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Abstract

Aims

To follow up results from an earlier study using an extended sample of 470,000 exome-

sequenced subjects to identify genes associated with type 2 diabetes (T2D) and to charac-

terise the distribution of rare variants in these genes.

Materials and methods

Exome sequence data for 470,000 UK Biobank participants was analysed using a combined

phenotype for T2D obtained from diagnostic and prescription data. Gene-wise weighted bur-

den analysis of rare coding variants in the new cohort of 270,000 samples was carried out

for the 32 genes previously significant with uncorrected p < 0.001 along with 7 other genes

previously implicated in T2D. Follow-up studies of GCK, GIGYF1, HNF1A and HNF4A used

the full sample of 470,000 to investigate the effects of different categories of variant.

Results

No novel genes were identified as exome wide significant. Rare loss of function (LOF) vari-

ants in GCK exerted a very large effect on T2D risk but more common (though still very rare)

nonsynonymous variants classified as probably damaging by PolyPhen on average approxi-

mately doubled risk. Rare variants in the other three genes also had large effects on risk.

Conclusions

In spite of the very large sample size, no novel genes are implicated. Coding variants with

an identifiable effect are collectively too rare be generally useful for guiding treatment

choices for most patients. The finding that some nonsynonymous variants in GCK affect

T2D risk is novel but not unexpected and does not have obvious practical implications. This

research has been conducted using the UK Biobank Resource.
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Introduction

A previous study carrying out gene-based weighed burden analysis of rare coding variants

using 200,000 exome-sequenced UK Biobank participants identified three genes associated

with type 2 diabetes (T2D) at exome-wide significance, GCK, HNF4A and GIGYF1 [1]. While

GCK, HNF4A were already well-recognised as causes of maturity onset diabetes of the young

(MODY), the implication of GIGYF1 was novel though was quickly confirmed in another

study which had access to sequence data from 379,000 UK Biobank participants [2–4].

Although these three were the only genes which achieved exome-wide significance, a total of

32 genes were significant with an uncorrected p value< 0.001 whereas, given that there were

20,384 informative genes, only 20 would be expected by chance. Additionally, a number of

these genes appeared to be of potential interest from a biological point of view. Of note, a num-

ber of other genes with well-established roles in T2D failed to produce strong evidence of asso-

ciation using the weighted burden analysis, consisting of HNF1A, HNF1B, ABCC8, INSR,

MC4R, SLC30A8 and PAM.

Subsequently, rare variant analyses using multiple different phenotypes were carried out in

larger numbers of exome sequenced participants from the same UK Biobank cohort and some

of the phenotypes studied included T2D and related conditions [5, 6].

Exome sequence data for a full set of 470,000 participants has now been made more widely

available and the current study carried out weighted burden analysis in the new samples of the

genes significant at p< 0.001 in the previous study, along with the other T2D implicated genes

mentioned above. This study aimed to test for evidence of association and to compare results

with those obtained from the multiple phenotype studies referred to above, as well as to char-

acterise the effects of different categories of coding variant on risk in implicated genes. The

purpose of this study was to use the 270,000 newly available exomes to test whether some of

the genes which had produced results which were not significant after correction for multiple

testing in the earlier study might yield evidence for association with the new sample. Addition-

ally, having the larger sample of 470,000 would mean that it would be possible to more accu-

rately model the effects on disease risk of different categories of variant in the associated genes.

Materials and methods

The methods used were essentially the same as those described previously and are briefly

repeated here for the reader’s convenience.

UK Biobank participants are volunteers intended to be broadly representative of the UK

population and are not selected on the basis of having any health condition. UK Biobank had

obtained ethics approval from the North West Multi-centre Research Ethics Committee which

covers the UK (approval number: 11/NW/0382) and had obtained written informed consent

from all participants. The UK Biobank approved an application for use of the data (ID 51119)

and ethics approval for the analyses was obtained from the UCL Research Ethics Committee

(11527/001). The data was accessed most recently on October 12 2023. There was no informa-

tion which could be used to identify individual subjects. No subjects were minors. The UK

Biobank Research Analysis Platform was used to access the Final Release Population level

exome OQFE variants in PLINK format for 469,818 exomes which had been produced at the

Regeneron Genetics Center using the protocols described here: https://dnanexus.gitbook.io/

uk-biobank-rap/science-corner/whole-exome-sequencing-oqfe-protocol/protocol-for-

processing-ukb-whole-exome-sequencing-data-sets [6]. All variants were then annotated

using the standard software packages VEP, PolyPhen and SIFT [7–9]. To obtain population

principal components reflecting ancestry, version 2.0 of plink (https://www.cog-genomics.org/

plink/2.0/) was run with the options—maf 0.1—pca 20 approx [10, 11].
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The T2D phenotype was defined in the same way as previously and was determined from

three sources in the dataset: self-reported diabetes or type 2 diabetes (but not type 1 or gesta-

tional diabetes); reporting taking any of a list of named medications commonly used to treat

T2D in the UK (https://www.diabetes.co.uk/Diabetes-drugs.html); having an ICD10 code for

non-insulin-dependent diabetes mellitus in hospital records or as a cause of death [1]. Subjects

in any of these categories were deemed to be cases while all other subjects were taken to be

controls. In the primary analyses to implicate specific genes, attention was restricted to partici-

pants not included in the earlier study, consisting of 19,701 cases and 249,581 controls. For the

subsequent analyses using the whole sample there were 33,629 cases and 436,136 controls.

The SCOREASSOC program was used to carry out a weighted burden analysis to test

whether, in each gene, sequence variants which were rarer and/or predicted to have more

severe functional effects occurred more commonly in cases than controls [12–14]. Attention

was restricted to rare variants with minor allele frequency (MAF) < = 0.01 in cases or controls

or both. As previously described, variants were weighted by overall MAF so that variants with

MAF > = 0.01 were given a weight of 1 while very rare variants with MAF close to zero were

given a weight of 10. Variants were also weighted according to their functional annotation

using the GENEVARASSOC program, which was used to generate the input files for weighted

burden analysis by SCOREASSOC. Variants predicted to cause complete loss of function

(LOF) of the gene were assigned a weight of 100. Nonsynonymous variants were assigned a

weight of 5 but if PolyPhen annotated them as possibly or probably damaging then 5 or 10 was

added to this and if SIFT annotated them as deleterious then 20 was added. The full set of

weights and categories is displayed in Table 1 of the previous study [1]. The weighting scheme

had been devised to be broadly concordant with the observed effects of variants of different

annotations and allele frequencies, as detailed in an earlier report [15]. As described previ-

ously, the weight due to MAF and the weight due to functional annotation were multiplied

together to provide an overall weight for each variant. Variants were excluded if there were

more than 10% of genotypes missing in the controls and cases or if the heterozygote count was

smaller than both homozygote counts in controls and cases. If a subject was not genotyped for

a variant then they were assigned the subject-wise average score for that variant. For each sub-

ject a gene-wise weighted burden score was derived as the sum of the variant-wise weights,

each multiplied by the number of alleles of the variant which the given subject possessed.

Analyses were restricted to the 32 genes significant at p< 0.001 in the previous study along

with the other 7 listed above as being previously implicated in T2D. For each gene, logistic

regression analysis was carried out with T2D as the dependent variable including the first 20

population principal components and sex as covariates and a likelihood ratio test was per-

formed comparing the likelihoods of the models with and without the gene-wise burden score.

This is a test for association between the gene-wise burden score and caseness and the statisti-

cal significance was summarised as a signed log p value (SLP), which is the log base 10 of the p

value given a positive sign if the score is higher in cases and negative if it is higher in controls.

Since only 39 genes were analysed and each gene was subjected to a single test, in total only 39

tests were performed in the new samples. This means that after a Bonferroni correction for

multiple testing a gene could be declared statistically significant if it achieved an SLP with

absolute value greater than -log10(0.05/39) = 2.89 using the new samples.

Follow-up analyses were performed on all genes individually achieving this significance

level and also GIGYF1, because this gene had reached conventional levels of exome-wide statis-

tical significance in the earlier study of this dataset. For this subset of genes the weighted bur-

den analysis described above was repeated using the whole sample of 33,629 cases and 436,136

controls. Additionally, for each subject a count was obtained of the number of variants they

carried falling into particular broad annotation categories, such as LOF, protein altering, etc.
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The full list of these categories is shown in S1 Table. These counts were entered into a multiple

logistic regression analysis with T2D as the dependent variable and again including sex and 20

principal components as covariates in order to elucidate the contribution of different types of

variant to the overall evidence for association. The odds ratios (ORs) associated with each cate-

gory were estimated along with their standard errors and the Wald statistic was used to obtain

a p value. This p value was converted to an SLP, again with the sign being positive if the OR

was greater than 1, indicating that variants in that category tended to increase risk.

Table 1. Results of gene-wise weighted burden analysis of rare variants in the original sample of 200,000 participants, the new sample of 270,000 and, for genes of

interest, in the combined sample of 470,000.

Symbol SLP in original sample Name SLP in new sample SLP in combined sample

GCK 22.25 Glucokinase 12.09 32.11

HNF4A 6.82 Hepatocyte Nuclear Factor 4 Alpha 3.81 9.39

GIGYF1 6.22 GRB10 Interacting GYF Protein 1 2.42 7.58

ZNF620 3.78 Zinc Finger Protein 620 0.50

RAI2 3.74 Retinoic Acid Induced 2 -0.03

TM4SF20 3.65 Transmembrane 4 L Six Family Member 20 0.12

ALAD 3.63 Aminolevulinate Dehydratase 1.25

PPARG 3.45 Peroxisome Proliferator Activated Receptor Gamma 0.94

LOC105370752 3.42 Uncharacterized LOC105370752 0.23

KLHL11 3.35 Kelch Like Family Member 11 0.59

HMGXB4 3.35 HMG-Box Containing 4 2.30

MIR6825 3.31 MicroRNA 6825 0.00

TAZ 3.30 Tafazzin 0.63

WDR33 3.25 WD Repeat Domain 33 -0.23

HECTD1 3.24 HECT Domain E3 Ubiquitin Protein Ligase 1 0.28

ZNF571-AS1 3.23 ZNF571 Antisense RNA 1 -0.15

GYG1 3.22 Glycogenin 1 -0.09

APTX 3.20 Aprataxin 0.62

KCNK15 3.19 Potassium Two Pore Domain Channel Subfamily K Member 15 -0.05

XPO1 3.19 Exportin 1 1.24

PKD1 3.10 Polycystin 1, Transient Receptor Potential Channel Interacting 0.11

ZNF763 -3.01 Zinc Finger Protein 763 1.24

COA5 -3.05 Cytochrome C Oxidase Assembly Factor 5 -0.11

GHRL -3.15 Ghrelin And Obestatin Prepropeptide 0.22

DEUP1 -3.20 Deuterosome Assembly Protein 1 0.39

C7orf50 -3.22 Chromosome 7 Open Reading Frame 50 -0.54

MFSD12 -3.34 Major Facilitator Superfamily Domain Containing 12 -0.75

C19orf73 -3.34 Chromosome 19 Open Reading Frame 73 -0.01

ATXN1L -3.35 Ataxin 1 Like -1.08

EML4 -3.58 EMAP Like 4 0.21

DLEC1 -3.72 DLEC1 Cilia And Flagella Associated Protein -0.16

RPS5 -3.76 Ribosomal Protein S5 0.27

HNF1A 1.66 HNF1 Homeobox A 7.17 7.98

HNF1B -0.29 HNF1 Homeobox B -0.21

ABCC8 1.94 ATP Binding Cassette Subfamily C Member 8 2.44

INSR -0.25 Insulin Receptor 0.25

MC4R 1.41 Melanocortin 4 Receptor 1.37

SLC30A8 -2.64 Solute Carrier Family 30 Member 8 -1.16

PAM 0.19 Peptidylglycine Alpha-amidating Monooxygenase 1.30

https://doi.org/10.1371/journal.pone.0311827.t001
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Data manipulation and statistical analyses were performed using GENEVARASSOC,

SCOREASSOC and R [13, 14, 16].

Results

Table 1 shows the results of the primary analysis, presenting the SLPs obtained in the previous

study along with those obtained in the new sample. Of the genes showing evidence for associa-

tion in the previous study, only GCK (SLP = 12.09) and HNF4A (SLP = 3.81) are formally sig-

nificant after correction for multiple testing, while GIGYF1 yields SLP = 2.42 and none of the

other genes previously with p< 0.001 shows evidence for association in the new sample. Of

the 7 genes implicated in T2D in earlier studies, only HNF1A (SLP = 7.17) is formally statisti-

cally significant.

The four genes named above were carried forward for secondary analyses. The original

study considered 20,384 genes, meaning that for a gene-wise result to be considered exome-

wide significant the magnitude of the SLP obtained should exceed -log10(0.05/20384) = 5.61.

For the four genes carried forward, the results of weighted burden analysis in the entire sample

of 33,629 cases and 436,136 controls are also shown in Table 1 and it can be seen that all four

of these genes produce results which would be regarded as exome-wide significant in the full

sample.

In order to gain insights into the effects of different categories of variant within these four

genes of interest, counts for variants of each category in each subject were entered into multi-

ple logistic regression analysis along with sex and 20 principal components as covariates.

These results are shown in Table 2 and are summarised briefly as follows.

Table 2A shows that LOF variants in GCK exert a substantial risk of T2D, with OR over 20,

but that nonsynonymous variants classified as probably damaging by PolyPhen also increase

risk, with OR estimated as 2.45. Variants in this latter category are observed 363 times in the

sample of 470,000 participants, so occur in less than 1 in 1,000 people, whereas the LOF vari-

ants are rarer still, being seen only 43 times.

Table 2B shows that LOF variants in GIGYF1 are slightly commoner than in GCK, being

seen 174 times, although they remain extremely rare. They have a more moderate effect on

risk, with OR estimated as only 3.44. No other categories of variant have a clear effect on risk,

though it is possible that variants classified has probably damaging by PolyPhen (SLP = 1.97)

have a small effect (OR = 1.21).

Table 2C shows that LOF variants in HNF1A increase risk with OR = 4.88, but there may

also be a modest effect of 5-prime UTR variants (SLP = 2.31, OR = 1.30) and/or variants classi-

fied as probably damaging by PolyPhen (SLP = 1.52, OR = 1.33).

Table 2D shows that LOF variants in HNF4A are extremely rare and do not have a detect-

able effect. Rather, the signal implicating this gene seems to come from variants classified as

probably damaging by PolyPhen (SLP = 2.79, OR = 1.87) and two indel variants. These two

variants consisted of 20:44428418GCCAACACAATGC>G (rs1349603952), observed in 4

controls and 2 cases, and 20:44424132A>AGCT (rs776489992), observed in 4 controls and 3

cases. Malacards lists 4 entries for rs776489992, with phenotypes MODY, MODY Type 1, T2D

and Fanconi Renotubular Syndrome 4 with MODY (https://www.malacards.org/search/

results?query=rs776489992). However there are no previous reports for rs1349603952.

Discussion

These analyses provide very strong support for GCK as a risk gene for T2D while three other

previously identified genes also achieve conventional levels of significance: GIGYF1, HNF1A
and HNF4A. However, no novel genes are implicated. As mentioned previously, this dataset
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Table 2. Results from logistic regression analysis including principal components and sex as covariates showing the contribution different categories of variant

within each gene make to risk of hyperlipidaemia. Odds ratios for each category are estimated and the strength of evidence for an effect is expressed as the SLP.

2A: Results for GCK
Variant category Number of separate

variants

Total count in

controls

Mean count in

controls

Total count in

cases

Mean count in

cases

OR (95% confidence

interval)

SLP

Intronic, etc 722 22545 0.051692 2454 0.072973 1.03 (0.98–1.08) 0.61

5 prime UTR 84 2185 0.005011 311 0.009251 1.05 (0.92–1.19) 0.32

Synonymous 149 10442 0.023942 795 0.023640 0.93 (0.86–1.00) -1.32

Splice region 55 4240 0.009722 322 0.009575 1.05 (0.93–1.17) 0.35

3 prime UTR 41 3647 0.008363 245 0.007286 0.91 (0.80–1.04) -0.81

Protein altering 218 1725 0.003955 233 0.006929 1.01 (0.84–1.23) 0.05

Indel, etc 3 9 0.000021 2 0.000059 2.89 (0.60–13.93) 0.74

LOF 25 15 0.000034 28 0.000833 24.41 (12.61–47.25) 21.35

SIFT deleterious 116 627 0.001438 98 0.002914 1.31 (0.90–1.91) 0.81

PolyPhen possibly

damaging

36 206 0.000472 25 0.000743 1.23 (0.73–2.06) 0.37

PolyPhen probably

damaging

84 304 0.000697 69 0.002052 2.45 (1.62–3.70) 4.84

2B: Results for GIGFY1
Variant category Number of separate

variants

Total count in

controls

Mean count in

controls

Total count in

cases

Mean count in

cases

OR (95% confidence

interval)

SLP

Intronic, etc 1419 54973 0.126046 4845 0.144073 1.01 (0.98–1.04) 0.36

5 prime UTR 41 421 0.000965 47 0.001399 0.9 (0.66–1.23) -0.31

Synonymous 451 11251 0.025797 982 0.029203 0.97 (0.91–1.04) -0.42

Splice region 148 8098 0.018568 825 0.024533 1.01 (0.94–1.08) 0.11

3 prime UTR 63 4903 0.011242 356 0.010578 0.88 (0.78–0.98) -1.76

Protein altering 843 21609 0.049546 2084 0.061975 1 (0.94–1.07) 0.04

Indel, etc 47 1186 0.002720 91 0.002706 1.01 (0.82–1.26) 0.05

LOF 83 135 0.000310 39 0.001160 3.44 (2.38–4.96) 10.78

SIFT deleterious 443 3164 0.007255 285 0.008475 1.01 (0.88–1.17) 0.06

PolyPhen possibly

damaging

162 5444 0.012482 395 0.011746 1.00 (0.88–1.13) -0.01

PolyPhen probably

damaging

244 2922 0.006700 283 0.008415 1.21 (1.04–1.41) 1.97

2C: Results for HNF1A
Variant category Number of separate

variants

Total count in

controls

Mean count in

controls

Total count in

cases

Mean count in

cases

OR (95% confidence

interval)

SLP

Intronic, etc 654 22154 0.050795 2087 0.062058 0.98 (0.93–1.03) -0.47

5 prime UTR 69 992 0.002274 136 0.004055 1.30 (1.08–1.56) 2.31

Synonymous 223 3606 0.008268 369 0.010973 1.03 (0.92–1.15) 0.22

Splice region 48 1304 0.002990 198 0.005888 1.09 (0.93–1.28) 0.56

3 prime UTR 48 775 0.001777 92 0.002736 1.06 (0.85–1.34) 0.23

Protein altering 401 6623 0.015186 675 0.020072 1.09 (0.98–1.22) 0.94

Indel, etc 6 19 0.000044 4 0.000119 3.12 (1.03–9.44) 1.11

LOF 18 71 0.000163 24 0.000714 4.88 (3.01–7.88) 10.36

SIFT deleterious 228 3004 0.006888 286 0.008505 0.95 (0.78–1.16) -0.21

PolyPhen possibly

damaging

96 1034 0.002371 98 0.002914 0.96 (0.75–1.23) -0.12

PolyPhen probably

damaging

126 1028 0.002357 114 0.003390 1.33 (1.02–1.72) 1.52

2D: Results for HNF4A

(Continued)
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has been used for analyses of multiple phenotypes including some relating to T2D. which we

can refer to as the Regeneron and AstraZeneca studies (Backman et al., 2021; Wang et al.,

2021). The Regeneron study carried out a variety of single variant and gene-wise burden tests

on 3,994 health-related traits to produce a total of about 2.3 billion tests, yielding a critical p

value of 2.18e-11 (corresponding to SLP = 10.66), and reported 8,865 significant associations

which are presented in their Supplementary Data 2 (Backman et al., 2021). 64 associations

were reported between GCK and diabetes or related phenotypes, with the most significant

being with glycated haemoglobin HbA1c at p = 4.98e-22, equivalent to SLP = 21.30, whereas in

the current study GCK yields SLP = 32.11. GIGYF1 was associated with T2D at SLP = 12.34

and HNF1A with T2D at SLP = 12.58. However no association with a diabetes-related pheno-

type was reported for HNF4A, although it was associated with levels of sex hormone binding

globulin (SHBG) at SLP = 41.85. For the AstraZeneca study, all gene-wise and variant-wise

associations with 17,361 binary and 1,419 quantitative phenotypes are reported on the Astra-

Zeneca PheWAS Portal at https://azphewas.com (Wang et al., 2021). This was accessed to find

the most significant p value for any analysis of each of these genes with the phenotype

"Union#E11#Type 2 diabetes mellitus" and Table 3 shows the results obtained compared with

those for the current study. It can be seen that the current study again produces stronger evi-

dence for association with GCK, with SLP = 32.11 versus SLP = 23.10 for the AstraZeneca

study, whereas for the other three genes the strength of evidence for association is fairly similar

between the two studies.

The fact that current study finds stronger evidence for association of GCK relative to the

other analyses may reflect the fact that, for this gene, the pattern of effects due to different

Table 2. (Continued)

Variant category Number of separate

variants

Total count in

controls

Mean count in

controls

Total count in

cases

Mean count in

cases

OR (95% confidence

interval)

SLP

Intronic, etc 935 27523 0.063108 2774 0.082483 1 (0.96–1.04) 0.01

5 prime UTR 62 795 0.001823 57 0.001682 0.81 (0.61–1.07) -0.87

Synonymous 192 11920 0.027332 1039 0.030897 1.02 (0.96–1.09) 0.34

Splice region 51 2656 0.006090 319 0.009488 1.05 (0.93–1.20) 0.38

3 prime UTR 54 1089 0.002497 119 0.003541 0.9 (0.73–1.09) -0.57

Protein altering 301 3225 0.007395 399 0.011865 1.08 (0.93–1.25) 0.49

Indel, etc 2 8 0.000018 5 0.000149 9.76 (3.09–30.86) 2.83

LOF 9 9 0.000021 1 0.000030 1.78 (0.27–11.70) 0.28

SIFT deleterious 126 1400 0.003210 173 0.005144 1.34 (0.96–1.86) 1.09

PolyPhen possibly

damaging

40 738 0.001692 68 0.002022 0.88 (0.59–1.29) -0.3

PolyPhen probably

damaging

59 326 0.000747 69 0.002052 1.87 (1.26–2.78) 2.79

https://doi.org/10.1371/journal.pone.0311827.t002

Table 3. Comparison of results from current study to those reported for the AstraZeneca study. The results for

the AstraZeneca study are displayed as the equivalent SLP for the most significant result reported for that gene with the

phenotype "Union#E11#Type 2 diabetes mellitus".

Gene SLP for combined sample in current study SLP for AstraZeneca study

GCK 32.11 23.10

GIGYF1 7.58 8.77

HNF1A 7.98 6.85

HNF4A 9.39 9.37

https://doi.org/10.1371/journal.pone.0311827.t003
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variant types does resemble the model which is assumed for the weighted burden analysis,

with strong effects due to LOF variants and more moderate effects due to some nonsynon-

ymous variants. However for the other three genes this pattern is not seen and hence for them

the weighted burden analysis does not have advantages over more conventional variant pool-

ing analyses. In a subsequent study which used a wide variety of different methods to predict

the effects of nonsynonymous variants, it was observed that other predictors would produce

stronger evidence for effects of nonsynonymous variants in these genes [17]. However using a

variety of different predictors would require correction for multiple testing and so was not

thought appropriate for the current study, which aimed simply to obtain evidence for assoca-

tion at the level of the gene.

It is of interest to note that the evidence in favour of the association with T2D risk is consid-

erably higher for GCK than for the other genes, and likewise the effect size of implicated vari-

ants is larger. It is tempting to speculate that this relates to the molecular mechanisms

underlying the observed association. The product of GCK, glucokinase, is a low-affinity hexose

kinase which acts as the rate limiting enzyme for glycolysis in pancreatic islet cells, as well as in

some hepatocytes and neurons, meaning that it can be used by these cells as an indicator of

blood glucose levels [18, 19]. Thus, impaired functioning of glucokinase is expected to lead to

reduced sensitivity to higher glucose levels and hence inadequate glycaemic control. By con-

trast, GIGYF1, HNF1A and HNF4A are involved with lower level cellular processes which have

a less immediate impact in terms of producing diabetes as a phenotype. The product of

GIGFY1 binds to Grb10, a protein which regulates the response to insulin-like growth factor

receptor signalling and it is associated with a number of different phenotypes in addition to

T2D, including lipid-related phenotypes, education score, cognitive function and cystatin C

levels [6, 20–22]. The products of HNF1A and HNF4A are transcription factors affecting the

expression of large numbers of other genes and influencing development of the liver and pan-

creas [23]. Biallelic variants in HNF1A can cause hepatocellular adenomas, while variants in

HNF4A can cause Fanconi renotubular syndrome and are associated with SHBG levels [6, 24,

25]. The fact that GCK has such a direct effect on contributing to the control of glucose levels

may explain in part why LOF variants in it have a larger effect on the T2D phenotype than for

other genes.

The emphasis of the current study is to detect and characterise association at the level of the

gene and of categories of variant within the gene, even though many of the variants concerned

are too rare to be tested individually. However it is recognised that within an associated cate-

gory there will be some variants having an effect on risk and others which do not. When the

same variant is observed in multiple individuals then it would be possible to attempt to model

the individual effect of such a variant in terms of its estimated odds ratio or penetrance, as has

been carried out using variants designated as pathogenic in these genes in a subsample of the

UK Biobank dataset [26]. The availability of the AstraZeneca PheWAS Portal at https://
azphewas.com means that for any such variant one and any studied phenotype one can obtain

the variant counts in controls and cases in order to estimate the odds ratio and/or penetrance.

It could be argued that the work presented here highlights some of the limitations as well as

strengths of analysing rare coding variants identified in exome-sequencing studies of large

population cohorts. Because of the high prevalence of T2D, many thousands of cases are avail-

able for study but, as the results show, only a small fraction of these cases carry a variant in a

category which can be identified as impacting risk. A number of genes which had previously

been implicated in targeted studies do not in the current study yield evidence at conventional

levels of statistical significance after correction for multiple testing. Although T2D has a high

prevalence, many other clinically important phenotypes have a substantial genetic contribu-

tion to risk but with a lower prevalence and there would be insufficient case numbers present
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in an unselected cohort for similar approaches to be likely to yield any convincing novel rare

variant associations. In order to identify genes involved in such conditions it would be neces-

sary to carry out studies involving specifically recruited cases, perhaps also focusing on those

from densely affected families where large-effect variants may be active. To support such ini-

tiatives, it would be helpful to strengthen methods to incorporate existing samples as controls

rather than requiring that a matching set of controls be recruited and sequenced for each new

set of cases. Using existing samples as controls has been helpful in other sequencing studies

but requires careful alignment of methodologies to minimise artefacts [27].

If adequately sized samples are used, exome sequencing studies can identify genes in which

damaging variants have large effects on risk of particular phenotypes. The main value of such

studies is to implicate specific genes, and hence their protein products, as impacting the phe-

notype. This may ultimately lead to a better understanding of the molecular pathways involved

in pathogenesis. However, because for non-Mendelian diseases identifiable variants are only

seen in a very small proportion of cases, typically fewer than 1%, such approaches seem

unlikely to be helpful to guide individual treatment interventions in most situations. The vast

majority of patients would not carry a variant which could be clearly identified as causal, and

even if such a variant were encountered this might not automatically have clear implications

for treatment choices. Taking the results obtained from the current study as an example, fewer

than 1% of cases have a variant in one of the four identified genes which would be classified as

having a pathogenic effect. A recent review provides an account of the variations in clinical

course and responses to treatment in individuals carrying pathogenic variants in GCK,

HNF1A or HNF4A and hence identifying these cases might provide some therapeutic benefit

[28]. However for most patients with T2D, genetic screening would not be expected to pro-

duce actionable results.

Exome-sequencing studies to date, including the current one, now fairly consistently show

that the category of variant having the highest identifiable impact on phenotype consists of

those variants which are predicted to cause loss of function of the gene, or haploinsufficiency.

This is not to say that individual variants in other categories might not have larger effects, and

of course the literature is replete with examples of these. However, in a situation where individ-

ual variants are extremely rare, as is expected for those with large effect, it becomes necessary

to pool variants together in some form of burden analysis and currently available methods for

prediction of impact of non-LOF variants on the function of the gene and/or protein product

are not able to reliably discriminate those which are pathogenic from those without major

effect. If for a given gene-phenotype pair we can discover that that LOF variants have a particu-

lar effect on increasing or decreasing risk then this may provide an important endpoint in

terms of improved insight into the molecular pathways involved in pathogenesis. For example,

this might be sufficient to flag up the protein as a possible drug target. However it is possible to

argue that additional useful information could be gained from more intensive investigations to

elucidate the effects of other types of variant. For example, if one can find that non-synony-

mous variants affecting particular protein domains tend to show evidence of association this

might yield a more sophisticated understanding of disease mechanisms which again might

potentially be exploited therapeutically.

The present study confirms the role of four previously implicated genes in risk of T2D. It

also demonstrates that nonsynonymous variants in GCK which PolyPhen annotates as proba-

bly damaging on average approximately double risk of T2D, although as these variants are still

very rare this finding may not have much in the way of practical applications. The results show

the distributions of different categories of variant in these genes in the general population.

Overall, the study provides some insights into what can be achieved from the analysis of

exome sequence data and into some limitations of such approaches.
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