-
itory all or a subset of micro-
graphs, including those featuring 
‘accentuated’ lines. We recom-
mend at least 5 micrographs, or 
10% of all slides assessed to be 
made available.

Open Science refers to making data and processes available to all, in order to 
create more rigorous and inclusive scientific investigation. Providing access 
to the micrographs used in analysis follows the recommendations of the 
FAIR guiding principles [121] which improve the Findability, Accessibility, 
Interoperability, and Reusability of data for replication purposes. The Har-
vard Dataverse is one suitable depository with options for researchers and 
organisations. It is open to the worldwide research community free for use.

Allowing readers to evaluate the original images 
of published datasets encourages transparency 
in reporting and in the long term fosters higher 
levels of agreement between individuals from 
different research groups and laboratories. It 
also allows research teams to use freely available 
data for comparison and replication purposes.

https://doi.org/10.1371/journal.pone.0318700.t005

https://doi.org/10.1371/journal.pone.0318700.t005
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currently living population health and child development studies [64,89], as ALs have high 
potential as an objective biomarker for early life stress and adversity exposure [8,42]. Large 
cohort studies of currently living individuals that combine accentuated line data with detailed 
life history data will be able to offer insights into the correlation between accentuated line 
intensity and type of stress exposure and provide a deeper understanding of Goodman and 
Rose’s ‘Threshold model’ [9] on the relationship between stress intensity and defect formation.

Conclusion
Our research suggests that experience level between raters does not meaningfully impact the 
reliability of AL data collection, and nuanced intensity ratings pose the greatest source of 
disagreement between raters. Our results underscore the importance of collaborative data 
collection and measurement. We make six recommendations for future research to increase 
scientific rigor and reproducibility, including working in pairs, sharing reliability scores, 
and providing visual aids for scoring approaches. These insights are vital for improving AL 
assessment reliability, fostering transparency among scientists, and advancing Open Science 
through data sharing. Although image analysis inherently carries a level of subjectivity that 
can be challenging to mitigate, clear reporting and transparency in decision-making following 
the suggested IRRISS guidelines would be an improvement over current best practices.
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