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Abstract 

Background

Type 2 diabetes (T2D) is increasingly recognized as a significant global health challenge, 

with a rising prevalence of hyperlipidemia among diabetic patients. Effectively predicting 

and reducing the risk of hyperlipidemia in T2D patients to mitigate their cardiovascular risk 

remains an urgent issue.

Objectives

The research sought to determine early clinical indicators that could predict the onset of 

hyperlipidemia in patients with T2D and to establish a predictive model that integrates 

clinical and laboratory indicators.

Methods

A cohort of T2D patients, excluding those with pre-existing hyperlipidemia or confound-

ing factors, was analyzed. Clinical and laboratory data were used in a LASSO regression 

model to select key predictive variables. A nomogram was then constructed and evaluated 

using receiver operating characteristic (ROC) analysis and calibration.

Results

Among 269 participants, PCSK9 levels were significantly elevated in T2D patients with 

hyperlipidemia and exhibited a positive correlation with several lipid markers. LASSO 

regression identified six predictors: BMI, TG, TC, LDL-C, HbA1c, and PCSK9. The nomo-

gram model exhibited robust predictive performance (AUC, 0.89 (95% CI: 0.802–0.977)) 

and showed good calibration.

Conclusions

This method effectively predicts the risk of hyperlipidemia in patients with T2D and 

provides a valuable tool for early intervention. PCSK9, as a key predictor, highlights its 
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potential role in the pathogenesis of diabetes with hyperlipidemia and offers new avenues 

for targeted therapy.

Introduction
Diabetes, particularly type 2 diabetes (T2D), is rapidly becoming a global health concern. An 
analysis of high-quality data from 138 countries predicted that the global prevalence of diabe-
tes will rise to 10.2% by 2030 and reach 10.9% by 2045 [1]. Among the elderly population aged 
65-99 years, the prevalence of diabetes is expected to climb to 19.3% by 2045 [2].

Owing to factors such as insulin resistance, chronic hyperglycemia, and abnormal lipid 
metabolism, patients with T2D are particularly prone to developing hyperlipidemia [3]. Insu-
lin resistance is closely linked to elevated triglyceride (TG) levels and reduced high-density 
lipoprotein cholesterol (HDL-C) levels [4]. In developing countries such as Jordan, 91.4% of 
T2D patients exhibit hyperlipidemia, with the most common pattern being low HDL-C and 
high LDL-C [5]. Studies conducted in India have shown that mixed hyperlipidemia is most 
prevalent among T2D patients, particularly those with a higher atherogenic plasma index [6]. 
Insulin resistance not only contributes to hyperlipidemia in diabetic patients but also increases 
the risk of cardiovascular diseases [7].

Despite the availability of various treatment options, including lifestyle interventions 
and pharmacotherapy that can effectively manage both diabetes and hyperlipidemia, these 
conditions are often addressed only after the development of hyperlipidemia in patients with 
diabetes [8]. This is largely due to the common practice of treating diabetes and hyperlipid-
emia separately rather than considering their coexistence and combined impact [9]. Conse-
quently, treatment of diabetic with hyperlipidemia often begins only after its onset, limiting 
the effectiveness of interventions and increasing the risk of long-term complications. The 2018 
ACC/AHA guidelines recommend moderate-intensity statin therapy for diabetic patients 
aged 40–75 years, with high-intensity statin therapy for high-risk patients or those with estab-
lished atherosclerotic cardiovascular disease, aiming to keep LDL-C < 70 mg/dL; ezetimibe 
or a PCSK9 inhibitor may be added if this target is not reached [10]. This also suggests that 
preventive treatment of hyperlipidemia in diabetic patients is necessary in the early stages of 
the disease.

Currently, there is no reliable method to predict which T2D patients are at a risk of devel-
oping hyperlipidemia. Existing risk assessment tools primarily rely on established metabolic 
disorders rather than on predicting the potential risk of hyperlipidemia [11]. While certain 
gene polymorphisms have been associated with an increased risk of hyperlipidemia in patients 
with diabetes, the predictive capability and practical application of these genetic markers still 
require further validation [12]. Traditional risk factors, such as age, duration of diabetes, and 
obesity, although providing some insights, are insufficient to accurately predict the occurrence 
of hyperlipidemia in patients [13]. This highlights a significant gap in the current under-
standing and management of diabetes with hyperlipidemia, emphasizing the need for more 
advanced predictive tools and biomarkers to identify high-risk individuals before the onset of 
hyperlipidemia.

In recent years, researchers have begun to explore the role of Proprotein Convertase Sub-
tilisin/Kexin Type 9 (PCSK9) in the development of diabetes with hyperlipidemia. PCSK9 is a 
protein that regulates the blood concentrations of low-density lipoprotein (LDL) cholesterol 
by facilitating the degradation of LDL receptors [14]. PCSK9 levels are significantly higher 
in T2D patients than in the general population, and these elevated levels are associated with 
poorer metabolic parameters (such as total cholesterol, LDL cholesterol, and triglycerides) and 
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an increased cardiovascular risk [15]. These findings suggest that PCSK9 is essential in the 
pathogenesis of diabetes with hyperlipidemia and could serve as a target for early intervention 
[16]. Understanding the role of PCSK9 in this context could open new avenues for predicting 
and preventing hyperlipidemia in T2D patients, thereby improving clinical outcomes and 
reducing cardiovascular risk.

This study aimed to combine clinical and laboratory indicators with PCSK9 to develop a 
predictive model for clinical application, specifically to identify the early clinical risk factors 
for the development of hyperlipidemia in T2D patients. Using this model, the risk of early 
hyperlipidemia in patients with T2D can be identified, thereby providing a basis for early 
intervention and treatment.

Materials and methods

The study population
Patients with Type 2 diabetes (T2D) were collected from August 1, 2022, to February 1, 2024. 
The study population consisted of village-level community health residents from Yuhuan City 
and patients diagnosed with T2D at Yuhuan People’s Hospital, all of whom adhered to the 
established inclusion and exclusion criteria.
Inclusion Criteria: 1.Patients diagnosed with T2D should be based on at least one of the fol-
lowing criteria: Fasting plasma glucose (FPG) ≥ 7.0 mmol/L; Random plasma glucose (RPG) 
≥ 11.1 mmol/L with symptoms of diabetes; 2-hour plasma glucose ≥ 11.1 mmol/L during 
an oral glucose tolerance test (OGTT); Hemoglobin A1c (HbA1c) ≥ 6.5%. 2.Patients were 
required to have had a stable course of treatment without any major changes. 3.Patients were 
required to have a diabetes duration of at least 6 months. 4.The patients’ Body Mass Index 
(BMI) should be between 18.5 and 35 kg/m2.
Exclusion Criteria: 1.Patients diagnosed with hyperlipidemia, including but not limited to 
the following conditions: Low-Density Lipoprotein Cholesterol (LDL-C) ≥  4.1 mmol/L; Total 
Cholesterol (TC) ≥  6.2 mmol/L; Triglyceride (TG) ≥  2.3 mmol/L. 2. Age < 18 years or > 80 
years. 3. Type 1 diabetes mellitus patients. 4. Patients currently receiving statin therapy or other 
lipid-lowering medications. 5. Patients with severe liver or kidney dysfunction. 6. Patients with 
severe diabetic complications. 7. Patients with cardiovascular diseases. 8. Patients with con-
firmed severe cardiovascular disease. 9. History of malignancy or other major disease.

Collection of clinical data
T2D patients undergo physical examinations every six months. If they met the criteria for 
hyperlipidemia, clinical data from the previous examination were collected through the 
electronic medical record system (HIS) of Yuhuan People’s Hospital. Data collection for this 
study spanned from August 1, 2022, to August 1, 2024. The demographic and disease-related 
information included sex, age, smoking history, and comorbidities. Laboratory test results 
were as follows: Lp(a), TG, TC, LDL-C, HDL-C, ApoB/ApoA1, FBG, HbA1c, hs-CRP, serum 
creatinine, serum uric acid, WBC, hemoglobin, serum albumin, ALT, AST, PCSK9, and dis-
ease duration. Patients were divided into a T2D group, a T2D with hyperlipidemia group, and 
a healthy control group.

PCSK9 test
Whole blood from all subjects was placed in vacuum coagulation vessels, centrifuged at 1000 
×  g for 20 min, and serum was separated and stored at −80°C for later use. Serum PCSK9 con-
tent was determined using the human proprotein convertase subtilisin/kexin type 9 (PCSK9) 
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enzyme-linked immunosorbent assay kit (JONLN Biotech, China). Absorbance values were 
measured using a Molecular Devices microplate reader. A standard curve was plotted to calcu-
late sample concentration. The ratio of sample concentration to the maximum value in the 
linear range of the standard curve was used for subsequent statistical analyses.

Ethical statement
The study protocol was approved by the Ethics Committee of Yuhuan People’s Hospital, and 
informed consent was obtained from all patients. All the procedures were conducted in accor-
dance with the principles of the Declaration of Helsinki.

Statistical analysis
Data analysis was performed using R statistical software (version R4.4.0). Continuous vari-
ables are presented as mean ±  standard deviation (x ± s) or median (P25, P75), depending 
on the normality of their distribution. For normally distributed data across the three groups, 
ANOVA was employed. The Kruskal-Wallis test was used to compare non-normally distrib-
uted data among the three groups. For comparisons between two groups with non-normal 
distributions, the Mann-Whitney U test was applied. Independent-sample t-tests were 
used for normally distributed data. Categorical and ordinal data were expressed as counts, 
percentages, or ratios, and group comparisons were conducted using the chi-square test. The 
“dplyr” and “corrplot” packages in R were used to create correlation matrices for clinical and 
laboratory indicators. The LASSO regression method from the “glmnet” package was used to 
select features influencing the STR. A nomogram model and calibration curves were con-
structed using the “rms” package, and the receiver operating characteristic (ROC) curve was 
plotted using the “pROC” package. Before conducting the LASSO regression analysis, the 
T2D and T2D with hyperlipidemia groups were randomly divided into training (70%) and 
test (30%) sets.

Results

Clinical characteristics and laboratory characteristics
Fig 1 shows the flowchart of the study. The study included 105 healthy individuals, 80 T2D 
patients, and 84 patients with both T2D and hyperlipidemia. Compared with the healthy 
group, the BMI and hypertension rates were significantly higher in the diabetes and diabetes 
with hyperlipidemia groups, although no notable differences were found in age and gender 
(Table1 in S1 Table). The BMI of the diabetes with hyperlipidemia group was significantly 
higher than that of the diabetes group (Table 1). When the three groups were compared, 
significant differences were found in Lp(a), TG, TC, HDLC, LDL-C, ApoB/ApoA1, FBG, 
HbA1c, hs-CRP, serum creatinine, WBC, hemoglobin, ALT, and PCSK9 levels (Table1 in S1 
Table). Compared with the T2D group, the T2D with hyperlipidemia group had significantly 
higher levels of TG, TC, LDL-C, ApoB/ ApoA1, FBG, HbA1c, hs-CRP, and PCSK9 (Fig 2A). 
No significant differences were found between the two cohorts in terms of Lp(a), HDLC, 
serum creatinine, serum uric acid, WBC, hemoglobin, serum albumin, ALT, AST, and disease 
duration (Table 1). Correlation matrix analysis was conducted for the clinical and labora-
tory parameters listed in Table 1. The numbers in the figure represent r-values with p-values 
indicated by asterisks. The correlation matrix revealed that in the T2D group, PCSK9 was 
positively correlated with TC, HDLC, and LDL-C and negatively correlated with WBC. In the 
T2D with hyperlipidemia group, PCSK9 exhibited a positive correlation with TC and disease 
duration, while demonstrating a negative correlation with hemoglobin (Fig 2B-C).
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Risk factors for the development of hyperlipidemia in T2D patients
LASSO regression analysis was used to reduce the dimensionality of the 9 statistically signifi-
cant factors (BMI, TG, TC, LDL-C, ApoB/ApoA1, FBG, HbA1c, hs-CRP, PCSK9) (Fig 3A-B). 
The optimal λ (best λ: 0.0398) value was determined by 10-fold cross-validation to minimize 
the cross-validation error, which helped further select the variables associated with diabe-
tes combined with hyperlipidemia. Six variables with nonzero regression coefficients were 

Fig 1.  Study Flowchart. The diagram illustrates the methodology and participant selection criteria employed in the research.

https://doi.org/10.1371/journal.pone.0315781.g001

https://doi.org/10.1371/journal.pone.0315781.g001
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Table 1.  Demographic and Clinical Characteristics of Patients.

Variable Healthy Control n = 105 T2D n = 80 T2D with Dyslipidemia n = 84 P_value
Age 51 (40,61) 51 (45,59) 51 (45,58) 0.847
Gender 63 (60%) 51 (63.75%) 54 (64.29%) 1.000
BMI 23.5 (21.8,25.3) 23.8 (22.4,25.7) 24.9 (23.1,26.9) 0.018
Hypertension 11 (10.48%) 27 (33.75%) 31 (36.9%) 0.796
Smoking 30 (28.57%) 25 (31.25%) 26 (30.95%) 1.000
Lpa 94 (56,167) 132.5 (68.25,288.25) 134 (70,274) 0.993
TG 0.93 (0.77,1.16) 1.08 (0.81,1.34) 1.58 (0.93,2.16) 0.001
TC 4.46 (4.06,4.79) 4.22 (3.65,4.70) 5.30 (4.76,5.81) 0.001
HDLC 1.32 (1.14,1.44) 1.12 (0.97,1.34) 1.19 (1.03,1.29) 0.440
LDLC 2.84 (2.55,3.11) 2.79 (2.36,3.2) 3.54 (3.16,3.96) 0.001
ApoBA1 0.62 ± 0.16 0.72 ± 0.2 0.96 ± 0.24 0.001
FBG 4.94 (4.65,5.18) 6.85 (6.02,9.14) 9.14 (7.56,11.29) 0.001
HbA1c 5.5 (5.3,5.8) 8.3 (7.0,10.5) 10.3 (9.0,11.9) 0.001
hsCRP 0.7 (0.4,1.5) 0.8 (0.48,1.4) 1.3 (0.9,2.2) 0.001
Serum creatinine 69 (56,78) 59.5 (49,70) 60.5 (51,69.25) 0.878
Serum uric acid 318.55 ± 70.87 328.94 ± 78.55 317.04 ± 89.18 0.365
WBC 5.2 (4.2,5.9) 5.7 (4.97,7.1) 5.8 (5.07,6.8) 0.917
Hemoglobin 141 (128,148) 146 (133, 156) 146 (135,158) 0.753
Serum albumin 43.6 (42.1,45.1) 42.3 (39.6, 45.2) 42.2 (38.7,45.0) 0.613
ALT 16 (12,22) 21 (17,32) 26 (17.75,33) 0.257
AST 21 (18,25) 21 (16.75,25.25) 21 (16.75,28) 0.550
PCSK9 4.86 (4.28,5.59) 4.81 (4.28,5.16) 5.61 (4.73,6.49) 0.001
Duration of disease 48 (15,97.25) 29.5 (12,111.75) 0.642

BMI, Body Mass Index; TG, Triglycerides; TC, Total Cholesterol; FBG, Fibrinogen; ALT, Alanine Aminotransferase; AST, Aspartate Transaminase; PCSK9, Proprotein 
Convertase Subtilisin/Kexin Type 9. P-value: Comparison between the T2D group and the T2D with hyperlipidemia group.

https://doi.org/10.1371/journal.pone.0315781.t001

Fig 2.  Laboratory Results and Correlation Analysis. (A) Scatter and box plots illustrate the levels of PCSK9 in different groups. (B) Correlation matrix for clinical 
and laboratory indices in T2D group. (C) Correlation matrix for the T2D with hyperlipidemia group. * P < 0.05, ***P < 0.001.

https://doi.org/10.1371/journal.pone.0315781.g002

https://doi.org/10.1371/journal.pone.0315781.t001
https://doi.org/10.1371/journal.pone.0315781.g002
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identified: BMI, TG, TC, LDL-C, HbA1c, and PCSK9. These six variables were found to be 
predictors of diabetes and hyperlipidemia.

Nomogram model construction
Multivariate logistic regression analysis was conducted based on the factors identified by 
LASSO regression (Table 2). Using the “rms” package in R, a prototype nomogram for 
predicting the occurrence of hyperlipidemia in T2D patients. The total score is computed by 
summation of the scores from the six indicators presented in Table 2. The risk of hyperlipid-
emia in diabetic patients is represented by the vertical line from the total score to the horizon-
tal axis labeled “Risk of Hyperlipidemia in Diabetic Patients” (Fig 4B).

Sensitivity analysis of the nomogram
Considering the interactions between indicators, a sensitivity analysis was conducted by 
removing each of the five indicators (BMI, TG, TC, LDL-C, HbA1c, and PCSK9) individually. 
The results showed that the AUC 95% confidence interval (CI) for each removal was worse 
than that for all the indicators combined (Fig 4A). Therefore, BMI, TG, TC, LDL-C, HbA1c, 
and PCSK9 were selected to construct the nomogram model (Fig 4B), which had an AUC 
under 0.89 (95% CI 0.802–0.977) (Fig 5A). The internal calibration plot, drawn using boot-
strapping, showed that the risk-fit curve of the nomogram closely matched the ideal curve, 
indicating a good calibration of the nomogram (Fig 5B).

Clinical applicability analysis of the nomogram model
A clinical decision curve was constructed using nomogram prediction probability as the test 
variable and T2D with hyperlipidemia as the status variable. When the predicted probability 

Fig 3.  LASSO regression analysis of risk factors. (A) Coefficient paths for selected variables. (B) Cross-validation for optimal λ selection.

https://doi.org/10.1371/journal.pone.0315781.g003

https://doi.org/10.1371/journal.pone.0315781.g003
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of T2D with hyperlipidemia exceeds 0.06, the net benefit of applying the nomogram is higher 
than that of the “Treat None” and “Treat All” strategies, indicating that the nomogram has 
good clinical applicability (Fig 6).

Discussion
T2D is a chronic metabolic disorder that is often accompanied by a range of complications, 
with hyperlipidemia being among the most common [17]. The prevalence of hyperlipidemia is 
significantly higher in patients with T2D than in the general population [18]. This condition is 
characterized by elevated levels of TG, TC, HDL-C, and LDL-C, which contribute to increased 
cardiovascular risk in patients with T2D [19]. Identifying and understanding the risk factors 
leading to hyperlipidemia in T2D patients is crucial for improving patient outcomes and guid-
ing therapeutic interventions.

Table 2.  The variables identified by LASSO regression.

Variable Beta SE Wald Statistic P-value OR 95% CI Lower 95% CI Upper
TG 0.423 0.409 1.035 0.301 1.527 0.688 3.474
TC 0.680 0.307 2.215 0.027 1.974 1.103 3.735
LDL-C 0.935 0.460 2.033 0.042 2.547 1.062 6.566
HbA1c 0.111 0.079 1.400 0.161 1.117 0.957 1.309
ApoB/ApoA1 0.240 0.993 0.242 0.809 1.272 0.186 9.531
PCSK9 0.384 0.186 2.070 0.038 1.469 1.033 2.154
BMI 0.038 0.048 0.786 0.432 1.039 0.945 1.143

SE, Standard Error; OR, Odds Ratio; CI, Confidence Interval.

https://doi.org/10.1371/journal.pone.0315781.t002

Fig 4.  Sensitivity Analysis of the Nomogram. (A) Sensitivity analysis of model performance on the Area Under the Curve (AUC) with 95% Confidence Interval 
(CI). (B) BMI, TG, TC, LDL-C, HbA1c, and PCSK9 were selected to construct the nomogram model.

https://doi.org/10.1371/journal.pone.0315781.g004

https://doi.org/10.1371/journal.pone.0315781.t002
https://doi.org/10.1371/journal.pone.0315781.g004
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Currently, few predictive models are available to assess the risk of hyperlipidemia and its 
associated cardiovascular risk in T2D patients. These models typically combine clinical and 
biochemical parameters to estimate the likelihood of developing hyperlipidemia [20]. Tradi-
tional models often include factors such as age, gender, BMI, duration of diabetes, and  
glycemic control, as measured by HbA1c [21]. Machine learning methods, such as LASSO 
regression, have also been applied in clinical settings due to their advantages in model 
construction [22]. More advanced models have begun to incorporate genetic and molecular 
markers, acknowledging the complex interactions between genetics, metabolism, and lipid 
disorders [23,24]. However, despite these advancements, there remains a need for more 
precise and personalized models to accurately predict the risk of hyperlipidemia in the T2D 
population. The complexity of lipid metabolism and its regulation suggest that multifactorial 
models incorporating a broader range of clinical, biochemical, and molecular factors may 
offer improved predictive accuracy [25,26].

In this study, T2D patients were divided into two cohorts based on whether they devel-
oped hyperlipidemia after six months, and their clinical data and laboratory indicators were 
compared. Statistical analysis revealed significant differences between the two groups in BMI, 
TG, TC, LDL-C, ApoB/ApoA1, FGB, HbA1c, hs-CRP, and PCSK9 levels. LASSO regression 
analysis was used to screen for risk factors, leading to the construction of a nomogram model 
based on BMI, TG, TC, LDL-C, HbA1c, and PCSK9. This model demonstrated good pre-
dictive performance and clinical applicability, aiding in the early identification of the risk of 
hyperlipidemia in T2D patients.

PCSK9 is an emerging player in the field of lipid metabolism and is gaining attention for its 
critical role in regulating LDL-C levels [27]. PCSK9 directly influences the production of apolipo-
protein B (apoB), which is crucial for the formation of triglyceride-rich lipoproteins such as very 

Fig 5.  ROC Curves of the Nomogram. (A) ROC curve showing the nomogram’s predictive accuracy (AUC =  0.89, 95% CI: 0.802–0.977). (B) Calibration plot 
indicating good agreement between predicted and actual probabilities.

https://doi.org/10.1371/journal.pone.0315781.g005

https://doi.org/10.1371/journal.pone.0315781.g005
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low-density lipoprotein (VLDL) and intermediate-density lipoprotein (IDL) [28]. Modulation 
of PCSK9 activity can improve lipid and glucose metabolism [29]. Previous studies have shown 
that PCSK9 concentrations are not only closely associated with LDL-C levels but also serve as a 
predictor of cardiovascular events in diabetic patients [30]. In this study, PCSK9 is identified as a 
valuable biomarker for predicting the risk of hyperlipidemia in T2D patients, consistent with pre-
vious findings. T2D patients with higher levels of PCSK9 in their blood are more likely to develop 
hyperlipidemia. The PCSK9 inhibitor evolocumab has been shown to significantly reduce LDL-C 
and other lipid markers, providing substantial therapeutic benefits for T2D patients with hyper-
lipidemia [31]. Furthermore, in T2D patients with hypercholesterolemia, PCSK9 levels may not 
be affected by ezetimibe or its combination with statins [32]. Therefore, PCSK9 may play a critical 
role in lipid management in T2D patients, particularly when traditional lipid-lowering therapies, 
such as statins, are ineffective or not well-tolerated [33]. However, studies suggest that in patients 

Fig 6.  Decision Curve Analysis. Decision curve analysis of the nomogram, showing net benefit at varying threshold probabilities.

https://doi.org/10.1371/journal.pone.0315781.g006

https://doi.org/10.1371/journal.pone.0315781.g006
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with poorly controlled T2D, PCSK9 does not significantly affect the catabolism of LDL-apoB100 
[34]. Another study found no significant association between plasma PCSK9 levels and the 
incidence of new-onset diabetes [35]. Thus, controlling plasma PCSK9 levels in T2D patients may 
reduce the risk of hyperlipidemia and consequently lower cardiovascular risk.

Elevated TG levels are particularly common in T2D patients and are closely associated with 
insulin resistance and poor glycemic control [36,37]. TG-rich lipoproteins contribute to the 
formation of small, dense LDL particles, which are more atherogenic and increase cardiovas-
cular risk [38]. TC and LDL-C are also key factors in the development of hyperlipidemia in 
T2D patients [39]. Elevated LDL-C is of particular concern because of its direct role in ath-
erosclerosis [40]. In T2D patients, LDL particles tend to be smaller and denser, making them 
more likely to penetrate the arterial walls and promote plaque formation [41]. Therefore, 
controlling LDL-C levels is the primary target for the treatment of diabetes with hyperlipid-
emia. BMI is a well-known risk factor for hyperlipidemia [42]. In T2D patients, a higher BMI 
is often associated with insulin resistance, which exacerbates lipid abnormalities [43]. HbA1c, 
a marker of long-term glycemic control, is closely related with hyperlipidemia [44]. Poor 
glycemic control leads to the glycation of lipoproteins, altering their function and increasing 
atherogenic potential [45]. Additionally, elevated HbA1c levels are associated with increased 
TG and decreased HDL-C levels, further contributing to lipid imbalance in T2D [46].

In conclusion, the early identification and timely intervention of hyperlipidemia risk in T2D 
patients are crucial for improving cardiovascular health and reducing the incidence of associ-
ated complications and mortality. These measures will not only enhance patient quality of life 
but also alleviate the burden on healthcare systems. Despite the statistical significance of our 
findings, it is important to note that the small sample size may limit the reliability of the predic-
tive model for large-scale clinical practice. In future research, we plan to increase the sample size 
and conduct more in-depth investigations into potential clinical risk factors, along with compre-
hensive data analysis and validation, to identify the key factors associated with the occurrence 
of hyperlipidemia in T2D patients. Through these efforts, our goal is to continuously optimize 
and refine the existing predictive models to make them more accurate and comprehensive. This 
will not only improve the risk assessment of hyperlipidemia in T2D patients but also provide 
clinicians with more detailed and personalized diagnostic and therapeutic recommendations.
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