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Abstract

Solar energy generated from photovoltaic panel is an important energy source that brings

many benefits to people and the environment. This is a growing trend globally and plays an

increasingly important role in the future of the energy industry. However, it intermittent

nature and potential for distributed system use require accurate forecasting to balance sup-

ply and demand, optimize energy storage, and manage grid stability. In this study, 5

machine learning models were used including: Gradient Boosting Regressor (GB), XGB

Regressor (XGBoost), K-neighbors Regressor (KNN), LGBM Regressor (LightGBM), and

CatBoost Regressor (CatBoost). Leveraging a dataset of 21045 samples, factors like

Humidity, Ambient temperature, Wind speed, Visibility, Cloud ceiling and Pressure serve as

inputs for constructing these machine learning models in forecasting solar energy. Model

accuracy is meticulously assessed and juxtaposed using metrics such as coefficient of

determination (R2), Root Mean Square Error (RMSE), and Mean Absolute Error (MAE). The

results show that the CatBoost model emerges as the frontrunner in predicting solar energy,

with training values of R2 value of 0.608, RMSE of 4.478 W and MAE of 3.367 W and the

testing value is R2 of 0.46, RMSE of 4.748 W and MAE of 3.583 W. SHAP analysis reveal

that ambient temperature and humidity have the greatest influences on the value solar

energy generated from photovoltaic panel.

1. Introduction

The growing global energy demand, along with the need for clean and sustainable energy

sources, has led to a significant increase in solar energy projects worldwide. However, one of

the major challenges facing the solar industry is the unpredictability of solar energy produc-

tion, which is highly dependent on weather conditions such as cloud cover, rainfall, and inten-

sity sunlight. Therefore, developing accurate and reliable models to forecast the power output

of solar energy projects is essential, which is important for the effective management of energy
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systems. In fact, solar energy is expected to play a key role in the global transition to clean and

renewable energy sources. The International Energy Agency (IEA) estimates that solar energy

could provide up to 30% of the world’s electricity by 2050 [1]. This forecast highlights the need

for robust solar forecasting models that can support effective integration of solar energy into

the grid and optimization of energy systems. Furthermore, the need for solar energy forecast-

ing is especially urgent in developing countries like Vietnam, where solar energy projects are

on the rise and energy demand is growing rapidly. According to Vietnam’s National Power

Development Plan, the country’s electricity demand is expected to rise significantly with

strong economic growth, reaching around 124,000 MW by 2030 [2]. However, the country is

currently heavily dependent on fossil fuels, which not only contributes to greenhouse gas emis-

sions but also exposes the country to fluctuations in global oil prices. Therefore, there is an

increasing need to diversify the country’s energy structure, with solar energy being a promis-

ing alternative.

Vietnam Electricity Group (EVN) said that in April 2022, the entire system’s electricity pro-

duction reached 22.62 billion kWh, an increase of 1.9% over the same period. Cumulatively in

the first 4 months of the year, the total electricity output of the entire system reached 85.65 bil-

lion kWh, an increase of 6.2% over the same period in 2021. Notably, renewable energy includ-

ing wind power, solar energy, and biomass power reached 13.15 billion kWh, accounting for

15.4% of the total electricity produced in the entire system.

In recent years, Vietnam has made significant strides in promoting solar energy, with the

government implementing policies to encourage the development of solar energy projects. In

2019, Vietnam started construction of the largest solar energy plant in Southeast Asia, with a

capacity of 688 MW. The plant is expected to produce about 1.2 billion kWh of electricity

annually, enough to power 1.3 million households and reduce 1.2 million tons of carbon emis-

sions each year. The success of this project highlights the potential of solar energy in Vietnam

and the need for accurate forecasting models to support effective management of energy sys-

tems. According to Draft Power Plan VIII, it is expected that the installed capacity of solar

energy will increase from 17 GW (2020–2025 period) to about 20 GW (2030). The proportion

of solar energy is expected to account for 17% (2025), 14% (2030) in the structure of power

sources. In Vietnam, technology, techniques and the ability to develop solar energy projects

are still heavily dependent on foreign countries, leading to large-scale solar energy deployment

facing many difficulties, especially about price. This makes it difficult for solar energy to com-

pete with other traditional power sources. The most important application of solar energy

today and in the future is still electricity production. Two types of solar energy production

technology are widely developed: photovoltaic technology (SPV—Solar photovoltaic) and con-

centrated solar energy technology (CSP—Concentrated solar energy). The most popular SPV

technology today includes: crystalline solar cells (about 90% market share), the rest are thin

film solar cells (about 10% market share). Currently in Vietnam, solar energy development

investment projects use mostly Solar photovoltaic technology as described in Fig 1. However,

evaluating and designing solar cell energy using this technology Solar photovoltaic in Vietnam

still has many limitations, mainly due to foreign consulting units. It would be very meaningful

if we could make a preliminary assessment of the solar cell energy source.

Implementing solar energy as a significant energy resource presents challenges due to the

inherent uncertainty in electricity production, which is highly dependent on weather condi-

tions. To maximize efficiency, it is essential to connect solar plants to the central electricity

transmission grid. Accurate forecasting of solar energy production at specific plants is crucial

to managing this uncertainty and ensuring smooth electricity transmission [3]. Extensive

research has been conducted on solar photovoltaic power forecasting.
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Machine learning (ML) has emerged as a powerful tool across various scientific disciplines,

enabling accurate predictions, efficient optimization, and deeper insights into complex phe-

nomena. In material science, Jain et al. [4] conducted a comparative analysis of ML techniques

to predict the wear and friction properties of MWCNT-reinforced PMMA nanocomposites,

demonstrating the effectiveness of these models in material property evaluation. Similarly, Jain

et al. [5] applied ML to optimize terahertz metamaterial absorbers, showcasing its potential in

enhancing design efficiency. The versatility of ML extends to electrical characterization, as

illustrated by Vaja et al. [6], who used it to evaluate the electrical properties of methylene blue

solutions via AC/DC conductivity. Furthermore, Prakash et al. [7] reviewed ML’s transforma-

tive role in advancing functional materials, particularly single-crystal perovskite halides, from

crystal growth to device applications.

Beyond material science, ML’s utility is evident in other domains. In hydrology, Hayder

et al. [8] employed NARX neural networks and LSTM-based deep learning to achieve multi-

step-ahead river flow predictions, emphasizing its ability to model dynamic natural systems. In

geotechnical engineering, Solihin et al. [9] utilized stacking ensemble ML techniques for land-

slide susceptibility mapping, underscoring its significance in environmental risk management.

Additionally, Solihin et al. [10] applied stacked ensemble ML models to calibrate spectroscopy

data, revealing its importance in refining analytical techniques.

Together, these studies highlight the extensive applicability of ML in addressing challenges

across diverse fields, including material science, electronics, environmental engineering, and

analytical spectroscopy, paving the way for more efficient and innovative solutions.

These ML models utilize sophisticated algorithms to analyze various factors including

weather conditions, solar panel efficiency, and geographical location [11]. By harnessing his-

torical data alongside real-time weather information, machine learning models can deliver

precise and dependable predictions of solar energy output. This capability empowers energy

managers to optimize energy systems effectively, leading to reduced operating costs and

enhanced efficiency. The use of ML in solar forecasting has attracted significant attention in

recent years, with several studies demonstrating the potential of ML-based models to improve

accuracy and reliability of solar forecasts.

Adaptive agent decision models based on deep reinforcement learning and autonomous

learning have been developed to address complex decision problems such as solar energy

Fig 1. Photovoltaic technology (SPV—Solar photovoltaic).

https://doi.org/10.1371/journal.pone.0315955.g001
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forecasting [12]. For example, these models have been applied to neurophysiological data,

demonstrating their applicability to real-world solar energy forecasting challenges [13].

Lorenz et al. [14] provided a comprehensive overview of the field, while Raza et al. [15]

highlighted recent advancements. Many studies in this area focus on predicting irradiance or

leveraging historical power output data. For instance, Yang et al. [16] used exponential

smoothing to improve predictions of horizontal irradiance, and Gueymard [17] examined

irradiance forecasting for surfaces at various angles. Lorenz et al. [18] utilized regional weather

data to predict irradiance, which was then converted into power forecasts. Several studies have

explored the use of weather data and historical power output to predict both irradiance and

power output [19, 20].

Daily mean solar irradiance is a critical factor in determining the size of solar energy gener-

ation units. Accurate forecasting of solar irradiation at specific locations aids in predicting the

electricity output of solar panels, which is vital for calculating system size, return on invest-

ment (ROI), and load measurements. Various regression algorithms have been applied in con-

junction with solar irradiance parameters to improve the accuracy of these forecasts [21].

Gonzalez et al. [22] proposed an ML-based forecasting model that uses machine learning

algorithms to predict the hourly solar energy output of photovoltaic systems electricity. The

ML model achieved 94.9% accuracy in predicting solar energy output, outperforming tradi-

tional forecasting methods [23]. Ortiz et al. [24] proposed an ML-based model using deep

learning algorithms to forecast the power output of solar energy plants. The ML model lever-

ages real-time weather data, historical solar output data, and plant operating data to provide

accurate and reliable forecasts of solar output. The ML model achieved over 90% accuracy in

predicting solar energy output, demonstrating the potential of ML-based models in improving

the efficiency and reliability of energy systems.

The variability of solar radiation often leads to a mismatch between energy demand and

supply, highlighting the need for efficient thermal energy storage systems. These systems are

crucial for bridging the gap and enabling solar thermal power plants to provide uninterrupted

power generation to meet both current and future energy needs. Anand et al. [25] employed

popular machine learning models including K-nearest neighbors (KNN) and extreme gradient

boosting (XGBoost)—to evaluate the performance of a packed-bed thermal energy storage sys-

tem. Aksoy and Genc [26] used three boosting models including XGBoost, Light Gradient

Boosting (LightGBM) and CatBoost for forecasting the power energy to be generated by solar

energy plants. Krishnan et al. [27] used Gradient boosting (GB) for forecasting solar ration in

various climatic zones. However, the use of machine learning models or artificial intelligence

(AI) models in solar energy forecasting is still in its infancy, with limited research and practical

applications in Vietnam.

Therefore, five machine learning models including XGBoost, LightGBM, GB, CatBoost and

KNN will be introduced for building five ML models in predicting power solar cell capacity

from six input variables including Humidity, Ambient temperature, Wind Speed, Visibility,

Pressure, and Cloud Ceiling.

2. Significance of the investigation

The primary objective of this study is to develop and evaluate the performance of five machine

learning models XGBoost, LightGBM, Gradient Boosting (GB), CatBoost, and KNN for pre-

dicting solar energy output. By incorporating six key weather-related input variables (humid-

ity, ambient temperature, wind speed, visibility, pressure, and cloud ceiling), the study aims to

improve forecasting accuracy, facilitating effective energy management and integration of

solar power into the electricity grid.
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This study contributes to the growing body of research on solar energy forecasting by:—

Demonstrating the application and comparative performance of five machine learning models

in predicting solar power generation, with CatBoost emerging as the best-performing model.

• Employing SHAP analysis and partial dependence plots to uncover the relative importance

and non-linear interactions of input variables, such as ambient temperature and humidity,

on solar energy output.

• Identifying critical gaps in the dataset, including the absence of photovoltaic panel-specific

technical data, and discussing their impact on model accuracy.

• Emphasizing the need for larger, more diverse datasets and the inclusion of solar technology

specifications to enhance prediction reliability and model generalizability. These contribu-

tions advance the understanding of machine learning applications in renewable energy fore-

casting and provide a foundation for improving solar energy system efficiency.

3. Description of database

In this study, the dataset used to build a machine learning model consists of 21.045 samples of

solar energy derived from the investigation of Williams and Wagner [28]. The dataset includes

six input variables and one output variable. The input variables include factors such as Humid-

ity, Ambient temperature, Wind Speed, Visibility, Pressure, and Cloud Ceiling depending on

the specific context of the study. The output variable could be the amount of energy generated

by the solar panels in each sample or a type of energy efficiency index. Statistical values for

these variables include: Mean, minimum value, maximum value, std, mean, Median. . .

Detailed information regarding these statistical values can be found in the Table 1 referenced

in the study.

This variable serves as the target of prediction or analysis within the machine learning

model. Specifically in the realm of solar energy, it typically denotes the quantity of energy pro-

duced by solar panels over a certain period. This Power output is commonly quantified in

units of Watts (W) or kilowatt-hours (kWh), providing insights into the effectiveness and effi-

ciency of solar energy generation systems. Understanding and accurately predicting this

energy output is vital for various applications, including optimizing solar panel placement,

assessing system performance, and facilitating energy management strategies [11].

The data used in this study pertains to the utilization of a specific set of input variables,

which include: Humidity, temperature, wind speed, visibility, cloud ceiling, pressure.

• Humidity: alters the path of incoming sunlight through phenomena such as refraction,

diffraction, and reflection. These optical processes can scatter and disperse sunlight, potentially

reducing the intensity of solar radiation reaching the solar panels. Consequently, variations in

Table 1. The statistical values of the variables.

No1 Parameter Count Mean Std Min Q25% Median Q75% Max

1 Humidity % 21045 37.122 23.823 0 17.529 33.124 52.594 99.988

2 Ambient temperature ˚C 21045 29.285 12.367 -19.982 21.915 30.289 37.475 65.738

3 Wind Speed m/s 21045 10.318 6.385 0 6 9 14 49

4 Visibility m 21045 9.7 1.352 0 10 10 10 10

5 Pressure kWh 21045 925.945 85.216 781.7 845.5 961.1 1008.9 1029.5

6 Cloud Ceiling m 21045 515.967 301.903 0 140 722 722 722

7 Power output W 21045 12.979 7.123 0.257 6.405 13.799 18.864 34.285

https://doi.org/10.1371/journal.pone.0315955.t001
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humidity levels can directly influence the amount of solar energy available for conversion by

photovoltaic cells [29].

Indirect Impact on Panel Efficiency: Moreover, humidity indirectly affects the efficiency of

solar panels by contributing to the formation of dew. When water vapor in the air condenses

on the surface of solar panels as dew, it can enhance the coagulation of dust particles. This

increased dust accumulation on the panels can diminish their effectiveness by obstructing sun-

light absorption and reducing overall energy output. Therefore, humidity indirectly influences

solar panel maintenance requirements and long-term performance [30]. Understanding the

interplay between humidity and solar energy generation is essential for optimizing the design,

operation, and maintenance of solar energy systems. Incorporating this knowledge into pre-

dictive models can help improve the accuracy of energy production forecasts and inform stra-

tegic decisions for maximizing solar energy utilization.

• Ambient temperature indeed influences the electrical performance of solar panels. As tem-

perature increases, the efficiency of solar panels tends to decrease, impacting their electrical

output. This phenomenon occurs due to several reasons: Decreased Voltage Output: Ele-

vated temperatures can lead to a reduction in the voltage output of solar panels. This

decrease happens because the increase in temperature raises the intrinsic carrier concentra-

tion of semiconductor materials within the solar cells. Consequently, the built-in voltage of

the solar cell diminishes, resulting in a reduction in available voltage output [31, 32].

Elevated Ambient Temperature can induce thermal stress within the materials of solar pan-

els, potentially leading to material degradation and reduced performance over time. Thermal

expansion and contraction cycles can cause mechanical stress on the solar cells and intercon-

nects, compromising their structural integrity and electrical performance [33, 34].Understand-

ing the impact of temperature on the electrical performance of solar panels is essential for

optimizing the design, operation, and maintenance of solar energy systems. Strategies such as

proper panel orientation, ventilation, and thermal management techniques can help mitigate

the adverse effects of temperature and maximize the overall energy yield of solar installations.

• Wind speed: Wind speed refers to the rate of movement of air, typically measured in units

such as meters per second (m/s) or miles per hour (mph). In the context of solar energy,

wind speed significantly impacts the performance of solar panels [35]. wind speed can also

affect the sunlight reaching the solar panels. While wind can aid in cleaning their surface,

excessively strong winds may create turbulence and cause fluctuations in sunlight. This tur-

bulence can reduce the stability of sunlight hitting the panels, affecting overall system perfor-

mance [36].

• Visibility can refer to the ability to observe sunlight. High visibility may indicate clear and

intense sunlight, while low visibility could suggest that sunlight is obscured or scattered,

impacting the efficiency of solar energy generation. In practical terms, high visibility condi-

tions typically mean that there are minimal obstructions, such as clouds, fog, or haze, allow-

ing sunlight to penetrate the atmosphere and reach solar panels with little interference. This

results in optimal conditions for solar energy production, as the panels receive a consistent

and strong influx of sunlight [36].

Therefore, visibility plays a significant role in determining the performance and output of

solar energy systems, with high visibility generally correlating with improved energy produc-

tion and low visibility indicating potential challenges for solar energy generation.

• Pressure refers to the force exerted on a unit area, typically measured in units such as Pascals

(Pa) or atmospheres (atm). It plays a significant role in various contexts, such as influencing
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weather systems that affect wind patterns or impacting the structural integrity in engineer-

ing. Pressure, while not as directly influential as factors like sunlight or temperature, can still

impact solar energy production in several indirect ways. Changes in atmospheric pressure

can alter the density of the air. Denser air can scatter and absorb more sunlight before it

reaches the solar panels, potentially reducing the amount of solar radiation that actually hits

the panels.

In some cases, atmospheric pressure might influence the cooling efficiency of solar panels.

Lower atmospheric pressure at higher altitudes can lead to less effective convective cooling,

which might increase the operating temperature of the panels and reduce their efficiency.

• Cloud Ceiling is a term commonly used in aviation and meteorology to describe the height

from the ground to the base of the lowest layer of clouds. It is typically measured in meters

or feet. When this height is low, it indicates that clouds are forming close to the ground or

that there are thick and low clouds. Conversely, when this height is high, it means that clouds

are at a higher altitude and do not pose significant obstruction to observation or aviation

activities [37, 38].

In the context of solar energy, cloud ceiling can also refer to the height of clouds measured

at a weather station or in a specific area. Information about cloud ceiling can be used to predict

the intensity of sunlight and the impact of clouds on solar energy generation in a particular

area.

To describe the detailed distribution of the input variables with the output variable using

histograms Fig 2. By plotting histograms of the input variables and the output variable, we can

compare their distributions and understand the relationship between them. This provides us

with an overall view of the data and prepares us for building machine learning models.

Fig 3 depicts the linear correlation among the variables of the dataset used. It can be

observed that the input variables exhibit very little correlation. Only variable Ambient temper-

ature has the highest correlation value, which is 0.58.

In order to complete the description of correlation analysis, Table 2 summarizes the vari-

ance inflation factor (VIF) values for six variables, providing insights into multicollinearity

within the dataset. All variables, including Humidity (2.360), Ambient Temperature (1.570),

Wind Speed (1.020), Visibility (1.117), Cloud Ceiling (1.401), and Pressure (1.364), exhibit

VIF values well below the threshold of concern (commonly 5 or 10). This indicates minimal

multicollinearity, ensuring that no variable excessively influences others. Consequently, the

dataset is suitable for regression analysis without requiring corrective measures for

multicollinearity.

4. Machine learning approach

4.1. Gradient Boosting Regressor (GB)

Gradient Boosting is a powerful machine learning algorithm that enhances predictive perfor-

mance by combining the outputs of multiple weak learners, typically decision trees, to create a

single strong model. It is an iterative algorithm where each subsequent model is trained to cor-

rect the errors made by the previous models [39]. Gradient Boosting is particularly effective in

Table 2. Multicollinearity using the variance inflation factor (VIF).

Variable Humidity Ambient Temperature Wind speed Visibility Cloud ceiling Pressure

VIF 2.360 1.570 1.020 1.117 1.401 1.364

https://doi.org/10.1371/journal.pone.0315955.t002
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Fig 2. Statistical analysis distribution of the inputs in this study.

https://doi.org/10.1371/journal.pone.0315955.g002

Fig 3. Correlation matrix analysis input variables in this study.

https://doi.org/10.1371/journal.pone.0315955.g003
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scenarios with complex data patterns and when high predictive accuracy is required. It can

handle both regression and classification tasks and is known for its ability to reduce bias and

variance, leading to robust models.

The process begins by fitting the first model to the data, which is usually a simple decision

tree. The predictions from this model are then compared to the actual values, and the differ-

ence, or residuals, is calculated. The next model is trained on these residuals, with the aim of

reducing the error made by the first model. This process is repeated for a specified number of

iterations, with each model learning to improve upon the errors of the combined model from

the previous iteration. The core idea behind Gradient Boosting is to minimize a loss function,

which measures the difference between the actual and predicted values, by sequentially fitting

models to the residual errors of the combined model. One of the key aspects of Gradient

Boosting is its use of gradient descent, a numerical optimization technique, to minimize the

loss function. In each iteration, the algorithm calculates the gradient of the loss function with

respect to the predictions and updates the model in the direction that reduces the loss. This

approach allows the model to progressively "boost" its performance by focusing on the areas

where it is weakest. However, it is computationally intensive and can be prone to overfitting if

not properly tuned, requiring careful management of parameters like learning rate, the num-

ber of trees, and tree depth.

4.2. Extreme Gradient Boosting Regressor (XGBoost)

The XGBoost model operates by constructing a sequence of decision trees, where each tree

learns from the errors of its predecessors [40]. During this process, XGBoost computes gradi-

ents of the objective function (typically the loss function) and utilizes these gradients to update

the decision values. This iterative process continues until a specified number of iterations or

stopping conditions are met.

XGBoost is a powerful and widely used machine learning algorithm within the machine

learning community. It inherits and extends upon previous algorithms such as Gradient

Boosting Machine (GBM) and is particularly suited for predicting complex structured data,

especially in areas like ensemble learning, time series forecasting, and natural language pro-

cessing [41]. Some advantages of the XGBoost model include: high performance, scalability to

large datasets, flexibility, and fine-tuning of parameters.

4.3. K-neighbors Regressor (KNN)

The k-Nearest Neighbor (KNN) algorithm is a widely used supervised learning method, nota-

ble for its simplicity and effectiveness [42]. It is often listed among the top data mining algo-

rithms due to its intuitive approach to classification and regression tasks. KNN creates a

decision boundary that closely follows the distribution of the data, which helps in achieving

high accuracy when the dataset is large and representative.

KNN is a nonparametric algorithm, meaning it does not assume any specific form for the

underlying data distribution. This characteristic makes it particularly suitable for real-world

datasets that may not adhere to theoretical distributions like Gaussian mixtures or linear sepa-

rability [43]. Nonparametric methods like KNN can handle a variety of data distributions

more effectively. Unlike other algorithms that build a model during the training phase, KNN

has a minimal training phase and a more intensive testing phase. During training, KNN simply

stores the dataset, while during testing, it classifies new data points by examining the ’k’ nearest

neighbors from the stored dataset. This means that while the training process is fast, the algo-

rithm requires access to the entire training dataset (or a significant portion of it) during the

prediction phase, making the testing phase more computationally demanding [44].
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4.4. Light Gradient Boosting Machine Regressor (LightGBM)

The Light Gradient Boosting Machine (LightGBM) is an advanced machine learning algo-

rithm that has gained popularity for its efficiency and high performance in both classification

and regression tasks [45]. Developed by Microsoft, LightGBM is designed to be highly efficient

and scalable, capable of handling large datasets with substantial features while maintaining

rapid training and prediction times.

Another distinctive feature of LightGBM is its leaf-wise (or best-first) tree growth strategy, as

opposed to the level-wise approach used by many other gradient boosting algorithms. In the leaf-

wise method, LightGBM grows trees by splitting the leaf with the highest loss, which can result in

deeper trees with fewer splits, leading to better accuracy and efficiency. Overall, LightGBM stands

out due to its speed, scalability, and accuracy, making it a preferred choice for many machine

learning practitioners dealing with large-scale datasets and complex predictive tasks [46].

4.5. CatBoost Regressor (CatBoost)

CatBoost, short for Categorical Boosting, is a high-performance machine learning algorithm

developed by Yandex [47]. It excels in both classification and regression tasks. CatBoost is

designed to handle categorical data without extensive preprocessing, making it a powerful tool

for real-world applications where such data is prevalent.

One of the standout features of CatBoost is its ability to directly incorporate categorical features

into the model. While traditional gradient boosting algorithms often require categorical data to be

converted into numerical format (e.g., one-hot encoding), CatBoost can directly process categori-

cal variables, maintaining their inherent information and relationships. This is achieved through a

process called target-based encoding, where the algorithm replaces categorical values with statis-

tics computed from the target variable. CatBoost also implements efficient processing techniques

to speed up training and inference. These include sophisticated algorithms for efficient memory

and computational resource usage, making CatBoost suitable for large-scale datasets [48].

4.6. Performance indicators

During the evaluation process of machine learning models, employing evaluation methods

such as R2, mean absolute error (MAE) and root mean square error (RMSE) offer detailed

insights into the model’s predictive performance across both training and validation datasets.

The R2 coefficient of determination, quantifies how much of the variation in the dependent

variable can be explained by the independent variables. It has a range from 0 to 1, with a value

of 1 representing a perfect fit.

R2 ¼ 1 �

Pn
i¼1
ðyi � y^

iÞ
2

Pn
i¼1
ðyi � y�i Þ

2
ð1Þ

Where, yi represents the actual value, y^i represents the predicted value by the model for the i

sample, n is the number of samples in the test dataset, and y�i is the mean of the actual values yi

The mean absolute error (MAE) represents the average of the absolute differences between

predicted values and actual values. It provides a straightforward measure of prediction accu-

racy by calculating the average magnitude of errors in a set of predictions, without considering

their direction. Lower MAE values indicate better predictive accuracy, as they signify smaller

errors between the predicted and actual values.

MAE ¼
1

n

Xn

i¼1

byi � y^
i j ð2Þ
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The root mean square error (RMSE) measures the average magnitude of the errors between

predicted and actual values in a dataset. A lower RMSE indicates better predictive accuracy,

while a higher RMSE suggests larger prediction errors.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

ðyi � y^
iÞ

2

s

ð3Þ

Additionally, using cross-validation techniques is an important method to evaluate model

generality. By dividing the data into subsets, the model is trained on one subset and evaluated

on the remaining subset. The results provide insight into the model’s average performance

across multiple test datasets, supporting the assessment of the model’s overall robustness and

stability.

4.7. Methodology flow chart

Fig 4 “Methodology flow chart” describes the main steps including 4 steps in this investigation

using ML models for forecasting solar energy generated by photovoltaic panel. The ML models

of this investigation are implemented by Python language programing with Sklearn library

[49].

• Step I: Data Preparation

The dataset utilized in this study comprises a total of 21,045 samples, each containing 6

input features including Humidity, temperature, wind speed, visibility, cloud ceiling, pressure,

Fig 4. Methodology flow chart of machine learning model in this investigation.

https://doi.org/10.1371/journal.pone.0315955.g004
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and 1 output feature “solar energy”. The input features represent various environmental, while

the output feature corresponds to the power generation capacity of solar cells. To ensure that

the data is in a suitable form for model training, comprehensive data preprocessing is carried

out across the entire dataset. This preprocessing includes tasks such as data cleaning and nor-

malization or standardization of features by Sklearn library [49].

Once the dataset is fully preprocessed, it is then divided into two subsets: training data and

testing data. The training data, which constitutes 70% of the entire dataset, is used for building

and fine-tuning the machine learning models. The remaining 30% of the dataset is reserved

for testing and validating the performance of the models. This split ensures that the models are

trained on a large portion of the data while still leaving a significant amount of data for unbi-

ased evaluation.

• Step II: Model Training

In the model training phase, a systematic approach is taken to optimize the performance of

the selected machine learning models. A parameter grid is established for each model, specify-

ing a range of hyperparameters that will be tuned to find the optimal configuration. This pro-

cess is critical as the choice of hyperparameters can significantly impact the performance of

the models.

To ensure that the models generalize well to unseen data, cross-validation is employed dur-

ing training. Specifically, 10-fold cross-validation (CV = 10) is used, meaning that the training

data is divided into 10 subsets. Each model is trained 10 times, with each iteration using a dif-

ferent subset as validation data while the remaining subsets are used for training. This method

helps to mitigate overfitting and provides a more reliable estimate of model performance.

The machine learning models under consideration include Gradient Boosting (GB),

XGBoost, K-Nearest Neighbors (KNN), LightGBM (LGBM), and CatBoost (CB). After the

cross-validation process is complete, the model with the best performance for each algorithm

is identified based on the cross-validation results. The best parameters identified during this

process are then used to retrain the model on the entire training dataset, ensuring that the

model is optimized before final evaluation.

• Step III: Model Evaluation

Once the models have been trained and retrained with the best parameters, they are sub-

jected to a thorough evaluation process to assess their predictive performance. This evaluation

is carried out using a set of commonly used metrics that provide insights into different aspects

of model performance. The coefficient of determination (R2) is used to measure how well the

model’s predictions match the actual values. A higher R2 indicates better predictive accuracy.

Additionally, Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) are cal-

culated to evaluate the models’ accuracy in predicting the output. MAE provides a measure of

the average magnitude of errors in predictions, while RMSE gives more weight to larger errors,

making it a useful metric when large deviations from actual values are of particular concern.

To complement these numerical evaluations, various visualizations are generated to provide

a more intuitive understanding of the models’ performance. Scatter plots will be used to com-

pare predicted values against actual values, highlighting the accuracy and potential biases in

the predictions. Histograms can be utilized to visualize the distribution of errors, allowing for

a deeper understanding of how the models perform across different ranges of the data.

• Step IV: SHAP-based Evaluation

After the initial evaluation, the best-performing machine learning models undergo a fur-

ther, more detailed analysis using SHAP (SHapley Additive exPlanations). SHAP is a powerful
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method for interpreting complex models by breaking down the prediction of each sample into

contributions from each feature. This analysis helps to understand how each input feature

influences the model’s predictions, providing insights into the relationships between input fea-

tures and the output.

The SHAP values are visualized through various plots, such as SHAP summary plots and

dependence plots, which help in interpreting the model’s behavior. By understanding the con-

tribution of each feature, it becomes possible to explain the model’s decisions, identify key

drivers of the output, and gain confidence in the model’s predictions. This interpretability is

crucial, especially in applications like solar energy forecasting, where understanding the factors

influencing predictions can lead to better decision-making and model trustworthiness.

5. Evaluation of machine learning model

The dataset is divided into two sets: a training set and a validation set, with a split ratio of 70%/

30%. The validation set aids the algorithm in building a machine learning model based on the

values of hyperparameters available in the Sklearn library.

Table 3 summarizes the optimal hyperparameters for five machine learning models tuned

using GridSearchCV and Bayesian Optimization. For Gradient Boosting (GB) and LightGBM,

both approaches converged to similar n_estimators (500) but differed in learning rates, with

Bayesian Optimization favoring finer adjustments (learning_rate: 0.001). CatBoost demon-

strated a notable difference in depth (depth: 10 for GridSearchCV vs. 4 for Bayesian Optimiza-

tion). KNN showed slight variation in n_neighbors, favoring 21 under Bayesian Optimization.

Table 4 evaluates the models’ predictive performance. CatBoost consistently achieved the

best R2, lowest MAE, and RMSE across training and testing, highlighting its robustness. Gradi-

ent Boosting and LightGBM showed improved R2 and RMSE with Bayesian Optimization,

confirming the benefit of fine-tuning. However, KNN maintained a stable performance

between both methods. Notably, XGBoost showed no significant improvement in R2, indicat-

ing potential limitations in hyperparameter exploration. Upon reviewing the performance

metrics, GridSearchCV results indicate that CatBoost achieved the highest testing R2 = 0.546,

outperforming Bayesian Optimization’s R2 of 0.538. This suggests that the hyperparameters

derived from GridSearchCV were better tuned for the model under this dataset. For testing

MAE and RMSE, CatBoost still displayed strong results under GridSearchCV, with MAE of

3.583 W and RMSE of 4.748 W, both comparable to Bayesian Optimization results. This

emphasizes CatBoost’s capability to maintain high predictive accuracy across various evalua-

tion metrics.

Fig 5 illustrates the correlation between the true values and the predicted values of solar

energy using the CatBoost model for (a) the training dataset and (b) the testing dataset. The

red line represents the best-fit line, while the shaded regions depict the 80% Confidence Inter-

val (CI) and the 80% Prediction Interval (PI). For the training dataset, the number of points

within the 80% CI is 12,199 and the number of points within the 80% PI is 13,743. For the

Table 3. Optimal hyperparameters for each machine learning model after using GridsearchCV and Bayesian Optimization.

No Model Best_params Gridsearchcv Best_params Bayesian Optimization

1 GB {’n_estimators’: 500, ’learning_rate’: 0.01} {’n_estimators’: 500, ’learning_rate’: 0.01}

2 XGBoost {’learning_rate’: 0.01, ’n_estimators’: 500} {’learning_rate’: 0.001, ’n_estimators’: 500}

3 KNN {’n_neighbors’: 20, ’weights’: ’uniform’} {’n_neighbors’: 21, ’weights’: ’uniform’}

4 LGBM {’learning_rate’: 0.01, ’n_estimators’: 500} {’learning_rate’: 0.001, ’n_estimators’: 500}

5 CatBoost {’depth’: 10, ’learning_rate’: 0.01, ’iterations’: 500} {’depth’: 4, ’learning_rate’: 0.01, ’iterations’: 500}

https://doi.org/10.1371/journal.pone.0315955.t003
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testing dataset, the number of points within the 80% CI is 5,166 and the number of points

within the 80% PI is 5,882.

The left plot (training dataset) shows a higher R2 value 0.608 compared to the right plot

(testing dataset), which has an R2 value of 0.546. This indicates that the model performs

slightly better on the training dataset than on the testing dataset. Both plots highlight the mod-

el’s ability to predict solar energy with varying confidence and prediction intervals.

Table 4. The summary table of performance metrics for the five algorithms.

No Parameters GridsearchCV Bayesian Optimization

Training Testing Training Testing

R2

1 Gradient Boosting 0.400 0.392 0.553 0.526

2 XGBoost 0.468 0.442 0.468 0.442

3 KNN 0.572 0.525 0.572 0.531

4 LightGBM 0.453 0.436 0.453 0.436

5 CatBoost 0.608 0.546 0.623 0.538

MAE (W)

1 Gradient Boosting 4.640 4.604 3.641 3.703

2 XGBoost 4.355 4.381 4.355 4.381

3 KNN 3.490 3.642 3.500 3.607

4 LightGBM 4.407 4.399 4.407 4.398

5 CatBoost 3.367 3.583 3.293 3.596

RMSE (W)

1 Gradient Boosting 5.542 5.497 4.785 4.489

2 XGBoost 5.219 5.263 5.219 5.264

3 KNN 4.679 4.859 4.681 4.825

4 LightGBM 5.290 5.292 5.290 5.291

5 CatBoost 4.478 4.748 4.396 4.786

https://doi.org/10.1371/journal.pone.0315955.t004

Fig 5. Correlation between true value and Catboost predicted value of solar energy with (a) training dataset, (b) testing dataset.

https://doi.org/10.1371/journal.pone.0315955.g005
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The predictive performance of the CatBoost model is not really robust, that implies suggest-

ing a significant influence of the quality and quantity data on the predicted value. That will be

more discussed in the following section.

Fig 6A and 6B illustrates the comparison between predicted and actual solar panel energy

values, primarily distributed within the ±10% error range, with a significant number of points

lying along the y = x line. Therefore, the prediction error values between the model-predicted

solar panel energy and the actual solar panel energy of the training dataset, as depicted in Fig

6, are mainly distributed within the range of ±10 W.

To gain a deeper understanding of the CatBoost model’s ability to forecast solar energy, the

SHAP model will be employed to interpret the influence of input variables on the prediction of

solar energy. The findings of this analysis will be presented in the following section.

6. SHAP-based evaluation

The SHAP (Shapley Additive exPlanation) framework, rooted in cooperative game theory as

introduced by Lundberg and Lee [50], was initially designed to quantify individual contribu-

tions in cooperative games. Since then, SHAP has evolved into a powerful tool for interpreting

machine learning model predictions [51]. By integrating various existing interpretability meth-

ods, SHAP offers an intuitive, theoretically sound approach for explaining model outputs, rep-

resenting a major advance in the field of model interpretation. Central to this framework are

SHAP values, which provide detailed insights into the magnitude and direction (positive or

negative) of feature influences on model predictions. These values are essential for understand-

ing the relative importance of different features in shaping model outcomes.

One of the key visualization tools in SHAP is the summary plot, which combines both fea-

ture importance and their effects on predictions. Each point on the plot corresponds to a

SHAP value for a particular feature and instance, with the y-axis denoting the feature and the

x-axis representing the SHAP value. The color gradient of the points reflects the feature values,

from low to high. To address overlapping data points, jittering is applied along the y-axis, visu-

ally representing the distribution of Shapley values for each feature. Features are typically

ordered by importance, making it easier to identify key drivers of model predictions. While

the summary plot provides an initial understanding of the relationship between feature values

and their predictive impact, more detailed insights can be gained from SHAP dependence

plots, which will be discussed further.

Fig 6. RMSE values with (a) training, (b) testing.

https://doi.org/10.1371/journal.pone.0315955.g006
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6.1. SHAP global interpretation

Fig 7 presents the SHAP global interpretation of feature importance for each input variable’s

effect on the predicted value of solar energy, with (a) showing the absolute mean SHAP values

and (b) displaying the global SHAP values. The results in Fig 7A indicate that Ambient tem-

perature has the most significant impact on the accuracy of solar energy predictions made by

CatBoost, followed by Humidity, Cloud ceiling, Pressure, Wind speed, and Visibility. This

ranking reflects the relative importance of each feature in explaining the variability in the mod-

el’s predictions.

Meanwhile, the SHAP values shown in Fig 7B illustrate the specific influence of each input

variable on the predicted solar energy value. Specifically, higher Ambient temperatures lead to

an increase in solar energy production, with the impact ranging approximately ±6W. Lower

Humidity levels are favorable for generating solar energy from photovoltaic panels, with the

influence ranging from -4W to +2W. Similarly, higher values of Cloud ceiling, Pressure, Wind

speed, and Visibility generally enhance solar energy production. However, Visibility has a rela-

tively minor effect on the variation of the global SHAP value compared to the other factors.

Fig 7. SHAP global interpretation feature importance of each input variable on predicted value of solar energy (a)

absolute mean SHAP value, and (b) global SHAP value.

https://doi.org/10.1371/journal.pone.0315955.g007
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To provide a more detailed quantitative assessment of the influence of each input variable

on the predicted solar energy value, the Partial SHAP dependence values for each input vari-

able will be described in the following section. In particular, SHAP local value analysis will

help analyze errors, as well as improve the accuracy of solar energy prediction models.

6.2. Partial SHAP dependence interpretation

By examining the Partial SHAP dependence plots for these features shown in Fig 8, we can

gain a deeper understanding of how changes in their values affect the model’s predictions.

This analysis helps us uncover the exact form of the relationship between each feature and the

model output, including any non-linearities or interactions with other features.

The results of the Partial SHAP dependence shown in Fig 8 reveal some interesting insights

into the impact of the six input variables on solar energy production. The statistical analysis

indicates that the average value for the 21045 solar energy samples is around 13 W, which cor-

responds to the intersection of the E(input variable) and f(x)|(input variable) lines. The Partial

dependence plot aligns with the results depicted in the Global SHAP value in Fig 7B. Specifi-

cally, the Partial SHAP dependence curves for Cloud Ceiling (cf. Fig 8C), Pressure (cf. Fig 8D)

and Visibility (cf. Fig 8F) show relatively small changes, hovering close to the average solar

energy value, indicating that these three variables have minimal influence on solar energy

production.

In contrast, the impact curves for Wind Speed (cf. Fig 8E), Humidity (cf. Fig 8B), and

Ambient Temperature (cf. Fig 8A) on solar energy are non-linear, particularly for Ambient

Temperature. Solar energy values increase almost linearly with Wind Speed, demonstrating a

more significant and direct influence on energy production.

6.3. SHAP local interpretation

Fig 9 illustrates the specific impact of each input variable on the predicted solar energy values

using SHAP local value analysis. This analysis is applied to two actual solar energy values:

18.33 W and 12.42 W, with corresponding predicted values of 16.04 W and 12.58 W (shown in

Fig 9A and 9B). The prediction errors depicted in Fig 6 can be partly explained by the results

presented in Fig 9.

In this study, six input variables contribute to the solar energy predictions. Among these,

Ambient temperature and Humidity have the most significant influence on the model’s accu-

racy and prediction capabilities. Consequently, the prediction errors are primarily attributed

to the variability in these two input variables.

Additionally, solar energy output depends on the technical specifications of the photovol-

taic panels, which were not included in the database used for model development (S1 Data).

The absence of these panel-specific variables across the 21,045 samples from different locations

contributes to the prediction errors observed in this study.

However, using the six weather-related input variables still allows for a simplified prelimi-

nary feasibility prediction for solar energy projects. This approach is especially useful during

the initial assessment phase when specific technical details of the photovoltaic panels are not

yet available.

Fig 10 demonstrates the use of LIME (Local Interpretable Model-agnostic Explanations) to

analyze a specific case where the true value is 30.058 W, while the model predicts 7.764 W,

indicating significant underprediction. The predicted value lies within a range of 1.76 W to

25.56 W, with the orange bar highlighting the prediction. The analysis identifies key features

influencing the prediction, with Ambient Temperature (� 21.93) having the largest negative

impact (6.79), followed by Humidity (> 52.57) (2.05) and other factors such as Cloud Ceiling
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Fig 8. Partial SHAP dependence plot of the six representative features.

https://doi.org/10.1371/journal.pone.0315955.g008
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(� 140.00), Pressure (� 845.80), Wind Speed (� 6.00), and Visibility (� 10.00). The actual fea-

ture values—Ambient Temperature: 15.57, Humidity: 97.10, Cloud Ceiling: 42.00, Pressure:

800.30, Wind Speed: 3.00, and Visibility: 10.00—help explain the model’s low prediction.

LIME reveals the specific reasons behind the poor performance of the model for this case.

Key features such as low Ambient Temperature (15.57) and high Humidity (97.10) strongly

influence the underprediction. These insights can guide further investigation into feature

interactions or the model’s handling of extreme cases, ultimately improving its performance.

7. Discussion and limitation

The regression results achieved in this study reveal certain limitations in the predictive capabil-

ity of the machine learning models, as indicated by the relatively modest R2 values throughout

the experiment. These findings suggest latent complexities in the relationship between the

input variables (such as ambient temperature, humidity, and wind speed) and the target vari-

able (solar energy output), which the models were unable to fully capture.

A primary reason for the lower R2 values is the inherent variability and non-linear interac-

tions between solar energy output and its influencing factors. While the input features provide

a preliminary basis for prediction, they do not comprehensively account for all the variables

that govern solar energy production. Notably, the absence of photovoltaic panel-specific tech-

nical specifications such as panel efficiency, orientation, and degradation rates likely

Fig 9. SHAP local value of two specific cases. (a) Actual value 18.33 W vs Predicted value 16.04 W of solar energy. (b) Actual value 12.42 W vs Predicted value

12.58 W of solar energy.

https://doi.org/10.1371/journal.pone.0315955.g009

Fig 10. LIME providing local interpretation of the specific case with true value 30.058 W comparing with

predicted value 7.764 W.

https://doi.org/10.1371/journal.pone.0315955.g010
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introduced significant noise into the predictions. These variables are critical for accurately

modeling solar energy output but were unavailable in the dataset.

Another contributing factor is the dataset’s inherent characteristics. The data used in this

study comprises 21045 samples derived from a limited geographical and technological context,

which may have introduced biases. For instance, if the dataset predominantly represents

regions with specific weather patterns or solar radiation profiles, the trained models may strug-

gle to generalize to broader or more diverse conditions. Furthermore, discrepancies in data

quality or measurement precision could also have influenced the results, particularly for fea-

tures like cloud ceiling and visibility, which exhibit lower importance in the SHAP analysis.

Despite these challenges, the study offers valuable insights into the potential of machine

learning models for solar energy forecasting. While the achieved R2 values suggest limited

accuracy for precise predictions, the models remain useful for initial feasibility assessments of

solar farm locations. These assessments rely on readily available weather data and provide a

foundation for further analysis.

To enhance model performance and reliability, future research should address the

following:

1. Data Enrichment: Collecting larger, more diverse datasets that incorporate detailed techni-

cal specifications of photovoltaic panels, as well as broader environmental conditions across

different geographic regions.

2. Feature Exploration: Identifying additional relevant features, such as solar panel tilt angles,

shading effects, or maintenance schedules, to capture more nuanced relationships between

inputs and outputs.

3. Model Refinement: Leveraging advanced machine learning techniques, such as ensemble

methods or hybrid models, to improve the capture of non-linearities and complex feature

interactions.

Ultimately, addressing these limitations will enhance the accuracy and applicability of pre-

dictive models, enabling more effective integration of solar energy into the grid and supporting

the global transition to sustainable energy sources.

8. Conclusion

This study highlights the potential and challenges of using five machine learning models, par-

ticularly the highest performance of CatBoost model with training values of R2 value of 0.608,

RMSE of 4.478 W and MAE of 3.367 W and the validation value is R2 of 0.46, RMSE of 4.748

W and MAE of 3.583 W, for solar energy prediction. The integration of weather-related input

variables, such as temperature, humidity, wind speed, and visibility, provides a foundation for

preliminary feasibility assessments of solar farm locations. However, the limited performance

of the models, as demonstrated by the R2, RMSE and MAE values, suggests that the relation-

ship between the input variables and solar energy output is more complex than captured by

the current dataset and models. The lack of photovoltaic panel-specific technical data likely

contributed to prediction errors, emphasizing the need for more comprehensive datasets that

include both weather conditions and system specifications.

The SHAP analysis offered valuable insights into the contribution of each feature to the pre-

dictions, with ambient temperature and humidity emerging as the most influential factors.

The Partial SHAP dependence plots revealed non-linear interactions, particularly for variables

like wind speed and temperature, further demonstrating the intricacies involved in accurately

predicting solar energy output.
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While the study underscores the importance of leveraging modern machine learning tech-

niques, it also highlights key limitations, including dataset biases related to geographical focus

and technological constraints. Future research should aim to collect larger, more diverse data-

sets, incorporating a wider range of environmental conditions and solar technologies to

enhance model performance and generalizability. Ultimately, these advancements will

improve the accuracy of solar energy forecasting, supporting the effective integration of renew-

able energy into the power grid.
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23. Barrera J. M., Reina A., Maté A., and Trujillo J. C., “Solar energy prediction model based on artificial

neural networks and open data,” Sustainability, vol. 12, no. 17, p. 6915, 2020.

24. Ortiz A. et al., “An artificial intelligence dataset for solar energy locations in India,” vol. 9, no. 1, p. 497,

2022. https://doi.org/10.1038/s41597-022-01499-9 PMID: 35974002

25. Anand P., Tejes P. K. S., Naik B. K., and Niyas H., “Design analysis and performance prediction of

packed bed latent heat storage system employing machine learning models,” Journal of Energy Stor-

age, vol. 72, p. 108690, Nov. 2023, https://doi.org/10.1016/j.est.2023.108690

26. Aksoy N. and Genc I., “Predictive models development using gradient boosting based methods for

solar power plants,” Journal of Computational Science, vol. 67, p. 101958, Mar. 2023, https://doi.org/

10.1016/j.jocs.2023.101958

27. Krishnan N., Ravi Kumar K., and S. A. R., “Solar radiation forecasting using gradient boosting based

ensemble learning model for various climatic zones,” Sustainable Energy, Grids and Networks, vol. 38,

p. 101312, Jun. 2024, https://doi.org/10.1016/j.segan.2024.101312

28. Williams J. and Wagner T., “Northern Hemisphere Horizontal Photovoltaic Power Output Data for 12

Sites,” vol. 5, Jul. 2019, https://doi.org/10.17632/hfhwmn8w24.5

29. Mekhilef S., Saidur R., Kamalisarvestani M., “Effect of dust, humidity and air velocity on efficiency of

photovoltaic cells,” Renewable and Sustainable Energy Reviews, vol. 16, no. 5, pp. 2920–2925, 2012.

PLOS ONE Solar energy prediction through machine learning models

PLOS ONE | https://doi.org/10.1371/journal.pone.0315955 January 2, 2025 22 / 23

https://doi.org/10.2166/h2oj.2022.134
https://doi.org/10.2166/h2oj.2022.134
https://doi.org/10.1007/978-3-031-26580-8%5F7
https://doi.org/10.31436/iiumej.v25i1.2796
https://doi.org/10.31436/iiumej.v25i1.2796
https://doi.org/10.33168/JLISS.2023.0309
https://doi.org/10.1063/5.0156458
http://www.ncbi.nlm.nih.gov/pubmed/38386908
https://doi.org/10.1007/978-1-4614-9221-4%5F21
https://doi.org/10.1016/j.solener.2016.06.073
https://doi.org/10.1016/j.energy.2014.11.082
https://doi.org/10.1016/j.solener.2007.04.007
https://doi.org/10.1016/j.solener.2007.04.007
https://doi.org/10.1002/pip.1033
https://doi.org/10.1609/aaai.v26i1.8179
https://doi.org/10.1609/aaai.v26i1.8179
https://doi.org/10.1016/j.energy.2018.01.177
https://doi.org/10.1109/INTECH.2016.7845051
https://doi.org/10.1016/j.renene.2018.12.014
https://doi.org/10.1016/j.renene.2018.12.014
https://doi.org/10.1038/s41597-022-01499-9
http://www.ncbi.nlm.nih.gov/pubmed/35974002
https://doi.org/10.1016/j.est.2023.108690
https://doi.org/10.1016/j.jocs.2023.101958
https://doi.org/10.1016/j.jocs.2023.101958
https://doi.org/10.1016/j.segan.2024.101312
https://doi.org/10.17632/hfhwmn8w24.5
https://doi.org/10.1371/journal.pone.0315955


30. Hosseini S. A., Kermani A. M., and Arabhosseini A., “Experimental study of the dew formation effect on

the performance of photovoltaic modules,” Renewable Energy, vol. 130, pp. 352–359, 2019.
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