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Abstract

Financial portfolio management investment policies computed quantitatively by modern

portfolio theory techniques like the Markowitz model rely on a set of assumptions that are

not supported by data in high volatility markets such as the technological sector or crypto-

currencies. Hence, quantitative researchers are looking for alternative models to tackle

this problem. Concretely, portfolio management (PM) is a problem that has been success-

fully addressed recently by Deep Reinforcement Learning (DRL) approaches. In particu-

lar, DRL algorithms train an agent by estimating the distribution of the expected reward of

every action performed by an agent given any financial state in a simulator, also called

gymnasium. However, these methods rely on Deep Neural Networks model to represent

such a distribution, that although they are universal approximator models, capable of rep-

resenting this distribution over time, they cannot explain its behaviour, given by a set of

parameters that are not interpretable. Critically, financial investors policies require predic-

tions to be interpretable, to assess whether they follow a reasonable behaviour, so DRL

agents are not suited to follow a particular policy or explain their actions. In this work,

driven by the motivation of making DRL explainable, we developed a novel Explainable

DRL (XDRL) approach for PM, integrating the Proximal Policy Optimization (PPO) DRL

algorithm with the model agnostic explainable machine learning techniques of feature

importance, SHAP and LIME to enhance transparency in prediction time. By executing our

methodology, we can interpret in prediction time the actions of the agent to assess

whether they follow the requisites of an investment policy or to assess the risk of following

the agent’s suggestions. We empirically illustrate it by successfully identifying key features

influencing investment decisions, which demonstrate the ability to explain the agent

actions in prediction time. We propose the first explainable post hoc PM financial policy of

a DRL agent.
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Introduction

The application of Deep Reinforcement Learning (DRL) [1] to portfolio management (PM)

has gained popularity in recent years [2] as an alternative method to the less realistic modern

portfolio theory techniques such as the Markowitz model [3, 4], whose assumptions often fail

to hold true in high-volatility markets such as the technological sector or cryptocurrencies [5].

Concretely, DRL algorithms train agents to maximize expected returns by learning optimal

actions through interaction with a simulated environment [6], also known as gymnasium [7].

These agents use Deep Neural Networks models (DNNs) [8] to approximate the distribution

of expected rewards for different actions in varying financial states. Despite their capability as

universal function approximators [9], DNNs lack interpretability [10]. This means a challenge

in financial contexts, where decision-making transparency and interpretability is crucial for

investors to trust and adopt automated strategies [11].

The need for explainability in financial decision-making drives the development of Explain-

able Artificial Intelligence (XAI) techniques [12–14], whose incorporation in the context of

DRL enhance the high performance of DRL agents. But, as we will show in section 2 (state of

the art), despite the growing literature that analyzes the application of DRL to PM, the litera-

ture on the explainability of DRL algorithms applied to PM is very scarce and underdeveloped,

with only four recent studies [15–18], to the best of our knowledge. Moreover, these four pub-

lished DRL explainability methods in PM, only offer explanations of the model in training

time, not being able to monitor the predictions done by the agent in the trading time.

Driven by this motivation, and to respond to this research gap in the literature, in our

work, we introduce a novel Explainable Deep Reinforcement Learning (XDRL) framework for

PM. Concretely, our approach combines the popular Proximal Policy Optimization (PPO)

algorithm [19], a state-of-the-art DRL technique, with model-agnostic XAI methods such as

feature importance [20], SHAP (SHapley Additive exPlanations) [21], and LIME (Local Inter-

pretable Model-agnostic Explanations) [22]. The three explainability techniques can be imple-

mented independently or jointly, being able to explain the DRL agent predictions in trading

time, being able to track throughout the time whether the policy is acting as it is expected or

not, what is an advantage with respect to the rest of four published DRL explainability methods

just mentioned. Our working hypothesis is that the predictions of DRL agents can be explained

in a post-hoc fashion, offering an interpretation that can be tested with respect to financial

investment policies.

This work contributes to the underdeveloped literature on the applications of XDRL mod-

els in the realm of PM in two ways: We add to this emerging literature of only four previous

studies but with promising results. Our research novelty entails, to the best of our knowledge,

the first-ever application of an explainable post-hoc portfolio management policy of a DRL

agent. Our paper has also important implications in the real financial sector, where there is a

need to make models explainable so that investors and other stakeholders can see why certain

investment decisions are made. Thus, our proposed methodology also helps practitioners

(whether they are individual investors, financial experts, institutional investors, policymakers

and other stakeholders).

The rest of the paper is organised as follows. First, we begin with a state-of-the-art section.

Afterwards, in a methodology section we explain the fundamental details of DRL applied to

financial PM, the PPO algorithm and the explainability techniques that are going to be used to

explain the agents’ predictions. Then, in an experiments section we provide empirical evidence

about the usefulness of our approach that supports our claim that DRL predictions can be

explained and hence compared with a particular financial policy. Finally, we illustrate conclu-

sions and further research lines.
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State of the art

The application of DRL in financial PM is gaining popularity in the recent years, mainly due

to the rise of computing power and architectures that enables a reasonable estimation of the

rewards distribution of the actions with respect to the states given by the training process of

the agents with respect to financial data [23]. But the literature on the explainability of DRL

algorithms applied to PM is very scarce and underdeveloped, with only four recent studies

[15–18], to the best of our knowledge. In this section, we show a detailed state-of-the-art of

DRL and XDRL applied to financial PM to show the research gap in the literature to which

our work responds.

Multiple DRL algorithms have been proposed recently, which has motivated their applica-

tion in our area of interest. Liu et al. [24] classify the state-of-art DRL algorithms into three cate-

gories: 1) value-based algorithms: those based on Deep Q-Networks (DQN) [25]; 2) policy-

based algorithms: directly update the parameters of a policy through policy gradient (PG) [26];

and 3) Actor-Critic based algorithms, such as Advantage Actor Critic (A2C) [25], Proximal Pol-

icy Optimization (PPO) [19], Deep Deterministic Policy Gradient (DDPG) [27], Soft Actor-

Critic (SAC) [28], or Twin Delayed Deep Deterministic Policy Gradient (TD3) [29]. And all of

them have been used to maximize portfolio returns while minimizing risk; for example, [30]

apply DDPG for stock trading; [31] apply DQN, DDPG, PPO, A2C, TD3, SAC for automated

stock trading in quantitative finance; [24] implement PPO, A2C, DDPG and TD3 for PM.

Liang et al. [32] have applied successfully to financial PM three state-of-the-art popular DRL

algorithms that can deal with continuous valued actions, namely PPO, DDPG and PG. Specifi-

cally, the authors conducted comprehensive experiments on the China stock market, examining

various settings, including learning rates, objective functions, and feature combinations, to

derive insights for parameter tuning, feature selection, and data preparation. Additionally,

driven by the usefulness of DRL in high volatility markets, some authors have applied this meth-

odology in cryptocurrency PM [24, 32–35]. Zhang et al. [36] apply DRL to trade futures con-

tracts and various authors implement hedging strategies with DRL (deep hedging) [37–39].

More concretely, Pham et al. [40] focus on multi-agent DRL to automatically construct hedging

strategies. And other authors also apply multi-agent DRL in portfolio management [41–43].

[44] propose a cost-sensitive portfolio selection with DRL, being, thus, the first authors to incor-

porate transaction costs. While all these DRL approches for PM only consider price changes of

assets, but without considering the relation between companies, [45] propose a new DRL frame-

work for PM based on GCN (Graph Convolutional Network) to take into account the relational

features of the portfolio (relations between assets and their corresponding companies). [46]

incorporate ensemble techniques and fuzzy extension in addition to existing DRL algorithms

and use them for PM. [47] propose a novel DRL approach for portfolio optimization that com-

bines the MPT and a DL approach (specifically, they solve the multimodal problem on a dataset

of 28 USA stocks through the Tucker decomposition of a model with the input of technical

analysis and stock return covariates). Some authors incorporate sentiment analysis in DRL to

also perceive market sentiment in portfolio allocation [48–51]. Hambly et al. [23] provide a

review of the recent developments and use of RL and DRL in finance, including PM.

But despite the growing literature that analyzes the application of DRL to PM (as we have

just reviewed above), the literature on the explainability of DRL algorithms applied to PM is

very scarce and underdeveloped, with only four recent studies [15–18], to the best of our

knowledge. Guan and Liu (2021) [17] provide an empirical approach of explainable DRL for

the PM task in response to the challenge of understanding a DRL-based trading strategy

because of the black-box nature of deep neural networks. Specifically, they use a linear layer in

hindsight as the reference model and they find the relationship between the reward (the

PLOS ONE XDRL for financial portfolio management

PLOS ONE | https://doi.org/10.1371/journal.pone.0315528 January 16, 2025 3 / 19

https://doi.org/10.1371/journal.pone.0315528


portfolio return) and the input (the features) by using integrated gradients. Since the linear

model (a regression) is interpretable given that the coefficients are interpretable, then the meth-

odology is interpretable. The neural network’s capacity as a universal approximator dramati-

cally exceeds that of regression. However, they use a neural network and then make a kind of

compensation between the network and the coefficients to see how the linear regression

“approximates” the network. If it approximates well, then you can trust of the coefficients. But

you lose explainability if the approximation is poor. Additionally, as they are using linear inter-

pretation, correlations may not explain complex patterns. Moreover, their approach differs

from ours since it is an explainability approach dependent on the model, while ours is agnostic

of the model, it is a post-hoc one. Bougie and Ichise (2020) [16] present a method to combine

external knowledge and interpretable reinforcement learning in PM. They derive a rule-based

variant version of the Sarsa algorithm ([6], p.140), that is, a neurosymbolic. This way, you can

thus add a priori rules and data augmentation to “explain” your policy, since you are “injecting”

it a priori. It is not a post-hoc approach like ours but rather an a priori one. While we explain

the agent’s predictions, they inject the agent with a policy in the form of rules before training.

In fact, as we state in section 5 (Conclusions and further research) a line of future work could

be to hybridize their approach with ours and see how training modifies the rules injected a pri-

ori. Shi et al. (2021) [18] add explainability to their DRL methods in PM through this approach:

they use a temporal neural network to extract significant features that explain the patterns as a

function of time, that is, a model that manages time, compared to our CNN. Then they apply a

regularization technique to simplify them and finally, to explain them, they use class activation

mapping (CAM), a way to explain the features of the neural network that they have used in the

model, not in prediction time, like our proposed approach. Thus, they explain the model, that

is, the policy trained during the training period, but we explain the predictions of the model

during trading time. Wang et al. (2019) [15] offer an interpretable DRL investment strategy

using interpretable deep attention networks. A ranking of features is obtained through two neu-

ral networks that seem to explain the training time data in the best possible way and subse-

quently a sensitivity analysis is performed to determine the best ones. Their interpretation

analysis results reveal that their strategy selects assets by following a principle as “selecting the

stocks as winners with high long-term growth, low volatility, high intrinsic value, and being

undervalued recently”. Once again, this approach differs from ours since it is useful for explana-

tory purposes, while we make explanations of predictions, for predictive purposes.

Thus, to the best of our knowledge, our study is the first to propose an explainable post hoc

PM financial policy of a DRL agent.

Methodology

We now introduce the methodological details of our proposed approach to post-hoc explain-

able deep reinforcement learning applied to financial portfolio management. First, we will

explain the fundamentals of deep reinforcement learning applied to finance, then, we will illus-

trate the explainable artificial techniques that we have chosen and, finally, we will show how

we can integrate those techniques into the deep reinforcement learning method to explain the

predictions of the agent.

Fundamentals of Deep Reinforcement Learning applied to financial

portfolio management

We will first introduce objections to our methodology for portfolio management and argu-

ments that answer to those objections. Then, we will describe the fundamentals of deep rein-

forcement learning and how we can apply these algorithms to financial portfolio management.
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Although DRL has potential for portfolio management due to its competence in capturing

nonlinear features, low prior assumptions, and high similarities with human investing, there

are characteristics worth paying attention to as pointed out by Liang et al. [32]: First, a finan-

cial market is both highly volatile and non-stationary, totally different to games or robot con-

trol [52, 53] which are the main sectors where DRL has been experimented. Second,

traditional Reinforcement Learning (RL) aims to maximize rewards over an infinite period,

while portfolio management focuses on maximizing returns within a finite time. Third, in

finance, it’s crucial to test strategies on separate data sets to evaluate their performance, unlike

in games or robotics. Lastly, the stock market has an explicit expression for portfolio value;

therefore, approximating the value function is useless and can even deteriorate the agent´s

performance.

However, deep neural networks are able to approximate any function given enough data

and a particular architecture of the network, being universal approximator functions.

Regarding maximizing returns within a finite time, we can tune the DRL algorithm via the

γ hyperparameter to consider high future rewards. Concretely, γ 2 [0, 1] controls the focus

of the agent in immediate or far rewards as a function of time where a value near to one

focus on maximizing returns on a long time period, being γ the same as a discount rate for

all DRL algorithms. Next, we can assume that an immediate future behaviour of the stock

market is explained technically and by past information, being also DRL suited in this sce-

nario. The agent can be retrained in a constant fashion after its predictions happen in the

real-time scenario with the new information. Lastly, although Markowitz model assumes

that portfolios are only a function of expected reward and risk, if those assumptions, like

normal distributed returns, are not met, then, the function explaining the optimal portfolio

is a black-box of an enormous set of features like technical indicators, fundamental ratios

or social networks, that DRL algorithms can handle due to neural scaling laws. In this

work, we assume that the market can be perfectly explained by technical data, focusing

hence only in this kind of data. However, any source of data can also be integrated into the

space state of the agent, even multimodal data, so this assumption is not an issue in real-

case scenarios. To sum up, we consider that DRL can be successfully applied to the finan-

cial portfolio management problem, and now explain the fundamental concepts of this

methodology.

DRL is a class of methods that combines reinforcement learning algorithms [6, 23] with

deep neural network models [8] to tackle any complex decision-making task. In DRL, an

agent interacts with an environment defined by a state space S and an action space A. Criti-

cally, these spaces can be a bounded continuous domain, S 2 Rd and A 2 Rd where d is the

number of features that the agent perceives in each time step t, and not limited to discrete

spaces, as in reinforcement learning. In particular, deep reinforcement learning will encode

the policy π(at|st) learnt by trail and error with the environment in the training process in

the deep neural network that will map a distribution of states to actions S ! A, with the

purpose of selecting the action that maximizes an expected reward in a given time period by

a γ 2 [0, 1] hyperparameter. Concretely, at each discrete time step t, the agent observes a

state st 2 S and selects an action at 2 A based on the learnt policy π(at|st), that acts as the

conditional probability distribution of actions given states being estimated to maximize the

expected reward. The environment responds to the action by transitioning to a new state st+1

and providing a reward rt as an effect of making action at given state st. Following an iterative

process in a simulator, the agent can learn a policy π(at|st) by trail and error that may gener-

alize outside of the simulator if the assumptions made by the deep neural network model are

met by the prediction data.
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More formally, the purpose of the learning process is to learn a policy π that maximizes the

expected cumulative reward, which can be defined with a return function in every time step Rt:

Rt ¼
XK

k¼0

gkrtþk ; ð1Þ

where γ 2 [0, 1] is the previously mentioned discount factor that balances immediate and

future rewards and K is the end of the episode, or desired prediction period. Consequently,

once that we have estimated the policy that maximizes the expected return function Rt, that

can be personalized for any problem, we can define, for every time step and for every action

and state, a q-value function Q(s, a) that represents the complete distribution of the expected

return of taking any action a 2 A in any state s 2 S and following policy π(at|st) as:

Qpðs; aÞ ¼ Ep½Rtjst ¼ s; at ¼ a� ; ð2Þ

that is the probability distribution learnt by a DRL algorithm and approximated in the used

deep neural network Q(s, a|θ) by its set of parameters θ. We illustrate this framework in Fig 1.

One of these algorithms, used in our work as its popularity and being a lightweight version

of a more expensive algorithm, is Proximal Policy Optimization (PPO) [19], that aims to

update policies without making big changes at once to avoid outliers in the training process

that can make the estimation of the policy worse. This makes the learning process more stable.

This is achieved by creating a “trust region,” ensuring that new policies don’t deviate too much

from old ones. In order to do so, PPO introduces a clipped objective function (clipped proba-

bility ratios) that prevents the updating step from moving the new policy too far from the old

policy. This clipping mechanism modifies the policy optimization by clipping the probability

ratio between the new and old policies, keeping it within a specified range. By maximizing the

clipped objective, PPO finds a balance between trying new strategies (exploration) and sticking

with known good ones (exploitation).

Fig 1. Deep reinforcement learning main components that enable the estimation of the expected reward of any action of the action space of the agent

conditioned to any state perceived by the agent. The learnt policy function is encoded by a deep neural network, enabling continuous-valued actions and

spaces and any complexity of its mapping.

https://doi.org/10.1371/journal.pone.0315528.g001
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Explainable artificial intelligence techniques

As the purpose of our work is to enhance the DRL framework by integrating explainability of

financial features to make the decision-making process of the DRL model transparent and

understandable, we briefly describe in this section some of the techniques that we have inte-

grated in the DRL framework to make it interpretable for financial experts.

Human decision makers use predictions made by ML models in their process, but the

usability of those predictions is limited if the human is unable to justify and understand their

trust in said predictions. Explanation is a way of obtaining such understanding, by selecting

“what” must be communicated and “how” that information is presented. Moreover,according

to [54] XAI is necessary for regulatory issues, and thus, there is also a legal component to be

considered. The EU General Data Protection Regulation (GDPR) aims to ensure the ‘right to

explanation’ concerning automated decision-making models.

Interpretability also helps developers understand and improve the model performance. It

can aid in troubleshooting and debugging, as well as in detecting potential biases in the AI sys-

tem and provide insights into how the system would react under different circumstances. This

understanding can also provide insights that go beyond predictions, uncovering underlying

patterns and relationships within the data.

Vouros [55] provides a comprehensive review of state-of-the-art for explainable DRL meth-

ods, categorizing them in classes according to the paradigm they follow, the interpretable mod-

els they use, and the surface representation of explanations provided. In fact, it is the unique

existing literature review focusing on XDRL. In our work, we have used three explainability

techniques: the SHapley Additive exPlanations (SHAP) [56], the Local Interpretable Model-

agnostic Explanations (LIME) methodology [57], and feature importance methods.

The SHAP method offers a unified way to explain each instance´s predictions [56]. Imagine

you’re playing a team sport, and at the end, you want to know who contributed most to the

win. It’s not enough to say “everyone did their best”; you want specifics, like who scored the

most goals. SHAP does this for machine learning. It breaks down a prediction to show the

impact of each feature—like how a player’s actions affect the game’s outcome. Here is how

SHAP works in very simple terms: 1. Contribution: It looks at each feature (like a player in a

game) of the data the model uses and asks, “What’s the contribution of this feature to the final

prediction?”. 2. Fair Distribution: Then, SHAP uses a fair method for distributing the “credit”

of the outcome. It makes sure that the contributions of all features sum up to the total predic-

tion. This is like making sure that all the individual scores from players add up to the final

score of the game. 3. Individual Impact: SHAP values can tell you the impact of a single feature

on the prediction. For example, just as you might wonder how much scoring that one goal

early on helped the team win, SHAP can show how much changing one piece of data can

change the prediction. 4. Teamwork: It also considers how features affect the prediction when

they work together, kind of like how players might pass the ball to each other. 5. Comparisons:

It even lets you compare the importance of different features. Like after a match, you might

debate who the most valuable player was, based on their contributions.

LIME is a tool designed to explain the predictions of any classifier in a way that is under-

standable and accurate [57]. It works by learning a simplified model around the prediction,

using perturbations of uniformly sampled features. This allows for a better understanding of

the relationship between input features and model responses. The goal is to ensure local fidel-

ity, explaining how the model behaves around the specific instance being predicted. While

LIME was originally designed to inspect models using binary vectors, for instance representa-

tion, it also offers solutions for outcome explanation, as it highlights the importance of features

in a local context only. LIME is a universal method that enhances both local and global model
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interpretability. In the context of DRL, it can be used to explain any models, such as local deci-

sions for action selection based on interpretable state feature representation, even if it wasn’t

specifically designed for that task. Functions can provide binary vectors, for instance represen-

tation, while any interpretable model can theoretically be used for outcome explanation, like a

linear model or a decision tree. Visual means are used to provide surface representations of the

instance’s interpretable representations for model inspection, as well as explanation logic for

local and model explainability. Although Ludenberg et al. [56] showed that LIME is a subset of

SHAP and that SHAP outperformed LIME, LIME is still a useful tool, since it’s faster com-

pared to SHAP and thus, LIME can be practical in cases where efficiency is important.

Feature importance methods provide insights into which features are most influential in

the model’s overall decision-making process. By analyzing the importance of each feature, we

can understand how the model prioritizes different aspects of the input data when making pre-

dictions. This helps identify key drivers of the model’s behavior, enhancing transparency and

trust in the model’s decisions.

Integrating explainability in deep reinforcement learning financial

predictions

In this section we describe how we integrate the explainability techniques mentioned in the

previous subsection with the DRL methodology illustrated before. Concretely, our work builds

on the existing framework from the GitHub repository “Reinforcement learning in portfolio

management” https://github.com/deepcrypto/Reinforcement-learning-in-portfolio-

management-/tree/master?tab=readme-ov-file. The goal is to enhance this framework by inte-

grating explainability features to make the decision-making process of the DRL model trans-

parent and understandable.

Our starting point is the already developed PPO-based model in the framework, which has

demonstrated effectiveness in portfolio management tasks. The PPO algorithm is chosen for

its balance between exploration and exploitation, making it well-suited for dynamic and

unpredictable environments like financial markets.

We design a training phase consisting on financial data downloaded from Investing.com,

Wind and the Shinging-Midas Private Fund with OHCL (Open, High, Close, and Low) price

information about several tickers to build a portfolio in a certain period of time (for a detailed

description of data, see section of Experiments and Results). Once the agent is ready, after a

preprocessing phase to ensure the data is clean and ready for analysis. This involves normaliz-

ing values, handling missing data and structuring the data so that the model can work with it.

Then, the training phase starts on the financial market loaded, the agent interacts with the

environment, learns from the data, and refines its policy to improve decision-making.

To implement the explainability techniques in the already analyzed framework, we will use

post-hoc interpretability methods. This requires saving the state-action pairs for all steps dur-

ing the training process. These state-action pairs will be used later to create explainability mod-

els. To achieve our objective, we implement explainability techniques such as SHAP, LIME,

and feature important methods. These methods reveal which features and inputs are most

influential in the agent decision-making process, providing insights both at a global level and

for specific predictions, leading to an interpretable DRL model.

Experiments and results

In this section, we will describe the different experiments that we have performed to show the

usefulness of our explainable deep reinforcement learning methodology. For reproducibility

and transparency, we make fully accessible the specific dataset used, as well as the code (please
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see our Data and Code availability statement). The specific dataset used is included as S1 Data

(excel file) and both, the code and data of the paper are available at GitHub https://github.

com/aleedelarica/XDRL-for-finance.

Data description

The dataset used for training and evaluating our Deep Reinforcement Learning (DRL) agent

comes from Investing.com, Wind, and the Shinging-Midas Private Fund, covering the Ameri-

can stock market. We selected a basket of five American technological stocks with large trading

volumes to ensure that our trades do not affect the market: Apple (AAPL), Adobe (ADBE),

Alibaba (BABA), Sony (SNE) and Visa (V). The dataset spans a three-year period, with the

training phase running from 2015/01/01 to 2016/12/31 and the testing phase from 2017/01/01

to 2018/01/01. For each stock, the dataset includes daily Open, High, Low, and Close (OHLC)

price information. To ensure that our DRL agent is robust and able to generalize across differ-

ent stocks, we normalized the price data. Specifically, the opening, closing, high, and low prices

were divided by the closing price on the last day of the dataset. This normalization makes the

data comparable across various price ranges and ensures consistency in model training and

evaluation. Missing data, which typically occurs on weekends and holidays, was handled by

filling the missing values with the closing price from the previous trading day. On such days,

the trading volume was set to 0, indicating that the market was closed. This cleaned dataset is

included as S1 Data and provides the foundation for training the DRL agent to make portfolio

allocation decisions. The agent’s ability to allocate between different assets was tested on these

low-correlation or negatively correlated stocks to demonstrate its effectiveness in managing

diversified portfolios.

Experiments setup

For our portfolio management experiments we have considered the OHCL information of the

aforementioned five different technological assets, having a total of 20 features in the state

space of the agent. We have considered a PPO DRL algorithm to learn the weights of the deep

neural network with default hyperparameters and 100 epochs across all the financial data. Hav-

ing all that information and performing the training period of the neural network, we interpret

the predictions of the deep neural network in the trading period using feature importance,

SHAP and LIME methods as we will describe in the following subsections.

Feature importance analysis

We begin with experiments that show how the feature importance can be extracted for the pre-

dictions of the agent during the trading period. To do so, we configure a portfolio of several

technological assets and measure the importance of their OHCL features in the trading period,

information that we illustrate in Fig 2. We will then illustrate how can SHAP and LIME meth-

ods can offer interpretability and explainability of the actions performed by the agent in such a

scenario.

Apple (AAPL) as a key market indicator. As shown in Fig 2, Apple’s closing price consis-

tently emerged as the most critical feature in the agent’s decision-making process. This indi-

cates that the DRL agent heavily relied on Apple’s performance to guide its portfolio

allocation. For example, during periods of strong performance for Apple, the agent signifi-

cantly increased its allocation to Apple, while reducing allocations to other assets. This suggests

that the agent recognized Apple’s market leadership and its influence on the broader technol-

ogy sector.
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Asset-Specific Patterns. Fig 3 shows the average importance of each feature across all

stocks. Apple (AAPL) remains the most significant, followed by Visa (V), Alibaba (BABA),

Adobe (ADBE), and Sony (SNE). This means the DRL agent in the model prioritizes Apple’s

data in order to make the investing decisions, as it is consistently seen in the previous

Fig 2. Importance of the features used as the state space of the DRL agent for financial portfolio management

experiments. We can see how the APPLE close value is the most important for the estimated policy of the DRL agent.

https://doi.org/10.1371/journal.pone.0315528.g002

Fig 3. Feature importance of the state space of the DRL agent sorted by assets.

https://doi.org/10.1371/journal.pone.0315528.g003

PLOS ONE XDRL for financial portfolio management

PLOS ONE | https://doi.org/10.1371/journal.pone.0315528 January 16, 2025 10 / 19

https://doi.org/10.1371/journal.pone.0315528.g002
https://doi.org/10.1371/journal.pone.0315528.g003
https://doi.org/10.1371/journal.pone.0315528


experiment. Most critically, we can see how, for every asset, it is not clear which of the OHCL

is the most important one, as it varies in every asset. Consequently, it is wise to use them all to

make the agent more robust to different portfolios. While Apple’s closing price dominated,

other stocks showed different feature importance profiles: • Visa (V): The opening price of

Visa was one of the most important features, reflecting the agent’s focus on Visa’s initial mar-

ket activity. For example, when Visa’s opening price was higher than expected due to positive

market news, the agent increased its allocation to Visa, interpreting this as a bullish signal. •

Adobe (ADBE): Interestingly, Adobe’s high price was the least significant feature across all

stocks, suggesting that the agent did not place much emphasis on extreme daily price highs for

Adobe. However, Adobe’s opening price ranked as the second most important feature after

Apple’s closing price. This indicates that the agent paid closer attention to Adobe’s initial trad-

ing activity to gauge its market sentiment, particularly during volatile periods.

Varying importance of OHLC features. The standout result is that the importance of

OHLC features varied significantly across different assets. For some stocks, such as Visa (V),

the high price played a more critical role in the agent’s decisions. This reflects how the agent

leveraged extreme daily price movements to adjust its portfolio. For example, on a volatile

trading day, Visa’s high price spiked, prompting the agent to reduce its exposure to Visa, as it

anticipated a potential price correction after the rapid price increase. This asset-specific varia-

tion underscores the agent’s ability to adapt its strategy dynamically based on the behavior of

individual assets, a critical feature in managing diversified portfolios in volatile markets.

Combined importance of technical indicators. To better understand the broader impact

of technical indicators, we plotted the average importance of each OHCL feature across all

assets (Fig 4). The results confirmed that close and open prices were the most significant across

the portfolio. However, the high and low prices, while less dominant, still played an important

role in the agent’s predictions.

SHAP analysis

To gain a deeper understanding of the model’s predictions, we utilized SHAP, which allows us

to break down the contribution of each feature to the DRL agent’s portfolio decisions. Since

Fig 4. Mean feature importance of the different financial indicators across all the assets of the portfolio.

https://doi.org/10.1371/journal.pone.0315528.g004
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our model is multi-output (making weight allocations for six assets, including a cash risk-free

asset), SHAP generates individual force plots for each asset´s weight allocation.

Apple’s weight allocation. In Fig 5, we observe the SHAP force plot for Apple’s weight

allocation. SHAP values indicate how each feature contributed to the model’s decision for a

specific sample: Positive SHAP values (red) push the prediction higher, suggesting an increase

in the weight allocated to Apple. Negative SHAP values (blue) lowered the prediction, decreas-

ing the weigh allocation to Apple. The baseline, represented by the horizontal line, reflects the

average model output (the logit) over the entire dataset. By analyzing individual SHAP values,

we can see the direct influence of features like Apple’s closing price (AAPL_close_L1) on the

agent’s decisions.

Isolating apple’s closing price. Conversely, we can do the same process with only one fea-

ture, to test how and whether it impacts on the portfolio, as we illustrate in Fig 6, where we can

see how the red and blue segments still indicate positive and negative contributions, respec-

tively, but they are now isolated into a single feature (Apple’s closing price value contribution,

in this case).

This plot helps in understanding both the specific impact of this particular feature through

the entirety of the dataset and in one specific prediction without the interference of others. For

instance, imagine an investor who wants to understand why the model lowered the weight

allocation of Apple on a certain instance. The investor could analyze the impact of the different

features to that prediction, realizing that the closing price of Apple stock lowered significantly

this weight allocation prediction. The combination of the investor’s knowledge and the model

´s explanation gives a complete understanding of the prediction. Continuing with the story-

line, let’s say the investor also examines another instance where the model increased the weight

Fig 5. SHAP force plot for AAPL weight allocation with all features contribution.

https://doi.org/10.1371/journal.pone.0315528.g005

Fig 6. SHAP force plot for AAPL weight allocation with only Apple’s closing price value contribution.

https://doi.org/10.1371/journal.pone.0315528.g006

PLOS ONE XDRL for financial portfolio management

PLOS ONE | https://doi.org/10.1371/journal.pone.0315528 January 16, 2025 12 / 19

https://doi.org/10.1371/journal.pone.0315528.g005
https://doi.org/10.1371/journal.pone.0315528.g006
https://doi.org/10.1371/journal.pone.0315528


allocation of Apple. By analyzing this specific prediction, the investor notices a red segment

indicating that the BABA_open_L1 value had a positive impact. This might initially seem puz-

zling, as BABA_open_L1 refers to the opening price of Alibaba stock from the previous day.

However, the investor recalls that on this particular day, positive news about Alibaba’s strong

quarterly performance had a ripple effect on the tech sector, boosting overall market sentiment

and indirectly benefiting Apple’s stock price. The model’s sensitivity to such interconnected

market dynamics is reassuring to the investor. It demonstrates that the model doesn’t just con-

sider isolated stock movements but also understands broader market trends and their impacts

on individual assets. This interconnected understanding is crucial for making informed alloca-

tion decisions in a diversified portfolio. This comprehensive explainability method enhances

the investor’s trust in the model, ensuring they can confidently rely on its predictions to guide

their investment strategies.

LIME analysis

By using LIME explanations, we can delve deeper into the feature contributions for each asset’s

weight allocation at a specific point in time. LIME provides instance-specific insights, helping

us interpret the decisions made by the DRL agent. We analyze two instances where LIME

explains the model’s predictions for Apple and Adobe.

Apple’s weight allocation. In Fig 7, we present the LIME explanation for Apple’s pre-

dicted weight allocation at a particular instance, where the allocation reached its maximum

value of 0.21. This high allocation is driven by several features. The positive contributors

include V_high_L1, BABA_close_L1, AAPL_open_L1, ADBE_close_L1, and BABA_low_L1.

These features collectively push the prediction higher. Specifically, the feature V_high_L1 (the

high price of Visa on the previous day) has the largest positive contribution, with a value of

1.02, signaling favorable market conditions. BABA_close_L1 (Alibaba’s closing price from the

previous day) also plays a significant role, contributing 0.96 to Apple’s allocation. This could

indicate a broader positive sentiment in the technology sector, indirectly boosting Apple. Both

Apple’s opening price (AAPL_open_L1) and Adobe’s closing price (ADBE_close_L1) further

push the prediction higher. Notably, in this instance there are no significant negative contribu-

tors, indicating a strong overall positive sentiment for Apple. The combined effects of Visa,

Alibaba, and Adobe’s performance strengthen Apple’s allocation, highlighting the model’s sen-

sitivity to multiple assets’ interdependencies within the technology sector.

Adobe’s weight allocation. In Fig 8, we turn to the LIME explanation for Adobe’s weight

allocation. In this instance, the predicted allocation is 0.16 within a range of 0.15 to 0.25. Posi-

tive contributions come from V_low_L1 and BABA_open_L1. Visa’s low price from the previ-

ous day (V_low_L1) has a strong positive contribution, pushing Adobe’s allocation higher.

Alibaba’s opening price from the previous day (BABA_open_L1) also contributes positively,

signaling bullish market conditions. Unlike the Apple example, Adobe’s allocation faces nega-

tive influences from AAPL_low_L1 and AAPL_high_L1 (Apple’s low and high prices), which

Fig 7. LIME explanation for Apple’s weight allocation prediction at a particular instance.

https://doi.org/10.1371/journal.pone.0315528.g007
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slightly reduce Adobe’s allocation. This insight suggests that while Adobe benefits from posi-

tive conditions in Visa and Alibaba, certain Apple metrics dampen its allocation.

Implications for investors. These LIME explanations can assist investors by offering

explicit explanations for each forecast, allowing them to observe how different factors interact

and influence the DRL agent decisions. For example, if an investor consistently observes that

specific measures from Visa and Alibaba continuously increase allocations to tech stocks such

as Apple and Adobe, they may opt to constantly monitor these metrics. This actionable insight

can help investors make more informed and proactive decisions.

Understanding why the model cuts allocations in response to specific traits can also assist

investors in reducing risks. If Apple’s poor metrics routinely reduce allocations to other stocks,

the investor may investigate this link further and change their portfolio to balance potential

drawbacks.

As we have shown throughout the section, the three explainability techniques can be imple-

mented independently or jointly, being able to explain the DRL agent predictions in trading

time, being able to track throughout the time whether the policy is acting as it is expected or

not, what is an advantage with respect to the rest of published DRL explainability methods,

that only offer explanations of the model in training time, not being able to monitor the pre-

dictions done by the agent in the trading time.

Statistical hypothesis testing of the robustness of the Shapley values

retrieved by our methodology

Our methodology is able to explain the actions performed by an agent with respect to the states

that it observes, however, it is necessary to assess the consistency of its explainability, for exam-

ple of the Shapley values that we have computed. By guaranteeing the explainability, we can

trust the explanations of the agent’s action. In order to do so, we repeat 50 times the experi-

ment of retrieving the Shapley values of the random forest trained in the states and actions of

the DRL agent across different random seeds in our experiments and employ statistical

hypothesis testing to discriminate whether the values of the Shapley factors are consistent.

In particular, we used a mixed-effects model, that allows us to account for both fixed effects,

that in this case are the different variables of the model and also test random effects, that are

the variabilities of the Shapley values introduced by the different seeds of every experiment

repetition. Using this methodology, we want to determine whether the variability in Shapley

values is significantly influenced by the choice of the seed, that is, by the randomness inherent

to every different experiment, or if the values remain consistent regardless of the seed used,

that is what we desire that happens. We also want to test with the fixed effects whether the

Shapley values are different for the variables, which is desirable as every variable of the states

gives to the agent a different information that conditions its action.

Once that we have fitted the mixed-effects model to our data, we obtained in the summary

that the estimated variance of the random effects modelling how the different seed changes

Fig 8. LIME explanation for Adobe’s weight allocation prediction at a particular instance.

https://doi.org/10.1371/journal.pone.0315528.g008
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was effectively almost close to zero, with mean of 10−7 which makes the model impossible to

converge. In other words, the Shapley values for all the models were similar for all the variables

with variances lower than 10−7, making the mixed-effects model to struggle to converge. This

means that the variability in the Shapley values due to the different repetitions of the experi-

ment is negligible, implying directly that the null hypothesis of the statistical test associated

with the model regarding the random effects is completely compatible with our sample of

models, as the statistical test uses the variance to determine the compatibility of the sample if

this hypothesis is true. Recall that the null hypothesis for the random effects of this statistical

test is whether variances are consistent and the alternative hypothesis is that they are different.

Variances close to zero means having a p-value of almost 1, having all the evidence in favour of

this hypothesis. However, the coefficients for the Shapley values between the variables were

statistically significant, which means that the variables have a consistent effect on the Shapley

values across seeds, as we desired, with p-values lower than 0.01.

Two main conclusions can be extracted of this statistical procedure: (i): the Shapley values

do not vary significantly across different seeds and are therefore consistent and (ii): the vari-

ables consistently affect the Shapley values, and this effect is stable across different seeds. Both

conclusions imply that this methodology for interpretating the actions performed by an agent

through the shapley values of a model is consistent and robust.

Conclusions and further work

In this work, we successfully used SHAP, LIME and feature importance to explain the deci-

sions made by our DRL model in portfolio management tasks. These methods provided clear

and detailed insights into why the model made specific investment choices, affirming our

hypothesis that it is possible to explain DRL predictions in portfolio management with

explainability techniques. Also, our prediction explainability analysis with SHAP and LIME

revealed that the importance of features varied across different market conditions and specific

predictions. Moreover, our feature importance analysis showed that certain features consis-

tently influenced the model’s investment decisions more than others.

We believe that several future directions could enhance and expand the impact of this

work.

First, it would be interesting to conduct several studies to evaluate how real investors inter-

pret and react to the explanations provided by the model, which could yield valuable reinforce-

ment learning from human feedback. For a better understanding of non-technical investors, it

would be nice to develop an intuitive user interface that presents the model’s decisions and

their explanations in a user-friendly manner would improve its practicality. Also, it would be

interesting to deal with a wider set of explainable techniques and different markets to assess

the usefulness of the methodology in different scenarios. Finally, a future line of work would

be to hybridize one of the a priori XDRL approaches of Bougie and Ichise [16] or Shi et al. [18]

with our proposed post hoc approach (the only one in the literature of XDRL for portfolio

management); that is, explaining both the model (the policy trained during the training

period) as these authors do, and the predictions of the model during trading time (as we do),

and see how training modifies the rules injected a priori [16] or the policy trained [18].

Supporting information

S1 Data. All data and code of the paper are freely and fully available at GitHub https://

github.com/aleedelarica/XDRL-for-finance.

(XLSX)
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