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Abstract

Introduction

Surgical patients frequently experience post-operative complications at home. Digital

remote monitoring of surgical wounds via image-based systems has emerged as a promis-

ing solution for early detection and intervention. However, the increased clinician workload

from reviewing patient-submitted images presents a challenge. This study utilises artificial

intelligence (AI) to prioritise surgical wound images for clinician review, aiming to efficiently

manage workload.

Methods and analysis

Conducted from September 2023 to March 2024, the study phases included compiling a

training dataset of 37,974 images, creating a testing set of 3,634 images, developing an AI

algorithm using ’You Only Look Once’ models, and conducting prospective tests compared

against clinical nurse specialists’ evaluations. The primary objective was to validate the AI’s

sensitivity in prioritising wound reviews, alongside assessing intra-rater reliability. Second-

ary objectives focused on specificity, positive predictive value (PPV), and negative predic-

tive value (NPV) for various wound features.

Results

The AI demonstrated a sensitivity of 89%, exceeding the target of 85% and proving effective

in identifying cases requiring priority review. Intra-rater reliability was perfect, achieving

100% consistency in repeated assessments. Observations indicated variations in detecting
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wound characteristics across different skin tones; sensitivity was notably lower for incisional

separation and discolouration in darker skin tones. Specificity remained high overall, with

some results favouring darker skin tones. The NPV were similar for both light and dark skin

tones. However, the NPV was slightly higher for dark skin tones at 95% (95% CI: 93%-97%)

compared to 91% (95% CI: 87%-92%) for light skin tones. Both PPV and NPV varied, espe-

cially in identifying sutures or staples, indicating areas needing further refinement to ensure

equitable accuracy.

Conclusion

The AI algorithm not only met but surpassed the expected sensitivity for identifying priority

cases, showing high reliability. Nonetheless, the disparities in performance across skin

tones, especially in recognising certain wound characteristics like discolouration or inci-

sional separation, underline the need for ongoing training and adaptation of the AI to ensure

fairness and effectiveness across diverse patient groups.

Introduction

Each year approximately 2.1 million surgical patients in England have wound healing prob-

lems after surgery, of which 500,000 become infected. Most of the complications happen after

patients have been discharged from hospital, and this is set to increase with the increasing

trend towards day surgery and early recovery from surgery programmes where patients are

discharged as soon as safely possible [1].

Remote surgical wound monitoring, also known as postoperative wound monitoring or

image-based monitoring, is a system where patients submit images and information about

their wounds in response to an SMS text message or email request. The information submitted

remotely by the patient is then reviewed by experienced clinicians [2]. Remote wound moni-

toring enables clinicians to review patients’ surgical wounds regularly and quickly after they

have been discharged from hospital. Detecting complications in their developing stages

enables wounds to be managed before they worsen and become harder and more expensive to

treat. The benefits of remote wound monitoring include improved patient experience, fewer

readmissions and re-operations, reduced mortality from surgical site infections (SSIs) and

reduced demands on healthcare services [3,4].

Implementing a wound monitoring protocol faces practical challenges, including provider-

level issues such as securing buy-in, and system-level challenges such as disrupting existing

clinical workflows and integrating mHealth information into medical records [5]. A major

drawback of digital remote monitoring systems is the additional workload for healthcare staff

to quickly review incoming data [2]. For example, one heart surgery hospital receives 300

images each week to review [6]. Quick reviews are vital for early detection and management of

issues like infections which is especially hard outside research settings due to limited surveil-

lance resources [7]. One research study found that nearly one in ten patients had their submis-

sions reviewed after more than 24 hours [8]. For this new service to work best, images need to

be reviewed as soon as they are submitted. To be able to roll-out digital wound monitoring to

the millions of patients having surgery in England, a system is needed where clinicians can

manage this new workload quickly and efficiently.

To tackle these problems, artificial intelligence (AI) technologies can be used to make

remote surgical wound monitoring more efficient and effective. AI algorithms can
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automatically analyse patient data, such as images, to spot signs of emerging conditions such

as infections [9]. AI-driven image recognition can detect visual signs of dehiscence and inflam-

mation, helping to sort and prioritise cases. This ensures that urgent cases are reviewed first by

clinicians, reducing the workload on healthcare staff and improving patient care.

We have developed an AI algorithm that identifies surgical wound images requiring pri-

ority review by a clinician. This appears to be the first time AI has been used to examine

surgical wound images to assist remote SSI monitoring. In 2022, a systematic review found

no surgical wound monitoring technologies that were using AI to examine images for SSI

monitoring or diagnosis [10], although a recent study using deep learning to distinguish

common surgical complications demonstrated the potential for machine learning in this

area [11].

The aim of this study was to develop and test an AI algorithm to identify surgical wound

images which require priority review by a clinician.

Methods and analysis

Overview

There were three phases to the study which were conducted between September 2023 and

March 2024. The first phase was the preparatory phase which included creating and annotat-

ing a training dataset and also creating a testing dataset. The training dataset included 37,974

unique patient images to build the AI algorithm. The testing dataset included 3,634 images to

test the built AI algorithm, with a subset of 355 images which were used to assess the intra-

rater reliability of the AI algorithm. The AI algorithm was built in the second phase and was

designed to identify surgical wounds which required priority review by a clinician. In the third

phase, the AI algorithm was tested for sensitivity, specificity and intra-rater reliability, overall

and across different skin tones.

Patient and Public Involvement and Engagement (PPIE) and Equality, Diversity and Inclu-

sion (EDI) representatives have been involved with this study in its design, funding acquisi-

tion, analysis and dissemination.

Primary objectives

1. To assess whether AI can identify surgical wounds requiring either priority review or rou-

tine review with acceptable sensitivity compared to nurse specialists in surveillance.

2. To assess intra-rater reliability of the AI algorithm

Secondary objectives

1. To assess the sensitivity, specificity, positive predictive value and negative predictive value

of the algorithm’s ability to detect surgical wounds requiring priority review in light and

dark and overall skin tones.

2. To assess specificity, positive predictive value and negative predictive value of the algo-

rithm’s ability to detect wounds requiring priority review over all skin tones.

3. To assess the sensitivity, specificity, positive predictive value and negative predictive value

of the algorithm’s ability to detect specific wound healing problems (e.g. discolouration) in

light and dark skin.
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Sample sizes for testing datasets

To test primary outcome 1, based on 85% estimated sensitivity (with confidence interval +/-

3%) and a wound complication rate of 15%, 3,634 images were required.

To test primary outcome 2, to determine intra-rater reliability for wounds needing priority

review, in light and dark skin, with a Kappa statistic 0.90 with 95% confidence interval +/–

0.05%, we required 355 images to be reviewed twice by the AI algorithm.

Phase one: Preparing the datasets

Images used in the training dataset and the testing dataset. The images used to create

the datasets to build and test the AI algorithm were held in an image library owned by Isla

Care Ltd. Images were stored in the Google Cloud Platform (GoCP) via the Isla software plat-

form in a web browser, encrypted via Secure Hash Algorithm (SHA)-256. The image library

comprised 41,608 digital images of wounds which had been monitored remotely as part of

adult patients’ routine care, using Isla software. The AI module is intended to be applicable to

a wide range of surgical wounds. Consistency among photos was not required as the algorithm

identifies ‘priority flags’ on standalone images, although patients were provided with advice on

taking a usable photo. The images in the library therefore included ‘real-world’ images.

Images were sourced, stored and maintained under Data Protection Impact Assessment

and Data Sharing Agreements. All stored images were anonymised by a clinician, for example,

by cropping images to remove faces, tattoos, scars or background items. Images that the clini-

cians considered to be of insufficient quality for clinical decision making or that could not be

edited for anonymization were excluded. No demographic data was collected and images from

any patients who were opt-out registered were excluded. Remaining images were assigned a

random ID code generated by the image library at the point of saving [12]. Authors with access

to identifiable information adhered strictly to these protocols to protect participant confidenti-

ality during and after data collection. Data security measures remained in place throughout

the study duration and beyond, ensuring that participant privacy was upheld at all stages of the

research process.

Eighty-seven percent (36,317) of the images in the training library were patient-captured

and the remaining 13% (5,291) were clinician-captured. Images were obtained using different

equipment, calibration, and lighting conditions. Variation in lighting and devices enables

resultant models to be robust in real-world conditions. Models trained under consistent light-

ing or using specific devices may struggle to generalize to images captured under different

lighting conditions [13]. By incorporating variations in lighting and device types during the

training phase, the models become more adaptable to real-world scenarios, enhancing detec-

tion accuracy across diverse environments [14]. Approximately half the images obtained by

clinicians were baseline images (i.e. images of healthy wounds obtained as part of a photo at

discharge scheme) [15].

On 31 August 2023, a total of 3,634 (as per sample size calculations) were randomly selected

for the study from the image library to create the testing database for sensitivity analysis. None

of these images had been used to train the device, this sample of images was exclusively for

assessing the sensitivity and specificity of the AI module. As per the sample calculations, a sub-

set of 355 of the 3,634 images were randomly selected from the sensitivity analysis database to

test for intra-rater reliability. The remaining 37,974 images were used as the training database

to build the AI algorithm.

Preparing the training dataset to develop the algorithm. The dataset to build the algo-

rithm contained 37,974 images of surgical wounds. Training dataset images continued to be

stored on the Google Cloud Platform (GoCP) for security.
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Each image was reviewed and bounding boxes (used to define the position and size of an

object within an image) and annotations were applied. Images were annotated with one or

more labels, depending on the features present. Labels followed a standard format outlined in

the locally developed online data dictionary and described healing and non-healing wound

features including necrotic tissue, slough, granulation tissue, bleeding, purulent exudate,

serous exudate and also wound closure materials. Labels were applied individually to each

image rather than in groups. This method was especially helpful for separate reviews, where

less common examples were examined on their own.

Annotation was carried out by trained medical students using data in V7. Medical students

were trained using the data dictionary and a test batch of images. Once students could anno-

tate test batch images to a satisfactory standard they were allowed to annotate training dataset

images.

Finally, two clinical nurse specialists and a machine learning developer conducted a final

review of each annotation. Images that were approved were staged for future use. Images that

were rejected were sent back with feedback for re-labelling by the medical student, and the

review process was repeated. No images were deleted.

Preparing the testing dataset to test the algorithm (sensitivity analysis and inter-rater

reliability). The dataset to test the sensitivity analysis comprised 3,364 images randomly

selected from the image library as per the sample size calculation. All random selections were

undertaken by the trial statistician using Stata version 18 (a statistical analysis package). Test-

ing dataset images continued to be stored on the Google Cloud Platform (GoCP) for security.

The randomisation was done in Stata version 18. Proprietary Stata commands to randomly

select the patients/clinicians captured images to include in the sample and then to randomly

select one image per patient/clinician. Firstly, a random selection of 3,634 patients was made,

so that each patient was only represented once in the sample. If several images came from one

patient, a single image was randomly selected to ensure only one image from each patient was

included in the selected sample. Patients selected for the sample then had any additional

images excluded from the training datasets as well as from the testing ones. Image IDs were

checked to ensure there were no duplications. Some images that were not surgical wounds

were found, these were replaced using a second randomisation that followed the same process

as the original process, with the additional step of excluding any patient who had previously

been selected.

A further sub sample of 355 images was selected randomly from the testing sample of 3,634

surgical wound images using Stata. The sub sample of 355 images was to test the AI algorithm

for intra-rater reliability.

Categorising the testing dataset by skin tone. Skin tone labels were assigned to the 3,634

training dataset images manually by the specialist nurse to facilitate analysis by skin tone. Two

thousand five hundred and ninety-two of the of the 3,634 images were from patients with light

coloured skin (71%) and 1,042 were from patients with dark coloured skin (29%). The Fitzpa-

trick Application Programming Interface (API) library (derm-ita � PyPI) was installed to clas-

sify wound images according to the Fitzpatrick Scale skin tone model. Skin tone was calculated

using the Individual Typology Angle (ITA) which is determined by the average of all pixel-

wise ITA values extracted from skin images, taking into account the lightness and yellow-blue

tints [16]. Generally, the ITA is calculated using the following the formula:

ITA ¼ arctan
L � 50

b

� �

�
180

p

� �
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Here, L represents the luminance, and b represents the yellowness-blueness in the CIELAB

color space. The ITA angle is expressed in degrees. Light skin tone is typically characterised by

higher ITA values and might be defined as having an ITA greater than 55 degrees. This range

indicates skin that reflects more light and thus appears lighter. Conversely, dark skin tones can

be defined as having an ITA of less than 28 degrees (eg. skin that reflects less light, appearing

darker).

For the purposes of this study, the following Fitzpatrick tones were classed at ‘light’ (Very

light, Light 1, Light 2, Intermediate 1 and Intermediate 2) and the following Fitzpatrick skin

tones were classed as ‘dark’ (Tan 1, Tan 2 and Dark). The skin tone classification was manually

reviewed by a clinical nurse specialist and amended if necessary.

Phase two: Training the AI algorithm

The AI algorithm was developed to identify images that contained at least one of the following

non-healing or suture material features; discolouration, unexpected fluids/tissue, sutures/clips

observed, incisional separation. Images that contained at least one feature identified by the AI

algorithm were highlighted by the algorithm as requiring priority, or urgent, review by a clini-

cian and were marked with a red flag on the Isla digital wound monitoring clinician review

page.

The AI algorithm was built using classification and detection machine learning models

with the training database which comprised 37,974 images. A ‘You Only Look Once‘ (YOLO)

model, based on the open-source available from Ultralytics (https://docs.ultralytics.com/

models/), was employed initially to provide real-time object detection to identify and locate

the wound region of interest and the region of any drain sites or other incisions. YOLO is

often chosen over traditional Convolutional Neural Networks (CNN)-based object detection

models in clinical settings for its real-time processing capabilities, high accuracy and efficiency.

While CNNs can capture object details at multiple scales, improving detection of various

objects [17], YOLO’s unified detection framework provides a significant speed advantage,

essential for timely healthcare decisions. YOLO balances accuracy and speed, understands the

global context of images and operates efficiently on limited resources making it suitable for

mobile and edge devices [18]. Although YOLO requires significant computational power, this

is managed with scalable cloud computing that adjusts to demand. Additionally, YOLO’s need

for a high volume of quality data is a common requirement for all machine learning frame-

works and is therefore accepted.

To enhance overall accuracy and ensure system modularity for application in various use

cases, models were trained on individual non-healing/infection features to guarantee sensitiv-

ity to all features, considering their varying occurrence rates across the feature set. Confidence

thresholding was applied to filter out regions with lower confidence scores, along with region

of interest (ROI) thresholding, where detections outside the specified main wound region of

interest were discarded. This process was executed using a comprehensive validation set with a

broad range of features and image types, representative of a ‘real-world setting’.

The algorithm combined several AI models for both image segmentation (e.g., to identify

the wound in the image or closure materials like surgical clips) and classification (e.g., to clas-

sify between wounds with incisional separation and those with no incisional separation). The

model outcomes were aggregated with logic to optimise performance, e.g., filtering out indica-

tions of dried blood where the indication wasn’t significant in comparison to the size of the

wound. This logic aggregated all model results into a binary outcome for each image, ‘priority’

or ‘routine’ review, based on whether one or more of the wound healing descriptors were pres-

ent (discolouration, unexpected fluids/tissue, sutures/clips observed, and incisional
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separation). These four features were chosen because these elements allow the AI to compre-

hensively monitor and analyse key visual indicators of wound healing, providing valuable

insights into potential complications (in future clinical evaluations, sutures/clips would only

flag if more than fourteen days from operation). This processing was by a script to automati-

cally sequence all images through the algorithm and generate the set of results.

Phase three: Testing

Testing the AI algorithm. The performance of the AI algorithm was tested against clini-

cal nurse specialists’ assessments using the testing dataset of 3,634 images for sensitivity of

wound features that required a priority review and also across light and dark skin tones, with

an additional assessment for intra-rater reliability on 355 images.

Standard practice has nurse specialists in wound surveillance or wound healing reviewing

wounds to assess healing. Therefore, review by a specialist nurse was taken to be the ‘gold stan-

dard’ against which the AI algorithm was assessed. The testing dataset of 3,634 images was

reviewed independently by both the AI algorithm and specialist nurses. The specialist nurses

were trained using the same data dictionary and test batch of images used for the AI training.

This training ensured consistency in evaluation criteria, facilitating a clear and justified com-

parison between human and AI assessments. The binary outcome of ‘requires priority review’

from the AI algorithm and the specialist nurses was compared to calculate the accuracy of the

AI algorithm. The outcome of requiring a priority review was determined by an image con-

taining at least one of the following four features (discolouration, unexpected fluids/tissue,

sutures/clips observed, and incisional separation).

Each image was reviewed by two specialist nurses independently to determine its outcome.

Where there was disagreement regarding the outcome, a third specialist nurse was consulted

to provide the deciding outcome.

All 3,634 images within the testing dataset were passed through the AI algorithm to test for

sensitivity.

The AI algorithm was tested for intra-rater reliability to confirm that the algorithm reaches

the same outcome when presented with the same image on more than one occasion. The sub-

set of 355 randomly selected images from the testing database, described in ‘Preparing the

Dataset’ were passed through the algorithm a second time. The outcome (priority review or no

priority review) calculated by the AI algorithm for the first pass of each image was compared

against the outcome from the AI algorithm for the second pass of each repeated image.

Data analysis

The primary outcome measure for objective 1 was sensitivity of wounds needing priority

review versus wounds needing routine review compared with the reference standard of the

clinical assessments. Sensitivity was defined as the proportion of wound images correctly iden-

tified as ‘priority review’ compared with the “gold standard”. Sensitivity is of higher impor-

tance for this study because it is preferred for the algorithm to identify healing wounds as

‘priority review’ than to miss a wound that needs a priority review. The sensitivity of detecting

wounds with healing problems is reported as a percentage, with 95% confidence intervals. Sen-

sitivity is measured using the following:

Sensitivity ¼
True Positives

ðTrue Positivesþ False NegativesÞ
� 100

Primary outcome measure 2, intra-rater reliability, is reported as the number and percent-

age of concordant ratings (when the two assessments of each pair of images agree) and
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discordant assessments (when the two assessments of each pair of images disagree). Intra-rater

variance will be assessed using the kappa statistic (with a 95% confidence interval). The Kappa

statistic can range in value from minus one (where a negative value would indicate the AI algo-

rithm was performing worse than if it had made the assessments randomly, and a score of

minus one would indicate that all of the identical images were rated differently by the AI algo-

rithm) up to 1 (if it rates all of the duplicate images exactly the same both times). The AI algo-

rithm has been trained to identify wound healing problems and to assess whether wounds

need a priority review of not. However, it is not a dynamic AI algorithm, so the assessment

process will not change in response to the first time it assessed the duplicate images. The pro-

cess also has no "memory", so it will not "remember" the assessments it made the first time it

assessed the images, therefore the two assessments will be independent of each other.

Percentages and 95% confidence intervals were used to report the following secondary

outcomes:

• The sensitivity of detecting wounds requiring priority review specifically in dark and light

skin tones.

• The specificity, positive predictive value (PPV) and negative predictive value (NPV) of

detecting priority review in dark skin tones, light skin tones and over all skin tones.

• The sensitivity, specificity, positive predictive value (PPV) and negative predictive value

(NPV) of detecting suture/staples, discolouration/redness, unexpected fluid or tissue and

separation of the incision in dark skin tones, light skin tones and over all skin tones (using

ATI skin tone, with human assessor).

Specificity defines what percentage of wounds requiring routine reviews were correctly

identified as not requiring priority review by the algorithm.

Specificity ¼
TrueNegatives

ðTrueNegativesþ FalsePositivesÞ
� 100

PPV defines the percentage of images with a positive result (i.e. priority review) that had a

wound healing problem.

PPV ¼
True Positives

ðTrue Positivesþ False PositivesÞ
� 100

NPV defines the percentage of images with a negative result (i.e. routine review) that did

not have a wound healing problem.

NPV ¼
True Negatives

ðTrue Negativesþ False NegativesÞ
� 100

Results

Primary outcomes

Sensitivity of identifying wound images that need a priority review. The sensitivity of

the AI algorithm was 89% (95% confidence interval: 87% to 91%) which exceeds the target sen-

sitivity specified in the protocol, which was 85% with a 95% confidence interval of +/- 3%. See

Table 1.
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Intra-rater reliability of AI algorithm: Identifying wound images that need

a priority review

The AI algorithm rated the subset of 355 images that were presented to the algorithm twice for

prioritisation. The AI algorithm rated each image identically both times, therefore Kappa = 1.

As the images were rated with 100% agreement, a 95% confidence interval for Kappa cannot

be calculated. See Table 2.

Secondary outcomes

Sensitivity in light and dark skin tones. There were disparities in the AI algorithm’s abil-

ity to detect discolouration, sutures or staples and incisional separation in light and dark skin

tones (Table 3). The biggest difference in sensitivity was for incisional separation. In light skin

tones, the AI algorithm correctly identified 70% of the wounds with incisional separation (95%

Confidence Interval (CI): 55% to 83%), however in dark skin tones it correctly identified only

48% (95% CI: 25% to 70%), a difference of 22%. With regard to redness and discolouration,

and sutures or staples, there was a disparity of 6% between the sensitivity of their detection in

light skin compared to dark. Although the sensitivity of detecting sutures or staples was 80% in

people with dark skin, but sensitivity of detecting redness or discolouration was only 48%.

However, the sensitivity of identifying images that needed a priority review were very similar

in people with light and dark skin tones.

Specificity in light and dark skin tones. Specificity calculates the percentage of images

without a problem that the AI algorithm correctly identified as not having a problem. For dis-

colouration/redness, the specificity was better for people with dark skin tones. Over four-fifths

(86%, 95% CI: 84% to 88%) of wounds without problems in people with dark skin tones were

Table 1. Primary outcome 1—Sensitivity of need for priority review over all skin tones.

PRIMARY ANALYSIS sensitivity of needing a priority review Clinician (Gold standard) assessment Total assessments

AI assessment Priority review standard review

Priority Review 1,014 (89) 1,073 (43) 2,087 (57)

Standard review 122 (11) 1,425 (57) 1,547 (43)

Total assessments 1,136 (100) 2,498 (100) 3,634 (100)

Sensitivity % (95% CI) 89.26 (87.31 to 91.00)

https://doi.org/10.1371/journal.pone.0315384.t001

Table 2. Primary outcome 2—Intra-rater reliability.

PRIMARY ANALYSIS

Intra-rater reliability: Kappa statistic

First assessment

Total assessments

Second assessment Priority review No priority review / standard review

Priority Review n (%) 210 0 210 (59)

No priority review / standard review n (%) 0 145 145 (41)

Total assessments 210 (100) 145 (100) 355 (100)

Concordant and discordant assessments %

(95% CI)

Concordant images Discordant images

100 (98.97 to 100)a 0 (0 to 1.03)b

Kappa statistic 1

SECONDARY ANALYSIS

Intra-rater reliability: probability of a chance error in assessment

0

a As there is 100% agreement, this is the one sided 97.5% confidence interval, showing the lower bound for the percentage of agreement.
b As there is 0% disagreement, this is the one sided 97.5% confidence interval, showing the upper bound for the percentage of disagreement.

https://doi.org/10.1371/journal.pone.0315384.t002
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correctly identified compared to 77% (95% CI: 75% to 78%) correctly identified in people with

light skin tones. To some extent this might be expected because as sensitivity decreases, speci-

ficity increases.

The other wound healing aspect with a relatively large discrepancy in specificity was identify-

ing wounds that needed a priority review. Nearly two-thirds of wound images from people with

dark skin tones were correctly identified as not needing a priority review (64%, 95% CI: 60% to

67%), compared with 54% (95% CI: 51% to 56%) of images from people with light skin tones.

Positive predictive value (PPV) in light and dark skin tones. The Positive Predictive

Value shows the probability (expressed as a percentage) that an image the AI algorithm identi-

fied as needing a priority review really needed one. This has to be interpreted cautiously in this

study as images from a variety of operations were included in the analysis dataset and it is pos-

sible that the positive predictive value could vary by operation type. However, with regard to

light and dark skin tones, there was one marked difference which was in the PPV for sutures

or staples. In the images from patients with light skin tones there was a 68% probability that an

image flagged by the AI algorithm as having sutures/staples really did have them (95% CI: 65%

to 71%). In the images from patients with dark skin tones, there was only a 49% probability

that the images truly showed staples or sutures (95% CI: 42% to 55%). The probability that

patients that were identified by the AI algorithm as having redness or discolouration that really

did was lower for patents with dark skin tones (10%, with 95% confidence interval: 6% to 16%)

than patients with light skin tones (18%, with 95% confidence interval 15% to 21%).

Negative predictive value (NPV) in light and dark skin tones. The Negative Predictive

Value shows the probability (expressed as a percentage) that an image the AI algorithm identi-

fied as not needing a priority review really did not need one. This has to be interpreted cau-

tiously in this study for the same reason as for the Positive Predictive Value. The negative

Table 3. Secondary outcomes.

SECONDARY ANALYSIS Sensitivity

(95% CI)

Specificity % (95% CI) PPV

(95% CI)

NPV

(95% CI)

Sutures or staples (%)

Light skin tones (n* = 682)

Dark skin tones (n = 166)

All skin tones (n = 848)

86 (83 to 89)
80 (73 to 85)
85 (82 to 87)

86 (84 to 87)
84 (81 to 86)
85 (84 to 86)

68 (65 to 71)
49 (42 to 55)
63 (61 to 66)

95 (93 to 96)
96 (94 to 97)
95 (94 to 96)

Discoloration or redness (%)

Light skin tones (n = 195)

Dark skin tones (n = 31)

All skin tones (n = 226)

64 (56 to 70)
48 (30 to 67)
62 (55 to 68)

77 (75 to 78)
86 (84 to 88)
80 (78 to 81)

18 (15 to 21)
10 (6 to 16)

17 (14 to 19)

96 (95 to 97)
98 (97 to 99)
97 (96 to 98)

Incisional separation (%)

Light skin tones (n = 47)

Dark skin tones (n = 21)

All skin tones (n = 68)

70 (55 to 83)
48 (26 to 70)
63 (51 to75)

87 (86 to 89)
89 (87 to 91)
88 (87 to 89)

9 (6 to 13)
8 (4 to 15)
9 (7 to 12)

99 (99 to 100)
99 (98 to 99)
99 (99 to 99)

Unexpected fluids or tissue (%)

Light skin tones (n = 154)

Dark skin tones (n = 47)

All skin tones (n = 201)

73 (66 to 80)
70 (55 to 83)
73 (66 to79)

82 (81 to 84)
87 (85 to 89)
84 (83 to 85)

21 (17 to 24)
21 (15 to 28)
21 (18 to 24)

98 (97 to 99)
98 (97 to 99)
98 (98 to 99)

Urgent review (%)

Light skin tones (n = 908)

Dark skin tones (n = 228)

All skin tones (n = 1,136)

89 (87 to 92)
88 (83 to 92)
89 (87 to 91)

54 (51 to 56)
64 (60 to 67)
57 (55 to 59)

51 (49 to 54)
40 (36 to 45)
49 (46 to 51)

91 (87 to 92)
95 (93 to 97)
92 (91 to 93)

n = the number of wound attributes (e.g. sutures, discoloration/redness etc.) observed by the clinicians.

https://doi.org/10.1371/journal.pone.0315384.t003
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predictive values in patients with light and dark skin tones were very similar, although patients

with dark skin tones had a slightly higher NPV for identifying patients who did not need a pri-

ority review (95% with 95% confidence interval: 93% to 97%) compared to 91% (with 95%

confidence interval: 87% to 92%) for patients with light skin tones.

Clinicians’ observations of wound attributes. See Table 4. Overall, 2,592 of the 3,634

images on the testing dataset were from patients with light coloured skin (71%) and 1,042 were

from patients with dark coloured skin (29%). If wound problems were observed by clinicians

with equal frequency in images from patients with light and dark coloured skin, approximately

71% of each wound problem would be observed in images from patients with light coloured

skin and 29% from images of patients with dark coloured skin. However, this was not always

the case: 86% of the cases of redness and discolouration were observed in patients with light

coloured skin and only 14% were observed in patients with dark coloured skin. Similarly, 80%

of the sutures were observed in images from patients with light coloured skin and 20% in

patients with dark coloured skin and for unexpected fluids 77% of cases were observed in

patients with light coloured skin and 23% in patients with dark coloured skin. The observa-

tions of incisional separation were similar to the expected percentages at 69% in patients with

light coloured skin and 31% in patients with dark coloured skin. Overall, 80% of priority

reviews were identified as needed by patients with light coloured skin and 20% needed by

patients with dark coloured skin. Possibly patients with dark coloured skin are less likely to

display these signs of wound problems, or they are more difficult to observe in images from

people with dark coloured skin.

Discussion

The advent of remote surgical wound monitoring presents a significant opportunity to

enhance post-operative care, particularly as the prevalence of wound healing issues continues

Table 4. Wound healing problems observed by clinicians.

SECONDARY ANALYSIS Number of images with the problem Percentage of images with the problem

Sutures or staples

Light skin tones

Dark skin tones

All skin tones

682
166
848

80
20
100

Discoloration or redness

Light skin tones

Dark skin tones

All skin tones

195
31
266

86
14
100

Incisional separation

Light skin tones

Dark skin tones

All skin tones

47
21
68

69
31
100

Unexpected fluids or tissue (%)

Light skin tones

Dark skin tones

All skin tones

154
47
201

7
23
100

Urgent review (%)

Light skin tones

Dark skin tones

All skin tones

908
228
1136

80
20
100

https://doi.org/10.1371/journal.pone.0315384.t004
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to rise [19], compounded by the growing trend towards day surgery and early recovery pro-

grams. Our study aimed to validate an AI algorithm designed to identify surgical wound

images necessitating priority review, thus potentially streamlining the management of post-

operative complications in a scalable manner. Our findings demonstrate promising results,

with the AI algorithm exhibiting a sensitivity of 89% in identifying wounds requiring priority

review, surpassing our predefined target sensitivity of 85%. This underscores the algorithm’s

potential to effectively triage wound images and alert clinicians to cases needing immediate

attention, thereby mitigating the risk of complications progressing unnoticed.

A previous study [11] used Convolutional Neural Networks (CNNs) to detect early surgical

complications. Our study employs YOLO models for its AI algorithm development. Although

CNNs may have better accuracy in detecting small objects, more precise localisation, and supe-

rior handling of fine-grained details compared to YOLO object detection methods [20], we

chose this form of deep learning architecture because of its superiority for real-time use.

YOLO is faster than traditional CNNs because it only needs to look at the picture once to

make predictions, considering the whole image rather than just parts of it. It also combines

detecting, locating, and classifying objects all at once, which makes it more efficient. Unlike

traditional CNNs, YOLO is better at predicting where objects are in the image, so it makes

fewer mistakes [20]. A further distinction of this work is the inclusion of skin tone in the

analysis.

In our study, both clinicians and the AI algorithm noticed differences in the presentation of

wound problems based on skin tone. For instance, both observed that certain wound issues

like redness and discolouration were more prevalent in patients with light skin tones com-

pared to those with dark skin tones. Clinicians tended to observe certain wound attributes,

such as redness and sutures, more frequently in patients with light skin tones compared to

dark skin tones. In contrast, the AI algorithm showed differences in sensitivity and specificity

based on skin tone, with variations in correctly identifying wound problems. This highlights

potential areas for improvement in algorithmic performance and mitigating biases (such as

observation bias) in healthcare AI systems.

Our study confirms the intra-rater reliability of the AI algorithm, with a perfect agreement

(Kappa = 1) observed in identifying wound images necessitating priority review upon re-eval-

uation. This high level of consistency indicates the reliability and reproducibility of the AI

algorithm’s assessments, essential for its integration into clinical practice.

However, disparities were observed in the AI’s ability to detect certain wound attributes

across different skin tones. Redness and discolouration were more frequently observed in

patients with light skin tones, suggesting potential challenges in detecting these issues in darker

skin tones. Sensitivity for specific wound problems varied across skin tones, with lower sensi-

tivity observed in detecting incisional separation and discolouration in dark skin tones. Speci-

ficity was generally high, with better performance in identifying wounds without problems in

people with dark skin tones. However, there was a marked discrepancy in specificity in identi-

fying wounds needing a priority review, with higher accuracy observed for images from people

with dark skin tones. PPV varied across skin tones, particularly for identifying sutures or sta-

ples, indicating reduced accuracy in images from patients with dark skin tones. NPV was simi-

lar across skin tones, with a slightly higher NPV observed for images from patients with dark

skin tones in identifying whether priority review was not needed. Several factors can contrib-

ute to this variability, including the diversity and representativeness of the dataset, the quality

of images, and the specific wound features being identified. These findings underscore the

importance of considering equity in AI development to ensure effectiveness across diverse

patient populations.
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The AI system’s high sensitivity (89%) and perfect intra-rater reliability suggest that it can

reliably identify priority wound cases, allowing clinicians to focus on the most urgent cases

first. This complementary role of AI and humans could help scale digital remote wound moni-

toring, leading to more efficient use of healthcare resources and potentially better patient out-

comes by reducing unnecessary delays in treatment.

However, the study also highlighted disparities in the AI system’s performance across dif-

ferent skin tones, particularly in detecting discolouration and incisional separation. Address-

ing these disparities is crucial to ensure equitable care for all patients, regardless of their skin

tone. As we continue to work with new, larger datasets, it is important to identify and address

biases to further refine the AI algorithm [21].

These findings underscore the importance of ongoing evaluation and refinement of AI sys-

tems in clinical practice to ensure they contribute positively to patient outcomes. By improving

the accuracy and fairness of AI tools, we can support clinicians more effectively and advance

towards the strategic goals outlined in the NHS Long Term Plan [22].

We will continue to refine our algorithm and addressing the observed disparities in algo-

rithm performance across diverse skin tones. Further research is warranted to address dispari-

ties and enhance the diagnostic accuracy of AI algorithms in remote wound monitoring,

ultimately improving healthcare outcomes for all patients. There are several plausible future

steps for improving the AI’s performance across different skin tones. More data representing

dark skin tones is essential and can ideally be obtained through collaborations with other

healthcare institutions, adding more diverse real images of skin colours to our existing data-

base [23]. Accuracy could be significantly improved by developing specialist models, such as

an ensemble of models tailored to different skin tones and leveraging transfer learning on

diverse datasets [24]. This is a technique used in situations like this, but due to the lack of

open-source data in general, we could not use this technique to improve sensitivity on darker

skin tones. Training on images using colour profiles more suited to working with skin tones,

such as CIELab [25], will allow the models to detect more subtle differences in colour, particu-

larly on darker skin tones. Generating synthetic images using techniques like Generative

Adversarial Networks (GANs) could boost data quantity, and has many advantages, including

overcoming difficulties related to obtaining volume, labelling data, and privacy [26]. However,

we are not currently exploring this option due to concerns over representativeness [27].

In this context, AI can ensure timely identification and intervention for wound issues by

applying best practices. Our model shows potential in reducing inconsistencies in remote care

and surveillance pathways [28], decreasing the risk of overtreatment [29], and assisting clini-

cians who are struggling to find time for submission reviews alongside their existing clinical

duties [8]. However, to align with the NHS Long Term Plan’s [22] strategic goals, implement-

ing this AI system in clinical practice needs careful evaluation to ensure its safe and ethical use

on a large scale. Therefore, a subsequent study evaluating the AI will investigate potential

implementation challenges, such as integration with clinical workflows, electronic health rec-

ords, staff and patient acceptance, feasibility outcomes, safety outcomes, training, economic

modelling and regulatory requirements for market readiness [30].

Further work is needed to understand and explain how the algorithm functions, ensuring it

does not perpetuate or worsen existing biases in healthcare but instead reduces health inequali-

ties and improves care outcomes. We will develop and integrate Explainable AI (XAI) tech-

niques to make AI decisions interpretable. Methods like SHAP (SHapley Additive

exPlanations) values and LIME (Local Interpretable Model-agnostic Explanations) will help

clinicians and stakeholders understand AI predictions.

Implementation of AI in healthcare settings is at a very early stage [31]. A study by Nelson

et al [32] found that patients were receptive of the use of AI in healthcare as long as it
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maintains the integrity of the clinician-patient relationship. It is important to point out that in

the present study, the AI is not making a diagnosis of infection, the clinician still reviews and

assesses all images.

A key limitation of this study was the use of an automated ITA-based skin tone estimation

method, due to a lack of public datasets with skin tone and ethnicity. There are many risks asso-

ciated with ITA including sensitivity to lighting conditions, non-skin imaging artefacts that can

create misleading results, lesion-to-skin contrast, and errors from pixel to image-level decisions

[16]. To mitigate these risks, we used human assessors to review and amend skin tone assess-

ments, and although not ideal, we opted for a binary outcome (dark or light). Several factors

contribute to the lower sensitivity in detecting wound characteristics in darker skin tones. In

the training set, 64% of images were light skin tone and 36% were dark skin tone. This leads to a

bias towards the majority class (lighter skin tone) because the model has not been adequately

trained on a diverse set of examples. This issue should not be confused with an unbalanced data-

set, as the data volume is too low to train a separate model for just dark skin tone data [33].

Wound features look different on dark skin tones, leading to many conflicts within our training

data, resulting in poor labels that could affect sensitivity [34]. Notably, similar disparities were

observed among human (nurse specialist) reviewers in the test dataset. Additionally, 2D imag-

ing devices may show biases due to differences in light absorption and reflection on various

skin tones, affecting image quality and accuracy [29,35]. Other studies on 3D AI in chronic

wound measurement have also found accuracy issues with darker skin tones [36–38]. Clinician

bias and a lack of equitable assessment across skin tones may also contribute to lower sensitivity.

This can lead to complications being under-recognised in highly pigmented skin, potentially

causing delayed or missed diagnoses and worse wound outcomes [39]. A suggestion for future

studies is to assess skin tone face to face and not through images, which will permit more

nuanced assessments of the effect of skin tone to be undertaken.

Under-representation of wound images taken by patients due to socio-economic status,

advanced age, or other forms of technology exclusion may have been offset by our inclusion of

images captured by clinicians in addition to patient captured images [40,41]. Nevertheless, the

method of image collection in the image library which may have introduced some bias that

could skew predictions or lead to inaccurate results from the algorithm. For example, images

of patients under 18 years old were excluded from image library, thus the algorithm did not

capture the diversity of wound healing across younger individuals, and age-related factors

influencing wound healing could be underrepresented. Finally, eighty-seven percent (36,317)

of the images in the training library were patient-captured and the remaining 13% (5,291)

were clinician-captured. It is not possible to state the percentage of patient or clinician cap-

tured images within the AI analysis as the images were now anonymised. However, our robust

randomisation should ensure adequate representation.

Conclusion

In summary, our study highlights the potential of remote surgical wound monitoring facili-

tated by AI to enhance post-operative care in the face of increasing wound healing issues and

outpatient procedures. Validating an AI algorithm designed to identify surgical wound images

necessitating priority review yielded promising results, with the algorithm demonstrating a

sensitivity of 89%, exceeding our predefined target and indicating its potential to efficiently tri-

age wound images for timely intervention. Moreover, the algorithm’s intra-rater reliability was

confirmed, showcasing its consistency and readiness for integration into clinical practice.

However, our findings also shed light on disparities in the algorithm’s performance across

different skin tones, particularly in detecting specific wound attributes. Challenges in
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identifying issues such as redness and discolouration in darker skin tones highlight the impor-

tance of equitable AI development to ensure effectiveness across diverse patient populations.

Addressing these disparities and further refining the algorithm’s diagnostic accuracy through

ongoing research will be crucial for optimising remote wound monitoring and improving

healthcare outcomes for all patients.
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