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Abstract

Cerebrovascular segmentation is a crucial preliminary task for many computer-aided diag-

nosis tools dealing with cerebrovascular pathologies. Over the last years, deep learning

based methods have been widely applied to this task. However, classic deep learning

approaches struggle to capture the complex geometry and specific topology of cerebrovas-

cular networks, which is of the utmost importance in many applications. To overcome these

limitations, the clDice loss, a topological loss that focuses on the vessel centerlines, has

been recently proposed. This loss requires computing the skeletons of both the manual

annotation and the predicted segmentation in a differentiable way. Currently, differentiable

skeletonization algorithms are either inaccurate or computationally demanding. In this arti-

cle, it is proposed that a U-Net be used to compute the vascular skeleton directly from the

segmentation and the magnetic resonance angiography image. This method is naturally

differentiable and provides a good trade-off between accuracy and computation time. The

resulting cascaded multitask U-Net is trained with the clDice loss to embed topological con-

straints during the segmentation. In addition to this topological guidance, this cascaded

U-Net also benefits from the inductive bias generated by the skeletonization during the

multitask training. This model is able to predict the cerebrovascular segmentation with a

more accurate topology than current state-of-the-art methods and with a low training time.

This method is evaluated on two publicly available time-of-flight magnetic resonance angi-

ography (TOF-MRA) images datasets, also the codes of the proposed method and the

reimplementation of state-of-the-art methods are made available at: https://github.com/

PierreRouge/Cascaded-U-Net-for-vessel-segmentation.

1 Introduction

Vascular diseases encompass various alterations in blood vessels (e.g. stenosis, aneurysm,

thrombosis, or embolism) with significant consequences such as stroke, a leading cause of

death and disability. The accurate vessel segmentation from angiographic images, actively

investigated over the last 30 years [1, 2], is a crucial step for the diagnosis and treatment of vas-

cular diseases. Over the last decade, deep learning has allowed significant progress in medical
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Citation: Rougé P, Passat N, Merveille O (2024)

Topology aware multitask cascaded U-Net for

cerebrovascular segmentation. PLoS ONE 19(12):

e0311439. https://doi.org/10.1371/journal.

pone.0311439

Editor: Tomo Popovic, University of Donja Gorica,

MONTENEGRO

Received: May 30, 2024

Accepted: September 18, 2024

Published: December 5, 2024

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0311439

Copyright: © 2024 Rougé et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Among the two

dataset used in this study, Bullitt is publicly

available, including both annotations and TOF-MRA

images (available at: https://public.kitware.com/

Wiki/TubeTK/Data). For IXI, only the TOF-MRA

https://orcid.org/0000-0003-2448-3935
https://orcid.org/0000-0002-9918-3761
https://github.com/PierreRouge/Cascaded-U-Net-for-vessel-segmentation
https://github.com/PierreRouge/Cascaded-U-Net-for-vessel-segmentation
https://doi.org/10.1371/journal.pone.0311439
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0311439&domain=pdf&date_stamp=2024-12-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0311439&domain=pdf&date_stamp=2024-12-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0311439&domain=pdf&date_stamp=2024-12-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0311439&domain=pdf&date_stamp=2024-12-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0311439&domain=pdf&date_stamp=2024-12-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0311439&domain=pdf&date_stamp=2024-12-05
https://doi.org/10.1371/journal.pone.0311439
https://doi.org/10.1371/journal.pone.0311439
https://doi.org/10.1371/journal.pone.0311439
http://creativecommons.org/licenses/by/4.0/
https://public.kitware.com/Wiki/TubeTK/Data
https://public.kitware.com/Wiki/TubeTK/Data


imaging and especially in segmentation. State-of-the-art approaches predominantly rely on

architectures resembling U-Net [3–5] or transformer-based models [6–8]. Despite these

efforts, automatic segmentation of vascular networks remains a challenging issue, especially

due to the complex topological and geometrical properties of vessels, and their sparseness in

the images. By contrast to many anatomical structures, vessels do not constitute a compact vol-

ume at a specific position and scale. They are organized as a multiscale network (from large

vessels to thin ones close to / beyond the resolution of the acquisition) in the whole image.

This represents a challenge for deep learning methods, especially when a topologically correct

result is required for subsequent tasks (e.g. blood flow modeling [9]).

To overcome this challenge, Shit et al. [10] recently proposed a novel metric specifically

designed to evaluate the quality of tubular structure segmentation. This metric, named clDice

(for “centerline Dice”), mainly relies on the skeleton of the tubular structures instead of their

whole volume, therefore focusing on topological information. To use this new metric as a loss

function, it is necessary to compute the skeleton of the predicted segmentation in a differentia-

ble manner. Therefore, the authors proposed a differentiable soft-skeleton algorithm. How-

ever, the resulting skeletons do not preserve the topology of the structures of interest. In a

subsequent work, Menten et al. [11] proposed two new differentiable skeletonization algo-

rithms to overcome this limitation. They showed that using the clDice loss provides better and

more connected segmentation of 2D tubular structures, for instance on retinal images and on

3D tubular structures of the Vessap dataset [12] (a dataset of mice brain vascular networks

acquired at a very high resolution and with a research protocol). However, such approach has

not yet been tested on Magnetic Resonance Angiography (MRA) or X-ray Computed Tomog-

raphy Angiography (CTA) datasets acquired in clinical conditions (images with more noise,

artifacts and with a lower resolution).

In this article, a cascaded network with a U-Net backbone [3] is proposed, which first com-

putes the segmentation and then uses this segmentation and the initial image to perform the

skeletonization task. In this architecture, the skeletonization task directly benefits from the seg-

mentation, and may also incorporate information from the initial image to produce a better

skeleton. Finally, the skeleton output, obtained in a differentiable way, is used to compute the

clDice loss and supervise the whole network, resulting in a more topologically correct

segmentation.

The method is evaluated against four standard U-Net models, trained with either the Dice

or clDice losses using the skeletonization methods introduced in [10, 11]. Additionally, two

other methods aimed at preserving topology in vascular segmentation [13, 14], which have not

yet been tested for cerebrovascular segmentation, are included in this evaluation, along with

two well-established architectures for vascular segmentation [15, 16]. This study demonstrated

that the proposed method provides segmentations with a more accurate topology while having

a lower training time.

The main contributions of this article are the following:

• The performance of the clDice loss and state-of-the-art methods for 3D cerebrovascular seg-

mentation are evaluated;

• The code for all compared methods is provided within a unified PyTorch framework,

designed to be easily used and extended by the community for benchmarking 3D brain vas-

cular segmentation: https://github.com/PierreRouge/Cascaded-U-Net-for-vessel-

segmentation;

• An efficient way of performing the skeletonization operation to compute the clDice is

proposed;
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• A cascaded multitask U-Net architecture is proposed, which segments brain vascular net-

works with a more accurate topology and with a lower training time.

The remainder of the article is organized as follows. In Section 2, the state-of-the-art of

cerebrovascular segmentation is discussed. In Section 3, the methodological contribution is

described. In Section 4, experiments wich compare the method with state-of-the-art ones are

presented. In Section 5, these methods and results are discussed. Section 6 concludes this arti-

cle with perspective works.

2 Related works

In this section, recent deep learning methods for vascular segmentation are discussed. The ves-

selness filters techniques are not covered (see e.g. [17] for a recent survey), and the focus is

mainly—though not exclusively—on methods applied to cerebrovascular networks.

2.1 Deep learning for vascular segmentation

Deep learning has seen extensive applications in cerebrovascular segmentation, as evidenced

by the work of Chen et al. [18]. Pioneering efforts in the field include those by Livne et al. [19]

and Sanches et al. [20] who leveraged architectures based on both 2D and 3D U-Net. Notably,

Sanches et al. augmented the conventional U-Net architecture with inception modules to

enhance the network representational capacity.

Subsequent efforts were directed toward designing networks specifically tailored for curvi-

linear structure segmentation. For instance, Mou et al. [15] introduced a U-Net-like convolu-

tional network equipped with two attention modules to capture both spatial and channel

relationships. Additionally, they employed 1 × 3 and 3 × 1 kernels to better capture boundary

features in various spatial directions, demonstrating its efficacy across multiple imaging

modalities and datasets.

Similarly, Ni et al. [21] proposed incorporating channel attention during the aggregation of

low and high-level features in the decoder phase. They also integrated an Atrous Spatial Pyra-

mid Pooling (ASPP) module into the bottleneck to augment the receptive field of their archi-

tecture, yielding promising results on a private CTA dataset.

In parallel, Tetteh et al. [16] devised an architecture aimed at simultaneous vessel segmenta-

tion, centerline prediction, and bifurcation detection in angiographic images. Their architec-

ture, a fully convolutional network (FCN) with four convolutional layers and a final

classification layer, stands out for its use of a 3D convolution with a cross-hair filter, enabling

to capture 3D information without excessive computational overhead. Notably, the absence of

pooling operations in this FCN architecture helps to preserve small vessel structures in the fea-

ture maps, thereby enhancing segmentation performance.

In a similar vein, Guo et al. [22] mitigated computational complexity while retaining 3D

spatial information by combining three U-Net networks trained on 2D slices in orthogonal

directions, resulting in a 2.5D U-Net.

Furthermore, Xia et al. [23] introduced a method emphasizing the significance of edge vox-

els. Their approach incorporates a reverse edge attention module to refine features in skip con-

nections by accentuating edge information in the feature maps. Additionally, they propose a

novel loss term to impose stricter constraints on prediction boundaries.

Recently, Valderrama et al. [24] proposed to incorporate the skull-stripping step directly in

a multitask architecture. In addition, they used free adversarial training (gradient based pertur-

bation on the input data) to compensate the lack of annotated data. They demonstrate that

their model achieve competitive results on two cerebrovascular segmentation datasets.
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Also, Dang et al. [25] addressed the challenge of data annotation by proposing a weakly-

supervised deep learning framework. Annotated patches were generated using a classifier to

distinguish vessel from non-vessel patches and the K-means algorithm.

While these methods excel in voxel-wise segmentation, they may fall short in accurately

capturing the complex geometry and topology of cerebrovascular structures.

2.2 Topology aware segmentation

In recent developments, several methods have emerged to address the challenge of incorporat-

ing topological priors or constraints during training. One notable example is the work by La

Barbera et al. [13], which introduces a loss function based on vesselness. Specifically, this loss

function comprises a term comparing the eigenvalues of the Hessian matrix and another term

enforcing a high Frangi vesselness value for voxels within the manual annotation. The authors

demonstrated the effectiveness of this approach in improving the segmentation of arteries,

veins and ureters in contrast-enhanced Computed Tomography (ceCT) scanners.

Keshwani et al. [26] proposed a multitask architecture featuring a shared encoder and three

distinct decoders. These decoders include a standard segmentation decoder, a decoder output-

ting a distance map to identify vessel centers, and a decoder outputting a vector for each voxel.

Following this, a calculation of L2 distance is performed between the vectors produced by the

last decoder, considering two central voxels. Then the network is trained to output vectors

with a L2 distance proportional to the topological distance if the voxels belong to the same vas-

cular tree and with a high L2 distance otherwise. After training, this learned distance is used to

construct the vascular tree starting from vessel sources using Dijkstra multi-source shortest

path tree algorithm. This method has the advantage of naturally building a fully connected vas-

cular network, however the latter is not a segmentation but a skeleton. Furthermore, while pri-

marily relevant for multitask segmentation tasks such as portal/hepatic vein or artery/vein

segmentation, this architecture presents a novel approach to incorporate topological

information.

Similarly, Wang et al. [14] introduced a multitask architecture outputting both segmenta-

tion and distance maps. First, a thinning is applied to the probability map to obtain a binary

skeleton and then the real radius is obtained by fitting Gaussian kernels to each voxel with the

standard deviation based on the value of the voxel in the predicted distance map. This process

results in smoother and more accurate edges compared to voxel-wise segmentation methods.

A significant progress comes from Shit et al. [10], who introduced the centerline Dice

(clDice) loss function based on the segmentation skeleton, thereby avoiding bias towards large

vessels. This method involves computing the skeleton of the predicted segmentation in a dif-

ferentiable manner using a soft-skeleton algorithm proposed by the authors. Additionally,

Menten et al. [11] proposed two new differentiable skeletonization methods.

Stucki et al. [27] proposed a topological loss function based on persistent homology, tested

on various 2D datasets with different topological characteristics. While some datasets feature

curvilinear, non-vessel, structures, this approach represents a novel exploration of topological

considerations.

Furthermore, some works leverage discrete Morse theory (DMT) to identify topologically

significant structures. For instance, Hu et al. [28] employ a loss function focusing on detected

Morse structures to ensure the correct segmentation of these critical structures. Additionally,

Gupta et al. [29] utilize DMT to compute a meaningful uncertainty map, that can be used to

improve the segmentation topology through a semi-automatic post-processing workflow.

The recent TopCoW challenge [30] provides a comprehensive overview of the current

state-of-the-art in vessel segmentation. Participants predominantly employed U-Net
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architectures (mostly nnU-Net) with 3D patches, and the use of data augmentation and

ensembling significantly increased performance. However, only a few teams utilized loss func-

tions dedicated to vascular segmentation, but those that did achieved better results, particularly

in terms of segmentation topological correctness. This highlights the effectiveness and impor-

tance of approaches using topology aware loss functions for cerebrovascular segmentation.

3 Method

In this section, the clDice and the different skeletonization algorithms are presented (Section

3.2). Then, the proposed cascaded multitask U-Net architecture is described (Section 3.3).

Finally, the details of the training configuration of the architecture are provided (Section 3.4).

3.1 Compliance with ethical standards

This research study was conducted retrospectively using human subject data made available in

open access by Kitware at the following link: https://public.kitware.com/Wiki/TubeTK/Data

and the Imperial College London at https://brain-development.org/ixi-dataset/. Ethical

approval was not required, as confirmed by the license attached with the open access data.

3.2 clDice loss and differentiable skeletonization

The clDice [10] derives from two metrics called topology precision (Tprec) and topology sensitiv-
ity (Tsens) in reference to the usual precision and sensitivity metrics. These metrics are defined

as follows:

TprecðCP; SGÞ ¼
jCP \ SGj
jCPj

; ð1Þ

TsensðCG; SPÞ ¼
jCG \ SPj
jCGj

; ð2Þ

where CP, CG and SP, SG are the predicted and manually annotated centerlines and segmenta-

tions, respectively. The clDice is defined as the harmonic mean of Tprec and Tsens:

clDiceðSP; SG;CP;CGÞ ¼ 2 �
TprecðCP; SGÞ � TsensðCG; SPÞ
TprecðCP; SGÞ þ TsensðCG; SPÞ

: ð3Þ

By leveraging the skeleton representation, the clDice avoids being biased by large vessels and

thus better focuses on topological information. However, most of the methods designed to

extract a skeleton are not differentiable. Therefore, Shit et al. proposed a differentiable soft-

skeleton algorithm to use the clDice for training a neural network. This algorithm uses min

and max filters to perform dilation and erosion on the predicted segmentation. Preliminary

experiments (see Section 4.3) showed that the results from this soft-skeletonization are not suf-

ficiently accurate for 3D vascular segmentation, in particular regarding topology.

In a subsequent work, Menten et al. [11] proposed two new differentiable skeletonization

algorithms. These algorithms remove simple points [31] in the image, ensuring that the topol-

ogy is not affected by the skeletonization. The identification of simple points is done either

using the Euler characteristics or through a Boolean characterization. In the following, these

methods will be referred to as Euler and Boolean methods, respectively. These methods have

the advantage of generating a nearly topologically correct skeleton, but at the cost of a high

computation time (see Section 4.3).
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A standard U-Net was chosen to perform the skeletonization in this work. By nature, this

method is differentiable and provides a good trade-off between accuracy and computation

time.

3.3 Model architecture

The backbone model used in the proposed method (prop. meth.) is a standard U-Net [3] with

a depth of 4, using 2-stride convolution for down-sampling, instance normalization and lea-

kyReLU activation function (see Fig 1).

Our cascaded U-Net architecture is presented in Fig 2. It is composed of a first U-Net tak-

ing as input an MRA image and performing the segmentation. This task is supervised by a

Dice loss and will be referred to as the segmentation network. The output of this network is

Fig 1. The baseline U-Net architecture used in the proposed approach (see Section 3.3). The output of this network is either the vascular

segmentation (as shown here) or the vascular skeleton, depending on the chosen task.

https://doi.org/10.1371/journal.pone.0311439.g001

Fig 2. Architecture of the proposed cascaded U-Net (see Section 3.3).

https://doi.org/10.1371/journal.pone.0311439.g002
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concatenated with the MRA image and fed to a second U-Net performing the skeletonization

task, also supervised by a Dice loss. This part of the architecture will be referred to as the skele-
tonization network (skel. network). The training of these two networks is also supervised by

the clDice loss, which takes as input the predicted segmentation and the predicted skeleton.

The cascaded U-Net final loss is then defined by:

LossðSP; SG;CP;CGÞ ¼

DiceðSP; SGÞ þ

l1 � DiceðCP;CGÞ þ

l2 � clDiceðSP; SG;CP;CGÞ;

8
><

>:
ð4Þ

where l1; l2 2 R are two weight parameters.

This architecture presents several advantages. First, the skeletonization network performs

the skeletonization in a differentiable manner, which allows using the clDice loss and enforc-

ing topological constraint on the segmentation task. Second, in contrast to other skeletoniza-

tion methods, the proposed skeletonization network takes as input the original MRA image,

enabling the correction of small segmentation errors and thus limiting error propagation.

Finally, by jointly learning segmentation and skeletonization, the segmentation network bene-

fits of an inductive bias that encourages learning topologically correct segmentations. Indeed,

the skeletonization task gives similar importance to all vessels independently of their thickness;

so the multitask learning can help to enforce the influence of small vessels in the segmentation

task.

3.4 Training configuration

All the MRA volumes were first normalized by Z-score. During training, one batch is com-

posed of 2 patches of size 192 × 192 × 64, each randomly located in an MRA volume. One

epoch consists of 100 batches.

To ensure a fair comparison across the experiments, the same data augmentation strategy

(inspired by nnU-Net [4]) was used for all trained networks using the Python package

batchgenerators [32]:

• Rotation—Applied around each axis (x, y, z) with a probability of 0.2. The angles of rotation

are drawn from a uniform distribution U(−30, 30).

• Scaling—Applied with a probability of 0.2. Factor drawn from U(0.7, 1.4).

• Gaussian noise—Applied with a probability of 0.1. Variance is drawn from U(0.0, 0.1).

• Gaussian blur—Applied with a probability of 0.1. The width of the Gaussian kernel is drawn

from U(0.5, 1.0).

• Brightness—Modify the voxel intensities by a multiplicative factor with a probability of

0.15. The multiplicative factor is drawn from U(0.75, 1.25).

• Contrast—Modify the voxel intensities by a multiplicative factor and clip them to the origi-

nal range value, with a probability of 0.15. The multiplicative factor is drawn from U(0.75,

1.25).

• Simulation of low resolution—Downsample the image with nearest neighbour interpola-

tion, then upsample it to its original size with cubic interpolation, with a probability of 0.125.

Downsampling factor is drawn from U(0.5, 1.0).

• Gamma transform—The input is normalized in [0, 1]; then the voxel intensity i is trans-

formed, with probability of 0.1, as follows: inew ¼ i
g

old, with γ* U(0.7, 1.5).
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• Mirroring—Patches are mirrored along each axis.

Stochastic gradient descent with Nesterov momentum was used, with an initial learning

rate set to 0.01. A linear learning rate decay was applied, resulting in the learning rate being

equal to 0 at the last epoch.

During inference, sliding windows with a 25% overlap were employed to reconstruct the

full volume. To mitigate artifacts at overlapping regions, a Gaussian kernel was applied to

reduce the weight of voxels further from the center of the patches. Test time augmentation was

implemented by applying flips with respect to the three axes to the input volume, and all result-

ing probability maps were averaged before thresholding. Subsequently, a post-processing step

was applied to remove all connected components smaller than 100 voxels from the segmenta-

tion outputs of all methods.

For the cascaded multitask U-Net, the two U-Nets were first pretrained separately before

fine-tuning the network as described in Section 3.3. The weights of the segmentation network

were initialized with the weights of the U-Net trained with the Dice loss, and the skeletoniza-

tion network was pretrained using the MRA image and the segmentation annotation as input.

All models were trained for 500 epochs; except for the cascaded multitask U-Net, which was

first pretrained during 500 epochs and then fine-tuned for 250 epochs.

4 Evaluation

The setup and results of the experiments conducted to evaluate the skeletonization network

and the cascaded multitask U-Net are presented in this section. All results for deep learning

models were obtained through a 5-fold cross-validation.

4.1 Datasets

For this study, the publicly available Bullitt dataset [33], which contains 34 time-of-flight mag-

netic resonance angiography (TOF-MRA) volumes of the brain, was used. All the volumes

present a voxel resolution of 0.513 × 0.513 × 0.800 mm3 and a size of 448 × 448 × 128. Each

volume was annotated by one expert. To produce the skeleton annotations, the

skeletonize function from the Python package scikit-image, which implements the

gold-standard Lee algorithm [34], was used.

The publicly available IXI dataset, which initially comprises approximately 600 TOF-MRA

images acquired from three distinct centers, was also used. The focus was specifically on the

subset from Guy’s Hospital, London, UK, which consists of 316 volumes and 15 annotations.

However, only the 15 annotated volumes were used in this study, as all methods are fully

supervised. All volumes maintain uniform resolution, with voxels measuring

0.47 × 0.47 × 0.80 mm3 and dimensions of 512 × 512 × 100.

An illustration of these two datasets is presented in Fig 3.

4.2 Metrics

In the evaluation, the clDice (see Section 3.2) and the Dice similarity coefficient (DSC) [35]

defined below, were used.

DSC ¼
2 � tp

2 � tpþ fpþ fn
; ð5Þ

where tp, fp, fn are the true positives, false positives and false negatives, respectively. Both

clDice and DSC take values in the range [0, 1] and are without units.
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Two distance metrics were also computed: the average symmetric surface distance metric

(ASSD) and the Hausdorff Distance 95% percentile (HD95), defined as:

ASSDðP;RÞ ¼
P

p2Pdðp;RÞ þ
P

r2Rdðr; PÞ
jPj þ jRj

; ð6Þ

HD95ðP;RÞ ¼ maxfd95ðP;RÞ; d95ðR; PÞg; ð7Þ

with:

d95ðA;BÞ ¼ x95
a2A
fmin
b2B

dða; bÞg; ð8Þ

dða;BÞ ¼ min
b2B

dða; bÞ; ð9Þ

where P is the predicted segmentation and R the reference, d(a, b) is the Euclidean distance

between voxels a and b, and x95 denotes the 95% percentile. BothHD95 and ASSD are

expressed in millimeters (mm).

Beyond these quantitative metrics, the topological quality of the segmentation was also eval-

uated by computing topological descriptors: the first Betti number β0 (i.e. the number of

Fig 3. From left to right: a slice of the TOF-MRA volume, the same slice superimposed with its manual annotation (in transparent orange) and the 3D

volume of the manual annotation. First row: taken from patient IXI017 of the IXI dataset. Second row: taken from Patient 8 of the Bullitt dataset.

https://doi.org/10.1371/journal.pone.0311439.g003
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connected components), the second Betti number β1 (i.e. the number of tunnels/cycles), and

the third Betti number β2 (i.e. the number of cavities).

Unlike other metrics, Betti numbers characterize the topology of a structure independently

of its proposed annotation. Analyzing the Betti numbers of a segmentation results then

requires comparing them with the true (ground truth) Betti numbers.

From an anatomical point of view, the topology of the brain arterial network is well estab-

lished. All arteries are connected, thus β0 is equal to 1; there is one tunnel (the circle of Willis),

thus β1 is equal to 1; and no cavities are present, thus β2 is equal to 0. However, the Betti num-

bers of the Bullitt and IXI annotations were computed, and much greater values for β0 and β1

were observed (see Table 1). This discrepancy is a typical issue with segmentation annotations

of geometrically complex 3D structures. Manual annotation is a labor-intensive task, usually

performed on 2D slices, making it difficult to accurately capture the 3D geometry and topology

of the annotated structure.

Moreover, the annotation guidelines rarely focus on topology, as voxel-wise metrics are the

gold standard for segmentation evaluation. This leads to annotations that are suitable for

voxel-wise analysis but often inadequate for topological analysis. Our goal is to obtain vascular

segmentation that reflects the true topology of the brain arterial network. In the following, the

ground-truth Betti numbers of the brain artery network (β0 = 1, β1 = 1, and β2 = 0) are used as

the reference for the segmentation Betti numbers.

Additionally, the value of β2 was computed for both Bullitt and IXI datasets, it was observed

that the values were null for both manuals annotations and predicted segmentations (corre-

sponding to the theoretical value). Therefore, the β2 values are not presented or discussed in

the following sections.

The statistical significance between every method and for every metric was also evaluated.

A t-Test was conducted if a normal distribution was followed by the data, and a Wilcoxon test

was used otherwise. The normality of the metrics was tested using a Shapiro test.

4.3 Skeletonization using U-Net

The skeletonization network was compared to (1) the soft-skeleton algorithm introduced in

[10], (2) the skeletonization based on the Boolean characterization of simple points and (3) the

skeletonization based on the Euler characteristic (i.e. the alternating sum of the Betti numbers,

see e.g. [11]). For all methods, the mean time required to perform the skeletonization per

patch and the topological metrics introduced in Section 4.1 were computed.

The results, presented in Table 1, demonstrate that the proposed method yields skeletons

with a more accurate topology than the soft-skeleton algorithm in a comparable computation

time. Euler and Boolean methods produce nearly perfect skeletons when compared to the skel-

etons ground truths but at the cost of a more important runtime. Our skeletonization network

Table 1. Results of the proposed skeletonization network vs. other skeletonization methods.

Model Runtime (ms) # β0 # β1 #

Bullitt IXI Bullitt IXI

Ground-truth 29 ± 12 100 ± 50 150 ± 30 99 ± 34

Soft-skeleton algorithm 5 ± 1 1197 ± 245 1590 ± 276 6 ± 3 17 ± 7

Euler 558 ± 13 30 ± 13 121 ± 54 151 ± 30 108 ± 34

Boolean 1022 ± 34 29 ± 13 113 ± 55 151 ± 30 99 ± 34

Skeletonization network 9 ± 2 294 ± 48 610 ± 206 118 ± 26 17 ± 7

https://doi.org/10.1371/journal.pone.0311439.t001
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then provides a good trade-off between accuracy and computation time. We draw the reader’s

attention to the values of β1. It appears that the soft-skeleton algorithms and the proposed

method reduce the number of tunnels. However, the actual meaning of these tunnels remains

questionable regarding their anatomical / noisy nature. Consequently, the above discussion is

mostly related to the value of β0, evaluating the connectivity of the skeletons. The β1 values are

presented for the sake of completeness.

Qualitatively, the skeletons produced by the soft skeleton algorithm present many discon-

nections and a thickness of several voxels compared to other skeletonization methods. By con-

trast, the proposed method provides more accurate skeletons (see Fig 4). Visually, it appears

that the gap in topological metrics between the proposed method and Euler and Boolean meth-

ods is primarily due to minor disconnections. Overall, the skeletons appear quite similar.

4.4 Cascaded multitask U-Net

4.4.1 Hyperparameters optimization. The goal of the cascaded multitask U-Net is to

improve the results of the segmentation network thanks to the clDice loss. As stated in Sec-

tion 3.3, the hyperparameters λ1 and λ2 have to be set in order to handle the trade-off

between the skeletonization loss and the clDice loss. Two training configurations were also

tested: one in which the skeletonization network weights are frozen, and another in which

they are updated during the cascaded U-Net training. In both configurations, the skeletoni-

zation network was first pre-trained. Therefore, a grid search was performed to select these

parameters. Based on these experiments, it was found that the best cascaded multitask U-Net

training policy consists of freezing the weights of the skeletonization network and setting the

loss weights to λ1 = λ2 = 0.5.

Fig 4. Comparison of the skeletonization methods. The skeletons generated by the soft-skeleton algorithm exhibit major disconnections and a

thickness spanning several voxels. Conversely, those produced by the proposed method (last column) display slight disconnections but maintain a

correct thickness of one voxel.

https://doi.org/10.1371/journal.pone.0311439.g004
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4.4.2 Baseline methods for comparison. To assess the performance of the cascaded

U-Net, comparisons were made with several state-of-the-art methods, categorized into three

groups. First, methods using the clDice metric but employing different skeletonization algo-

rithms, as presented in Section 3.2, were considered. Second, methods with topological priors,

including the Tubular Structures Loss Function (TsLoss) from La Barbera et al. [13] and the

DeepDistanceTransform method from Wang et al. [14], were examined. Third, two well-estab-

lished vascular segmentation architectures, namely CS2-Net [15] and DeepVesselNet [16],

were considered.

All these methods were reimplemented with the help of the respective git repositories in a

common Pytorch framwork. (We thank the authors for having made these codes available).

For all methods, the same U-Net backbone model, as described in Section 3.3, was used,

except for CS2-Net [15] and DeepVesselNet [16], where the proposed architectures were

employed. For the DeepDistanceTransform model [14], a second decoder branch was intro-

duced into the baseline U-Net solely for distance map prediction.

The initial learning rate was decreased to 0.001 for CS2-Net [15] due to instability in the

training caused by vanishing gradients.

For the Deep Distance Transform method [14], the geometry-aware refinement (GAR)

introduced in the same work was used to produce the final segmentation. Additionally, the

cross-entropy loss used for the distance map prediction was weighted with the respective pro-

portion of each class; otherwise, the background class was too preponderant.

Considering hyperparameter optimization, a grid search was performed to select the opti-

mal value of the clDice weight for each method using clDice loss. The parameters of the repar-

ametrization trick, which enable the differentiable binarization required for the Euler and

Boolean methods, were set to β = 0.33 and τ = 1.0.

Regarding the method of La Barbera et al. [13], the following values indicated in the original

paper were used: wms = 0.05 for theMsLoss weight, and α = 0.1, β = 0.1, γ = 2 for the Frangi

parameters. The maximal size of Gaussian kernels applied to the predicted segmentation and

the manual annotation before computing the Hessian matrix was set to σmax = 15.

4.4.3 Results. The experiments conducted on the Bullitt dataset are summarized in

Table 2. Boxplots indicating statistics and statistical significance are presented in Figs 5 and 6.

Firstly, the proposed method outperforms CS2-Net [15], DeepVesselNet [16] and DeepDistan-

ceTransform [14] in terms of overlap-based metrics, β0, and distance-based metrics (statisti-

cally significant). This demonstrates its competitiveness compared to state-of-the-art methods.

The proposed approach yields a relatively higher β1, comparable to the topological Boolean

and Euler approaches.

Table 2. Evaluation of the presented methods on Bullitt dataset: Mean ± standard deviation values.

Model DSC " clDice " ASSD # HD95 # β0 # β1 # Training time (h) #

U-Net (Dice) 0.76 ± 0.02 0.85 ± 0.02 0.94 ± 0.13 7.20 ± 1.05 26.4 ± 4.6 116.0 ± 27.8 17 h

U-Net (Dice + clDice Soft) [10] 0.75 ± 0.02 0.85 ± 0.02 0.92 ± 0.13 6.84 ± 1.11 27.7 ± 5.6 122.7 ± 28.3 18 h

U-Net (Dice + clDice Euler) [11] 0.75 ± 0.02 0.85 ± 0.02 0.92 ± 0.14 7.12 ± 0.97 26.9 ± 5.5 132.0 ± 27.7 28 h

U-Net (Dice + clDice Boolean) [11] 0.76 ± 0.01 0.85 ± 0.02 0.92 ± 0.12 7.07 ± 1.15 23.4 ± 5.4 131.4 ± 30.1 42 h

DeepVesselNet [16] 0.71 ± 0.02 0.81 ± 0.02 1.17 ± 0.15 9.27 ± 1.81 55.9 ± 7.8 112.1 ± 27.1 10 h

CS2-Net [15] 0.72 ± 0.02 0.83 ± 0.02 1.04 ± 0.14 7.69 ± 1.10 41.2 ± 6.2 121.1 ± 31.1 10 h

La Barbera et al. [13] 0.76 ± 0.02 0.85 ± 0.02 0.94 ± 0.13 7.06 ± 1.17 26.4 ± 5.4 119.1 ± 27.9 48 h

DeepDistanceTransform [14] 0.72 ± 0.02 0.83 ± 0.02 1.05 ± 0.15 7.66 ± 1.22 42.0 ± 6.8 105.9 ± 24.6 18 h

Cascaded U-Net (prop. meth.) 0.75 ± 0.02 0.84 ± 0.02 0.92 ± 0.13 6.89 ± 1.06 20.8 ± 3.9 132.6 ± 29.3 17 h (pre-training) + 12 h (fine-tuning)

https://doi.org/10.1371/journal.pone.0311439.t002
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Fig 5. Boxplots results on Bulittt dataset for (a) overlap-based metrics and (b) distance-based metrics. Braces indicate the statistical

significance between the proposed method and other methods where *** indicates p-value� 0.001, ** indicates p-value� 0.01, * indicates p-

value� 0.05. No braces means that there is no statistical signifiance.

https://doi.org/10.1371/journal.pone.0311439.g005
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Furthermore, when compared to a standard U-Net and the method proposed by La Barbera

et al. [13], the proposed method exhibits similar results in terms of overlap-based metrics and

distance-based metrics (with differences not statistically significant). However, the proposed

method performs significantly better in terms of topological metrics, as evidenced by improve-

ments with respect to β0 (statistically significant), highlighting its effectiveness in preserving

the topology of vascular segmentation and indicating a better connectivity behavior of the pro-

posed method.

Similar conclusions can be drawn from comparing the proposed method with those trained

using the clDice with different skeletonization methods (soft-skeletonization, Euler, and Bool-

ean). The overlap-based metrics of these methods are comparable to the proposed method

(with no statistical differences); however there is a notable difference in β0, indicating that the

segmentations produced by the proposed method are significantly more connected.

Finally, note that the Boolean approach, the second most connected segmentation results, is

very expensive to train due to the high runtime of the skeletonization method.

The results obtained on the IXI dataset, presented in Table 3, complement the findings on

the Bullitt dataset, confirming similar trends. However, due to the limited test set of 15

patients, differences between metrics are generally not statistically significant. Our method

Fig 6. Boxplots results on Bullitt dataset for topological metrics β0 and β1. Braces indicate the statistical significance between the proposed method

and other methods where *** indicates p-value� 0.001, ** indicates p-value� 0.01, * indicates p-value� 0.05. No braces means that there is no

statistical signifiance.

https://doi.org/10.1371/journal.pone.0311439.g006
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outperforms CS2-Net [15], DeepVesselNet [16] and DeepDistanceTransform [14] in β0 and

distance-based metrics, with slight differences in overlap-based metrics. Additionally, the pro-

posed method outperforms the standard U-Net trained with a Dice loss and the method pro-

posed by La Barbera et al. [13] in terms of β0. Finally, when comparing to the clDice-based

methods with different skeletonization algorithms, the proposed method still exhibits the low-

est β0 value, indicating superior connectivity behavior, and is more cost-effective to train.

Beyond this quantitative analysis, it is important to investigate the results from a qualitative

point of view. In particular, the good reconnection behavior induced by clDice and cascaded

U-Net is observed on both datasets in Figs 7 and 8. Firstly, it can be observed that many dis-

connections are presented by the U-Net trained with either the standard Dice loss or the clDice

loss with the soft-skeleton algorithm. The best connectivity is observed visually for Boolean

and the proposed method, confirming the interest of a topologically accurate skeleton when

using the clDice loss. The poor connectivity behavior of DeepVesselNet, CS2-Net, TsLoss and

DeepDistanceTransform methods is also visible on both datasets.

5 Discussion

In this section, some results and findings of the study are first discussed. Following that, preva-

lent limitations inherent in the work are addressed.

Regarding β1, as discussed in Section 4.2 none of the compared method constrains the

number of tunnels. Also all methods except DeepDistanceTransform present a high value with

respect to the expected theoretical value (β1 = 1), showing that they all fail to really preserve the

topology in that aspect.

An interesting finding of this study is that despite that the skeletons produced by the pro-

posed method exhibit lower topological accuracy than the Euler and Boolean methods, the seg-

mentation results present a superior connectivity. This good behavior is attributed to two key

factors. First, unlike deterministic methods, the proposed learned skeletonization model can

correct segmentation errors during training (notably leveraging information from the MRA

image), thus mitigating error propagation. Second, the proposed skeletonization acts as a com-

plementary task to the segmentation. As a result of this joint multitask learning approach, the

segmentation task can benefit from an inductive bias to learn a topologically accurate

segmentation.

It is also convenient to comment further on the results obtained by La Barbera et al. and

DeepDistanceTransform methods. DeepDistanceTransform relies on the geometry refinement

of the segmentation from the distance map generated by the model. This distance map is

essentially a multiclass classification task, where the ground truth is a quantized version of the

Table 3. Evaluation of the compared methods on IXI dataset: Mean ± standard deviation values.

Model DSC" clDice " ASSD # HD95 # β0 # β1 # Training time (h) #

U-Net (Dice) 0.84 ± 0.03 0.88 ± 0.02 0.45 ± 0.14 3.13 ± 2.35 25.9 ± 7.2 64.1 ± 17.6 17 h

U-Net (Dice + clDice Soft) [10] 0.78 ± 0.03 0.86 ± 0.04 0.64 ± 0.28 4.28 ± 2.98 31.3 ± 7.4 70.7 ± 26.4 18 h

U-Net (Dice + clDice Euler) [11] 0.83 ± 0.03 0.88 ± 0.03 0.47 ± 0.21 3.39 ± 3.04 27.4 ± 7.2 69.4 ± 15.3 28 h

U-Net (Dice + clDice Boolean) [11] 0.83 ± 0.03 0.88 ± 0.02 0.45 ± 0.18 3.18 ± 2.70 25.3 ± 6.1 73.0 ± 19.3 42 h

DeepVesselNet [16] 0.81 ± 0.03 0.86 ± 0.03 0.70 ± 0.37 6.03 ± 5.41 31.3 ± 9.6 49.6 ± 12.1 10 h

CS2-Net [15] 0.82 ± 0.02 0.87 ± 0.03 0.54 ± 0.27 3.99 ± 3.43 28.1 ± 6.4 52.9 ± 13.2 10 h

La Barbera et al. [13] 0.84 ± 0.03 0.88 ± 0.03 0.44 ± 0.17 2.96 ± 2.50 26.6 ± 7.3 64.9 ± 17.4 48 h

DeepDistanceTransform [14] 0.81 ± 0.02 0.87 ± 0.02 0.56 ± 0.22 4.19 ± 2.54 27.1 ± 7.6 45.1 ± 10.8 18 h

Cascaded U-Net (prop. meth.) 0.83 ± 0.03 0.88 ± 0.026 0.42 ± 0.16 2.79 ± 2.51 24.3 ± 5.8 69.5 ± 20.8 17 h (pre-training) + 12 h (fine-tuning)

https://doi.org/10.1371/journal.pone.0311439.t003
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true distance map. However, this task is inherently unbalanced as background voxels are pre-

dominant and large distance map values are rare (i.e. large vessels). Consequently, accurately

learning this distance map becomes challenging. In the experiments, it was observed that the

distance values were generally overestimated, leading to errors in the final segmentation. Nev-

ertheless, this method appears to be the only one capable of efficiently reducing the number of

tunnels, thanks to the geometry-aware refinement method.

La Barbera et al. method relies on a topological loss enforced by the Frangi vesselness and

morphological similarity losses. The first one encourages voxels belonging to the manual

annotation to have a high vesselness value, while the second compares the eigen values of the

Hessian matrix of the predicted segmentation and the manual annotation. In the conducted

experiments, this approach yields similar results to the 3D U-Net trained with a standard Dice

loss, contrary to what is observed in [13]. This divergence may be explained by the fact that in

the experiments, the brain vascular network exhibits a more complex geometry with a higher

number of bifurcations, compared to the initial study carried out in [13]; the Frangi vesselness

is well-known to yield suboptimal results around bifurcations [17]. Also this method requires

multiple parameters tuning and it is likely that a better parameter combinaison can be found

for this case study through an exhaustive optimization.

Our study also highlights some limitations regarding the evaluation of cerebrovascular seg-

mentation which are important to emphasize. First, the lack of large annotated public datasets

restricts the impact of drawing generalizable conclusions with statistical significance. This is

particularly noticeable with the IXI dataset. Second, vascular segmentations are very difficult

Fig 7. Segmentation results obtained with the different methods for patient 8 of Bullitt dataset. Three zoomed area highlighted with red boxes are

presented to observe better the connectivity behavior of each method. Red arrows indicate interesting areas which can present misconnections.

https://doi.org/10.1371/journal.pone.0311439.g007
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to evaluate quantitatively. Classic overlap-based metrics are indeed not well suited for this eval-

uation, since an offset error of only a few voxels may cause a mismatch between the segmenta-

tion and the manual annotation and then lead to a drop in the metrics. By contrast, distance

based metrics or specific metrics like clDice [10] are less sensitive to such kinds of errors, and

can then complement the usual overlap based metrics. Nonetheless, these metrics also fail in

assessing the correct topology of the segmentations.

The Betti numbers characterize the topology of an object. However this evaluation is inde-

pendent of the manual annotation. Two segmentations may have the same Betti numbers (i.e.
a similar topology), but exhibit very different geometries. Moreover, the annotations were

built without particular considerations regarding the topology of the segmentation. This is

why these references are most often topologically imperfect and present large Betti numbers

[36]. Thus although it is common to compute the difference between Betti numbers of the seg-

mentation and the manual annotation, this is not always relevant since the underlying assump-

tion is that the topology of the manual annotation is correct.

6 Conclusion

In this article, it was proposed to use a U-Net to learn the skeletonization operation required

to compute the clDice. This method provides a good trade-off between the required topologi-

cal correctness of the skeletons and the computation time. A cascaded multitask U-Net was

then proposed to learn vascular segmentation with topological guidance modeled via the

Fig 8. Segmentation results obtained with the different methods for patient IXI023 of IXI dataset. Three zoomed area highlighted with red boxes

are presented to observe better the connectivity behavior of each method. Red arrows indicate interesting areas which can present misconnections.

https://doi.org/10.1371/journal.pone.0311439.g008
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clDice loss. This cascaded multitask U-Net jointly learns vessel segmentation and skeletoniza-

tion and can then benefit from the inductive bias induced by the skeletonization task.

The proposed approach was compared to state-of-the-art methods for vascular segmenta-

tion applied to cerebrovascular structures on two publicly available TOF-MRA datasets. Spe-

cifically, two topological losses for vascular segmentation were compared: TsLoss from La

Barbera et al. [13] and clDice from Shit et al. [10] with several skeletonization algorithms. All

these approaches were reimplemented in a common PyTorch framework, which is publicly

available, to promote further developments of new topology-aware methods for cerebrovascu-

lar segmentation.

In this study, it has been demonstrated that the clDice loss improves the topological correct-

ness of cerebrovascular segmentation from MRA images. Moreover, the proposed method has

been shown to improve the topological correctness of vascular segmentation with a lower

training time.

There are opportunities for further enhancement of the proposed method. Investigating

dedicated skeletonization network architectures or improving the information sharing

between the segmentation and skeletonization tasks are potential avenues for refining the pro-

posed approach. Additionally, it would be valuable to compare the methods on datasets of

patients with cardiovascular pathologies to evaluate the robustness and generalizability of the

proposed approach. These aspects will be the focus of future research efforts.
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Validation: Pierre Rougé, Nicolas Passat, Odyssée Merveille.

Visualization: Pierre Rougé.
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