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Abstract

Feed costs constitute a significant part of the expenses in the aquaculture industry. However,

feeding practices in fish farming often rely on the breeder’s experience, leading to feed wast-

age and environmental pollution. To achieve precision in feeding, it is crucial to adjust the feed

according to the fish’s feeding state. Existing computer vision-based methods for assessing

feeding intensity are limited by their dependence on a single spatial feature and manual thresh-

old setting for determining feeding status constraints. These models lack practicality due to

their specificity to certain scenarios and objectives. To address these limitations, we propose

an integrated approach that combines computer vision technology with a Convolutional Neural

Net-work (CNN) to assess the feeding intensity of farmed fish. Our method incorporates tem-

poral, spatial, and data statistical features to provide a comprehensive evaluation of feeding

intensity. Using computer vision techniques, we preprocessed feeding images of pearl gentian

grouper, extracting temporal features through optical flow, spatial features via binarization, and

statistical features using the gray-level co-occurrence matrix. These features are input into

their respective specific feature discrimination networks, and the classification results of the

three networks are fused to construct a three-stream network for feeding intensity discrimina-

tion. The results of our proposed three-stream network achieved an impressive accuracy of

99.3% in distinguishing feeding intensity. The model accurately categorizes feeding states into

none, weak, and strong, providing a scientific basis for intelligent fish feeding in aquaculture.

This advancement holds promise for promoting sustainable industry development by minimiz-

ing feed wastage and optimizing environmental impact.

Introduction

Feed assumes a pivotal role in aquaculture, with meticulous regulation of feeding quantities

emerging as a crucial determinant in curtailing breeding expenses and augmenting breeding
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efficiency. The feeding process during fish cultivation primarily hinges on the acumen of

breeding technicians. They employ either manual techniques or automated feeding apparatus

to ensure consistent and quantitative feeding. Nevertheless, this strategy may precipitate issues

such as underfeeding or overfeeding. Insufficient feeding can negatively influence the growth

rate of fish, while surplus feeding culminates in food wastage and escalated breeding costs. Fur-

thermore, residual bait in the aquatic milieu engenders ammonia nitrogen and harmful nitrate

compounds. This occurrence could disrupt the optimal conditions requisite for the flourishing

growth of fish. Alterations in fish physiology, feeding necessities, and organism behavior serve

as direct indicators of the influence of environmental factors [1]. Feeding behavior, defined as

the behavioral response of fish during the feeding process, forms a critical aspect of aquacul-

ture, reflecting the dietary needs of the aquatic species. The identification of the feeding state

entails classifying the feeding motion in the fish’s current state [2]. The recognition of a fish’s

robust feeding state denotes existing nutritional needs, while a weaker state implies reduced

feeding requirements. As a result, the accurate determination of the feeding status enables the

evaluation of their dietary needs, promotes timely modifications in feeding quantities, and cur-

tails feed wastage. This rigorous approach has become an essential component of feeding opti-

mization in modern aquaculture practices [3].

At present, certain individuals utilize conventional computer vision technology to tackle

the challenge of selecting feeding nodes for farmed fish. Being non-contact and non-invasive,

computer vision technology has emerged as a cornerstone for propelling intelligent aquacul-

ture due to its high efficiency, precision, and user-friendly interface [4]. The application of

computer vision technology to discern the feeding status of fish populations and integrate fish

biomass for forecasting and adjusting feeding quantities is crucial for diminishing aquaculture

costs and enhancing fish welfare. Researchers worldwide have harnessed computer vision

technology for the exploration of fish behavior [5–9], accomplishing the recognition of a vari-

ety of fish behaviors, encompassing hunger [10] and abnormalities [11]. In studies centered on

feeding behavior recognition [12, 13], the strategy adopted by Zhou et al. (2017) [13] entailed

the use of support vector machine (SVM) and gray-level co-occurrence matrix (GLCM) meth-

ods. By extracting fish centroids and constructing a Delaunay triangulation network, the com-

putation of the clustering index for fish feeding behavior is realized. This method enables the

identification and quantification of feeding behavior with heightened precision. Guo et al.

(2018) [14] extracted shape and textural attributes from fish visual data and utilized the back-

propagation neural network algorithm to discern and identify the feeding status of aquatic

organisms. Yu et al. (2021) [15] employed Harris corner detection in conjunction with the

Lucas-Kanade optical flow method to procure feature points and velocity information from

images capturing fish feeding behavior. They devised a model that amalgamates standard

behavior feature matrices with unique behavior detection to accomplish the recognition of fish

feeding and other specific behaviors.

Presently, computer vision methods can only scrutinize a single spatial feature and rely on

manually set thresholds to ascertain the feeding state, leading to limitations, impracticality,

and other issues for specific scenarios and objectives. To surmount these challenges, the intro-

duction of Convolutional Neural Network (CNN) based on deep learning theory can effec-

tively mitigate these limitations. CNN can directly utilize the image as input to identify

microscopic features, obviating the need for manual feature extraction and facilitating swift

and precise discrimination of the feeding status of farmed fish. Deep learning autonomously

extracts low-level features and engenders more abstract high-level representations, eliminating

the necessity for a distinct target segmentation process and achieving enhanced accuracy and

adaptability. Inherently, Deep learning models capture highly nonlinear and complex features

through multi-layer sequences for self-learning [16, 17], steering the network towards an
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optimal state for precise classification. Convolutional Neural Networks (CNNs) demonstrate

automatic learning of target features and boast a significant modeling capacity, exhibiting

exceptional performance across a variety of domains such as agriculture, medicine, among

others [18, 19]. Indeed, these methodologies have demonstrated efficacy in aquaculture, partic-

ularly in the identification of fish species and quality grading [20, 21]. In the context of identi-

fying fish feeding behavior, Måløy et al. (2019) [21] pioneered a two-stream recursive network

that amalgamates a spatial network, a 3D convolutional motion network, and an LSTM recur-

sive classification network. This avant-garde approach attains a remarkable accuracy of 80% in

predicting salmon feeding behavior. Zhou et al. (2019) [6] devised a model employing the con-

volutional neural network under controlled laboratory conditions to discern fish-feeding

states, achieving a noteworthy accuracy of 90%. Zhang et al. (2023) [22] introduced an

enhanced MobileNetV3 network, referred to as the Multi-Scale Information Fusion Network

(MSIF-MobileNetV3), to analyze fish feeding behavior, attaining an accuracy of 96.4%. How-

ever, a challenge emerges when relying exclusively on CNN for image discrimination; CNN

tends to concentrate on numerous detailed features, potentially leading to data redundancy,

escalated computational complexity, and diminished accuracy. Therefore, further comprehen-

sive analysis is crucial to determine the significance of deep learning networks in extracting

image features and to explore how to select and provide the critical features required for net-

work learning, thereby significantly enhancing the accurate recognition of fish feeding status.

To address the aforementioned challenges, we proposed a three-stream network model spe-

cifically designed to discern fish-feeding behavior, capitalizing on computer vision technology

and Convolutional Neural Network (CNN). Given that the feeding process evolves over time,

a comprehensive analysis of the image’s temporal and spatial characteristics is paramount for

accurately capturing shifts in fish feeding intensity within the breeding environment and

assessing feeding efficacy. In the preliminary stage, we utilize optical flow, binarization, and

Gray-Level Co-occurrence Matrix (GLCM) techniques to process the original image. This

enables the extraction of temporal, spatial, and statistical features from the video data. Subse-

quently, a CNN grounded in deep learning is employed to discriminate the feeding state. The

classification outcomes of the three networks are subsequently fused using a late fusion

approach [23], specifically fusion at the prediction score level. This strategy involves training

three models independently, each generating a prediction score. The results from the three

models are consolidated to derive the final discrimination outcomes for the intensity of fish

feeding. Grounded in deep learning networks, the proposed model enables multi-feature

fusion computations and automatic extraction of target features. It exhibits robust generaliza-

tion, facilitating the execution of classification tasks for different targets by training the net-

work with diverse datasets. The model adopts an end-to-end approach, enhancing its

practicality and addressing deficiencies in existing computer vision technology. Ultimately,

our method achieves a remarkable accuracy of 99.3%, effectively distinguishing the feeding sta-

tus of fish. This research provides technical support for intelligent and accurate feeding, cost

reduction, efficiency enhancement, water pollution reduction, and ultimately, the healthy

growth and sustainable development of fish.

Materials and methods

Experimental environment

The experiment was conducted at the Aquaculture Facilities and Equipment Engineering

Research Center of Dalian Ocean University. The experimental fish utilized were pearl gentian

grouper (♀ Epinephelus fuscoguttatus × ♂ Epinephelus lanceolatus), averaging a size of 100 g.

Furthermore, the Dalian Ocean University Experimental Animal Ethics Committee exempted
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this study from ethical review and approval, given that the fish used in this research are solely

for data collection, undergo routine feeding procedures, and do not cause any harm to the

fish.

The aquaculture system, depicted in Fig 1, employed a comprehensive experimental system

of circulating water. Each culture system comprised a culture barrel, a vortex solid-liquid sepa-

rator, a protein separator, a crawler microfilter, a thermostat, a biological filter, an ultraviolet

sterilization device, and an oxygen-increasing device. The culture barrel, constructed of blue

plastic, has an upper part approximately cylindrical in shape and a lower part approximately

conical. It has a diameter of 0.93 m, with the water depth meticulously maintained at 1.00 m, a

sufficient culture water volume of 0.64 m3, and a water intake of 0.8 m3 per hour. The aquacul-

ture system automatically discharges sewage and replenishes the source water, which is natural

seawater precipitated. The light source is a full-spectrum LED lamp with an automatic control

switch. The illumination time spans from 7:30 to 19:30, and the maximum light intensity in

the breeding barrel is 372 lx. The camera system, controlled by a computer, captures images

from a fixed position. The camera, positioned 0.5 m away from the water surface, can capture

the entire water surface image and record the complete video from one minute before feeding

to one minute after the bait is completely consumed. Feeding was conducted at intervals of 6

hours per day, with the feed delivered in several batches.

Data preprocessing

Throughout the fish feeding period, we gathered 70 comprehensive feeding videos for editing,

each boasting a resolution of 480 x 270 pixels. Observing the fish activity during feeding, we

manually classified and edited the videos into distinct feeding status categories, each enduring

approximately 7 seconds. These categories were partitioned into three classes: strong feeding

status, weak feeding status, and no feeding status. The feeding status classification standard

[24] is elaborated in Table 1, with each category encompassing 186, 217, and 216 short videos,

respectively, culminating in a total of 619 feeding status videos. The videos of the three states

were segmented and stored at a rate of 24 frames per second, yielding a total of 73,474 RGB

images. This set comprises 22,888 non-feeding states, 23,728 strong feeding states, and 26,858

Fig 1. Experimental system diagram.

https://doi.org/10.1371/journal.pone.0310356.g001
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weak feeding states. The RGB images corresponding to each feeding state are illustrated in

Fig 2. To compile a comprehensive dataset, we divided the original dataset into training, test,

and validation sets, constituting 70%, 20%, and 10% of the total dataset, respectively. The pro-

portion of the three feeding states in each dataset was consistently maintained.

A three-stream network for identifying the feeding status of cultured fish

Given that the feeding process unfolds over time, it is imperative to analyze the com-prehen-

sive temporal and spatial characteristics of the image. This is vital for accurately capturing

shifts in fish feeding intensity within the breeding environment and assessing feeding efficacy.

In the preliminary stage, we employ optical flow, binarization, and Gray-Level Co-occurrence

Matrix (GLCM) techniques to process the original image. This facilitates the extraction of tem-

poral, spatial, and statistical features from the video data. Subsequently, a Convolutional Neu-

ral Network (CNN) grounded in deep learning is utilized to discern the feeding state. The

classification outcomes of the three networks are then fused using a late fusion approach [23],

specifically fusion at the prediction score level. This strategy involves training three models

independently, each generating a prediction score. The results from the three models are amal-

gamated to derive the final discrimination outcomes for the intensity of fish feeding. The net-

work structure is illustrated in Fig 3.

Classification network of temporal features based on optical flow method. Through

empirical observation, we have ascertained that the process of fish feeding adheres to a chrono-

logical sequence. As a result, we utilize the optical flow method to process images, capturing

the temporal fluctuations in fish behavior during feeding. Moreover, we have selected

ResNet50 as our backbone network, using images processed by the optical flow method as net-

work input for training and accuracy testing. This approach empowers us to distinguish and

classify the feeding intensity of fish from the vantage point of temporal characteristics.

Optical flow [25] defines the instantaneous velocity of pixel motion for objects in spatial

motion on the observational imaging plane. This method leverages pixel changes within an

image sequence in the time domain. It scrutinizes the correlation between successive frames to

establish correspondences between the preceding and current frames. This approach facilitates

the computation of motion information for objects between successive frames. Typically, the

instantaneous rate of change of grayscale intensity at a specific coordinate point on a two-

dimensional image plane is characterized as an optical flow vector. All RGB images in the data-

set underwent optical flow processing, amounting to 145,712 optical flow images. This set

comprises 45,346 non-feeding states, 47,084 strong feeding states, and 53,828 weak feeding

states. The optical flow images corresponding to each feeding state are depicted in Fig 4.

The fundamental constraint equation of optical flow operation is as follows:

Contemplating the light intensity of a pixel I(x, y, t) in the initial frame (where t denotes the

time dimension) as it traverses a distance of (dx, dy) to reach the subsequent frame within a

time interval of dt, the constancy assumption posits that, being the same pixel, the light

Table 1. Classification criteria of feeding state intensity.

Feeding State

Intensity

Standard Of Classification

None The fish did not respond to food, and the water was calm.

Weak The fish eat only the bait that falls in front of them or move to feed; after eating back to the

original position, and the water surface has obvious fluctuation.

Strong The fish moves freely between the food, eats all the available food, and the fierce swimming

stirs up the water.

https://doi.org/10.1371/journal.pone.0310356.t001
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intensity remains constant before and after the movement. This is expressed as:

Iðx; y; tÞ ¼ Iðxþ dx; yþ dy; tÞ ð1Þ

Taylor expansion is performed on the right end of Eq (1) to obtain:

I x; y; tð Þ ¼ I x; y; tð Þ þ
@I
@x
dxþ

@I
@y
dyþ

@I
@t
dt þ ε ð2Þ

Where ε represents the second-order infinitesimal term, which is negligible. By dividing dt
by Eq (2) after Eq (1) we can get the following:

@I
@x
dx
dt
þ
@I
@y
dy
dt
þ
@I
@t
dt
dt
¼ 0 ð3Þ

Let u v be the optical flow velocity vectors along the X-axis and Y-axis, respectively:

u ¼
dx
dt
; v ¼

dy
dt

ð4Þ

Let Ix ¼ @I
@x ; Iy ¼

@I
@y ; It ¼

@I
@t and they represent the partial derivatives of the gray values of

the pixels in the image along the X, Y, and T directions, respectively.

Fig 2. RGB images of three different feeding states. (A) None Feeding State. (B) Weak Feeding State. (C) Strong

Feeding State.

https://doi.org/10.1371/journal.pone.0310356.g002

Fig 3. Model structure diagram.

https://doi.org/10.1371/journal.pone.0310356.g003
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In summary, Formula (3) can be written as follows:

Ixuþ Iyvþ It ¼ 0 ð5Þ

Ix, Iy, It can be derived from the image data, while (u, v) represents the optical flow vector.

The ResNet-50 [26] network is composed of 49 convolutional layers and a fully connected

layer. As depicted in Fig 5, the architecture of the ResNet-50 network can be divided into

seven sections. The initial section, devoid of residual blocks, primarily performs convolution,

activation function, regularization, and maximum pooling operations on the input. The sec-

ond to fifth sections of the structure encompass the configuration of the residual block. The

green block in Fig 6 maintains the size of the residual block but alters its dimension. In the

ResNet-50 network architecture, each residual block comprises three convolution layers, total-

ing 1+3×(3+4+6+3) = 49 convolution layers. Incorporating the final fully connected layer

brings the total to 50 layers, hence the nomenclature of ResNet-50. The network processes an

input of size 224×224×3, and following convolution computations in the initial five sections,

the output transforms to 7×7×2048. The pooling layer converts it into a feature vector. Ulti-

mately, the classifier processes the feature vector and generates the category probability as the

output. The cornerstone of the ResNet lies in the structure of its residual unit, as illustrated in

Fig 6. The residual network unit integrates a cross-layer connection. The curve in the graph

facilitates the direct passage of the input across the layer, executing the exact mapping and add-

ing it to the outcome of the convolution operation.

Classification network of spatial features based on binaryzation method. Based on the

breeding environment of the experimental subjects and observations made during the feeding

process, we discerned that fish induce varying degrees of water blooms during feeding. The

size and extent of these water blooms can, to a certain extent, reflect the feeding intensity of

the fish and serve as a spatial feature to assist in distinguishing the feeding intensity of the fish.

Consequently, we utilize the binarization method to process the image, which serves as the

input for the spatial feature classification network. Simultaneously, ResNet-50 is selected as the

classification backbone network for training and accuracy testing. This strategy enables us to

distinguish and categorize the feeding intensity of fish from a spatial perspective.

Image binarization [27] involves adjusting the gray value of all pixels to either 0 or 255,

thereby transforming the entire image into a black-and-white representation. Binarization is

performed using the average value of image pixels as the threshold for binarization processing.

In a binary image, each pixel can only assume one of two values: pure black or pure white.

Owing to the simplicity of binary image data, numerous visual algorithms depend on such rep-

resentations. The use of binary images enhances the analysis of object shapes and contours.

Fig 4. Optical flow images of three different feeding states. (A) None Feeding State. (B) Weak Feeding State. (C)

Strong Feeding State.

https://doi.org/10.1371/journal.pone.0310356.g004

Fig 5. The basic structure of ResNet-50.

https://doi.org/10.1371/journal.pone.0310356.g005
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Various methods can be employed for binarization, with the threshold method (thresholding)

being the most commonly utilized. This approach entails assigning pixel gray values greater

than a specific critical threshold to the maximum gray value and those below this threshold to

the minimum gray value, thereby achieving binarization. The formula is as follows:

f ðx; yÞ ¼
1; ðISðx; yÞ < TS＆IVðx; yÞ > TV
0; Other

ð6Þ

(

All RGB images in the dataset underwent binarization, yielding 73,474 binary images. This

set encompasses 22,888 non-feeding states, 23,728 strong feeding states, and 26,858 weak feed-

ing states. The binary images corresponding to each feeding state are illustrated in Fig 7. From

the diagram, it is apparent that the white areas mirror the various conditions of the reflective

area on the water surface. This phenomenon transpires because the feeding process induces

splashing, leading to a variety of shapes and sizes of the reflective area. Consequently, leverag-

ing this characteristic facilitates the discrimination and classification of the fish’s feeding state.

Classification network of data statistical feature based on gray-level co-occurrence

matrix (GLCM). Our methodology entails determining the feeding intensity predicated on

fish feeding videos, as the texture feature data of the image can efficaciously reflect the various

alterations in the video. We employ the gray-level co-occurrence matrix to extract the energy,

entropy, contrast, and correlation of the image, which serves as the input for the image texture

feature classification network predicated on data statistics. Given that the data extracted by the

Fig 6. ResNet network residual unit structure.

https://doi.org/10.1371/journal.pone.0310356.g006
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Fig 7. Binary images of three different feeding states. (A) None Feeding State. (B) Weak Feeding State. (C) Strong

Feeding State.

https://doi.org/10.1371/journal.pone.0310356.g007
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gray level co-occurrence matrix is a one-dimensional array, we opt for a one-dimensional con-

volutional neural network as the backbone network. One-dimensional convolution solely con-

volves along the width and does not involve height convolution. We utilize a custom

convolution combination to construct a classification network predicated on data statistics of

image texture features to distinguish the feeding intensity of fish. The network structure is

depicted in Fig 8.

The statistical method known as the Gray-Level Co-occurrence Matrix (GLCM) [28], intro-

duced by R. Haralick and colleagues in the early 1970s, epitomizes a generalized texture analy-

sis technique. It operates on the principle that the spatial distribution relationships among

pixels in an image inherently encapsulate valuable texture information. The GLCM serves as a

pivotal technique for analyzing the inherent texture features of images, celebrated for its

robustness and stability. The gray-level co-occurrence matrix is established based on the pixel

(x, y) with the image gray value of i. It computes the frequency P(i, j, d, θ) of the pixel (x+a, y
+b) at a distance d with the gray value of j. Its mathematical expression is:

P i; j; d; yð Þ ¼
x; yð Þ;

xþ a; yþ b
f ðx; yÞ

¼ i;

f ðxþ a; yþ bÞ ¼ j

2

6
4

3

7
5

8
><

>:

9
>=

>;
ð7Þ

Among them, θ represents the orientation of the gray-level co-occurrence matrix, typically

taking four directions: 0˚, 45˚, 90˚, and 135˚.

In this study, the image’s gray level was quantized into 8 distinct levels, with a pixel distance

set at 10. The pixel direction, denoted as θ, was considered at 0˚, 45˚, 90˚, and 135˚. A set of 16

eigenvalues, derived from four statistical measures—energy, entropy, contrast, and correlation,

were employed as characteristic metrics to quantify the intensity of fish-feeding activity. The

definitions and computational formulas for each feature are as follows:

1. Energy

Energy indicates the uniformity in the distribution of image gray levels and the overall tex-

ture thickness. A low energy value suggests intricate image texture when the element values in

the gray-level co-occurrence matrix are akin. The resulting energy value is high if specific val-

ues within the gray-level co-occurrence matrix are large while others are comparatively small.

A high energy value signifies a more uniform and regular texture pattern.

Asm ¼
X

i

X

j
Pði; jÞ2 ð8Þ

2. Entropy

Fig 8. Basic structure of the one-dimensional convolutional neural network.

https://doi.org/10.1371/journal.pone.0310356.g008
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Entropy is a metric that quantifies the degree of randomness in the information content

within an image. The entropy value reaches its maximum when all the values in the co-occur-

rence matrix are equal or when the pixel values demonstrate maximum randomness. There-

fore, the entropy value serves as an indicator of the complexity of the gray distribution in the

image. An increase in entropy value corresponds to heightened image complexity.

Ent ¼ �
X

i

X

j
Pði; jÞlog Pði; jÞ ð9Þ

3. Contrast

Contrast is a metric that assesses the distribution of values in the image matrix and the

extent of local variations within the image. It reflects both the clarity and the depth of the

image texture. A higher contrast corresponds to deeper grooves in the image texture, yielding

a more precise visual effect. Conversely, a slight contrast value implies shallow grooves in the

image texture, leading to a blurred visual effect.

Con ¼
X

i

X

j
ði � jÞ2Pði; jÞ ð10Þ

4. Correlation

Indeed, correlation is employed to assess the similarity of gray levels within the image along

the row or column direction, making it a crucial metric.

Corr ¼ ½
X

i

X

j
ððijÞpði; jÞÞ � mxmx�=sxsy ð11Þ

According to the above formula, different gray-level co-occurrence matrices will be

obtained for different directions, gray levels, and pixel distances. Therefore, we can use the

convolutional neural network to classify these values extracted from the image. By analyzing

the statistical characteristics of the data of the graphic texture, accurate discrimination of the

feeding state intensity of the cultured fish is realized.

Experimental evaluation index

In this investigation, the performance of the fish feeding intensity discrimination method was

evaluated using recall, accuracy, and the F1 score as metrics. Accuracy represents the capability

to correctly identify various behaviors and is defined as the ratio of correctly identified samples

to the total sample count. Precision reflects the proportion of accurate predictions among all

instances predicted to belong to a specific class. Recall represents the proportion of items cor-

rectly classified out of those that necessitate classification. These metrics can be defined as fol-

lows:

Accuracy ¼
TP þ TN

TP þ FN þ FP þ TN
� 100% ð12Þ

Recall ¼
TP

TPþ FN
� 100% ð13Þ
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F1 ¼
2� Precision� Recall
Precisionþ Recall

ð14Þ

Among them, true positive (TP), false positive (FP), false negative (FN), and true negative

(TN) indicate that:

TP (true positive): The positive class is correctly identified as the positive class.

FP (false positive): The negative class is incorrectly identified as the positive class.

FN (false negative): The positive class is incorrectly identified as the negative class.

TN (true negative): The negative class is correctly identified as the negative class.

Note: Samples belonging to a certain class are typically referred to as positive samples, while

those not belonging to that class are referred to as negative samples.

Experimental results

Results of three-stream network training and classification of fish feeding

intensity

The same training strategy was employed to train and validate the three independent networks

within the three-stream network, culminating in the results depicted in Table 2. Three evalua-

tion indices—recall rate, F1 score, and accuracy—were utilized to validate the network’s train-

ing outcomes. Fig 9(A) presents the training and testing outcomes of the classification

network predicated on temporal features. Post 20 training epochs, the loss for both the training

and validation sets demonstrated a declining trend, ultimately stabilizing. The accuracy consis-

tently augmented in the training set, albeit it manifested fluctuations in the validation set. Both

displayed an ascending trend and eventually reached a steady state. The final outcomes were a

loss of 0.112, an F1 score of 94.1%, a recall rate of 94.6%, and an accuracy rate of 95.8%. Fig 9

(B) presents the training and testing results for the classification network based on spatial fea-

tures. Similarly, after 20 training epochs, the loss for both the training and validation sets

showed a decreasing trend and eventually stabilized. The accuracy consistently improved in

the training set, while it exhibited fluctuations in the validation set. Both displayed an ascend-

ing trend and eventually reached a steady state. The final outcomes were a loss of 0.035, an F1

score of 98.1%, a recall rate of 98.1%, and an accuracy rate of 98.6%. Fig 9(C) illustrates the

training and testing outcomes of the classification network predicated on data statistical fea-

tures. Following 20 training epochs, the loss and accuracy of both the training and validation

sets followed a similar pattern as the initial two epochs, decreasing initially and then stabiliz-

ing. The final results were a loss of 0.044, an F1 score of 97.5%, a recall rate of 97.7%, and an

accuracy rate of 98.2%.

The test set images were evaluated using the optimally trained three-stream network to dis-

criminate the feeding behavior of farmed fish. Table 3 showcases the performance evaluation

metrics for each independent network and the overall network post fusion. In the test results

of the classification network based on temporal features, the F1 score was 89.6%, the recall rate

was 90.6%, and the accuracy rate was 92.5%. Fig 10(A) illustrates a confusion matrix derived

Table 2. Network training results.

Model Loss F1 Recall Accuracy

Temporal Features Classification Network 0.112 94.1% 94.6% 95.8%

Spatial Feature Classification Network 0.035 98.1% 98.1% 98.6%

Data Statistical Features Classification Network 0.044 97.5% 97.7% 98.2%

https://doi.org/10.1371/journal.pone.0310356.t002
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from the classification outcomes of each image in the validation set. The recognition accuracy

for the non-feeding state was 97%, for the strong feeding state was 95%, and for the weak feed-

ing state was 93%. Additionally, 3% of the non-feeding state was erroneously classified as

weak, and 4% of the strong feeding state was incorrectly classified as weak. Additionally, 2% of

the weak feeding state was misclassified as a non-feeding state, and 5% was misidentified as a

strong state. In the test results of the classification network based on spatial features, the F1

score was 94.4%, the recall rate was 95%, and the accuracy rate was 96%. Fig 10(B) presents a

confusion matrix derived from the classification outcomes of each image in the validation set.

The recognition accuracy for the non-feeding state was 98%, for the strong feeding state was

97%, and for the weak feeding state was 94%. Furthermore, 2% of the non-feeding state was

misclassified as weak, and 3% of the strong feeding state was incorrectly classified as weak.

Furthermore, 2% of the weak feeding state was misidentified as a non-feeding state, and 4%

was misclassified as a strong state. In the test results of the classification network based on data

statistical features, the F1 score was 95.3%, the recall rate was 95.6%, and the accuracy rate was

96.3%. Fig 10(C) presents a confusion matrix derived from the classification outcomes of each

image in the validation set. The recognition accuracy for the non-feeding state was 98%, for

the strong feeding state was 98%, and for the weak feeding state was 97%. Moreover, 2% of the

non-feeding state was mistakenly identified as weak, and 2% of the strong feeding state was

misclassified as weak. Additionally, 1% of the weak feeding state was misidentified as a non-

feeding state, and 2% of the weak feeding state was misclassified as a strong feeding state.

The performance of the network, post the integration of the three independent networks, is

summarized in Table 3. The fusion method employed was the voting method, which resulted

in an F1 score of 98.7%, a recall rate of 98.9%, and an accuracy rate of 99.3%. To further assess

the integrated three-stream network, a new dataset, not utilized during the training process,

was selected for testing. We randomly selected 300 images from each feeding state (strong,

weak, and none), totaling 900 images for network performance testing. The results indicated

that out of the non-feeding state images, 299 were accurately identified, with one non-feeding

state image misclassified as a weak feeding state image. Additionally, out of the strong feeding

state images, 298 were accurately identified, and two were misclassified as weak feeding state

images. All 297 images of the weak feeding state were accurately identified. One image of the

weak feeding state was misclassified as a non-feeding state image, and two images of the weak

feeding state were identified as strong feeding state images. The F1 score, recall rate, and accu-

racy of the model all exceeded 98%, affirming the effectiveness of our proposed method.

Ablation study

To systematically assess the independent and combined effects of fish feeding intensity dis-

crimination networks predicated on different features within the three-stream network model

Fig 9. The training and testing results for the temporal feature network (A), spatial feature network (B), and data

statistical feature network (C).

https://doi.org/10.1371/journal.pone.0310356.g009

Table 3. Evaluation index of classification results of fish feeding status by three-stream network.

Model F1 Recall Accuracy

Temporal Features Classification Network 89.6% 90.6% 92.5%

Spatial Feature Classification Network 94.4% 95.0% 96.0%

Data Statistical Features Classification Network 95.3% 95.6% 96.3%

The integrated Three-Stream network 98.7% 98.9% 99.3%

https://doi.org/10.1371/journal.pone.0310356.t003
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of fish feeding intensity discrimination, we conducted ablation studies. The same training

strategy was employed to train and test various network combinations. The impact of each

combination on the model’s performance was thoroughly analyzed using metrics such as the

F1 score, recall, and accuracy.

For different network combinations, as depicted in Table 4, we investigated seven distinct

network structure combinations. The table outlines the performance of each combination net-

work in the task of discriminating fish feeding intensity. When the training strategy remains

consistent, the optimal outcome is achieved by the three-stream network model of feeding

intensity discrimination, which is based on temporal, spatial, and statistical characteristics.

The F1 score, recall, and accuracy are 98.7%, 98.9%, and 99.3%, respectively. This result sug-

gests that the best outcomes are obtained when considering the three characteristics of fish

feeding intensity. Moreover, this indicates that the model can provide technical support for

discriminating fish feeding intensity.

Comparative experiment

To validate the practical applicability of our proposed method for discerning feeding intensity,

we conducted a comparative analysis using our dataset against several other established meth-

ods. In Table 5, these methods include the LightGBM model utilizing Lucas-Kanade (LK) opti-

cal flow technology [29], the Support Vector Machine (SVM) model based on the Gray-Level

Co-occurrence Matrix (GLCM) [30], ResNet-101 [31] which has shown promising results in

target recognition of labeled fish images, EfficientNet [32] which is used as the backbone

Fig 10. Three confusion matrix diagrams depicting the test results based on temporal feature network (A), spatial feature network (B), and data statistical

feature network (C).

https://doi.org/10.1371/journal.pone.0310356.g010

Table 4. Ablation study.

Image Processing Method Evaluating Indicator

MethodⅠ MethodⅡ MethodⅢ F1 Recall Accuracy

Optical Flow - - 89.6% 90.6% 92.5%

- Binarization - 94.4% 95.0% 96.0%

- - GLCM 95.3% 95.6% 96.3%

Optical Flow Binarization - 95.0% 95.2% 96.5%

Optical Flow - GLCM 95.2% 95.7% 96.6%

- Binarization GLCM 96.6% 97.5% 98.1%

Optical Flow Binarization GLCM 98.7% 98.9% 99.3%

https://doi.org/10.1371/journal.pone.0310356.t004
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network of the fish intelligent recognition system, and the 3D Convolutional Neural Network

(C3D) model [33] specifically designed for three-dimensional convolution of video data. Our

proposed model outperforms traditional computer vision methods that manually extract fea-

tures using LightGBM and SVM models, with improvements of 6.0% and 26.1% respectively.

Moreover, the CNN model based on image classification significantly surpasses traditional

computer vision methods. Our method also exhibits certain advantages over the CNN models

ResNet-101 and EfficientNet used for image classification, with improvements of 1.7% and

2.1% respectively. When compared to the C3D model, which also uses video as input, our

method shows a 4.1% improvement. Furthermore, in terms of F1 score and recall rate, our

proposed method outperforms other methods in discerning feeding intensity.

Through comparative experiments, we find that our proposed method, which integrates

computer vision with CNN, not only enhances accuracy but also eliminates the complex oper-

ation of manual feature extraction, compared to traditional computer vision methods. Com-

pared to the CNN method based on image classification, our method, which processes videos

using optical flow, takes into account the temporal features in the video sequence and

improves accuracy. Compared to the C3D model, which also uses video as input, our method

achieves higher accuracy by extracting more features from the video. In summary, our pro-

posed model employs computer vision techniques to process video images, considering the

temporal, spatial, and data statistical features of the video, and uses CNN as the main classifica-

tion network. This model exhibits excellent performance in distinguishing the feeding inten-

sity of farmed fish. These results profoundly demonstrate the accuracy and practicality of our

proposed method in discerning the feeding behavior of farmed fish.

Discussions

Model credibility verification

In this study, the Class Activation Map (CAM) [34] method was employed to verify the credi-

bility of the model. The CAM method confirms that the model’s classification is based on spe-

cific features, and it represents the features the model focuses on using different colors,

ranging from light to dark. The deeper red indicates that the model pays more attention to the

relevant features in that region, while blue indicates that the model does not focus on that area.

Misclassified samples were collected and a visual analysis was performed using the CAM

method. The results are depicted in Fig 11. Three samples with correct predictions and one

with an incorrect prediction were randomly selected from the test dataset. In Fig 11(A), the

model’s attention is primarily focused on the water surface of the entire breeding pool. This

observation indicates that the water surface is calm, the fish are not active, there is no feeding

state, and the current feeding state is None. In Fig 11(B), the model’s attention is mainly

focused on the water surface of the half-rearing pond. This observation suggests that some fish

are gathered due to eating, and the current feeding state is Weak. In Fig 11(C), the model’s

Table 5. Comparison with other models for fish feeding behavior discrimination.

Model F1 Recall Accuracy

LightGBM 92.5% 91.9% 93.3%

SVM 71.1% 71.8% 73.2%

ResNet101 96.4% 96.7% 97.5%

EfficientNet 96.1% 96.5% 97.2%

3D Convolution (C3D) 93.6% 93.4% 95.2%

Our Method 98.7% 98.9% 99.3%

https://doi.org/10.1371/journal.pone.0310356.t005
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attention is primarily concentrated in the same small area. This observation indicates that the

current fish swarm is highly concentrated in the feeding area due to the incentive to prey, and

the current feeding state is Strong. In Fig 11(D), the actual feeding state of the fish in the image

is Weak, but the model classifies it as None. Through Fig 11(D), we can observe that the mod-

el’s attention is focused on the barrel wall of the breeding barrel and the LED lamp used to sup-

plement the light.

In conclusion, the Class Activation Map (CAM) method is employed to visualize the areas

where the model focuses its attention, thereby validating that the model genuinely concen-

trates on the three crucial features of None, Weak, and Strong. This validation bolsters the

credibility of the model’s classification. Furthermore, background subtraction technology can

be utilized to rectify the issue observed in Fig 11(D), where the model’s attention is focused on

other parts of the background, leading to discrimination errors.

Performance of discriminant model for feeding behavior of cultured fish

The proposed model for discriminating feeding intensity in farmed fish was trained, validated,

and tested on an 11th Gen Intel1 Core™ i7-11800H @ 2.30GHz CPU and NVIDIA GeForce

RTX 3060 Laptop GPU. During the model training phase, the model consumed approximately

8 GB of memory, utilizing 50% of the total 16 GB memory capacity available on the computer.

The training process covered 20 epochs, with a total training time of 12.6 hours. The testing

phase, which involved 1,798 images, took 93 seconds, as indicated in Table 6. This table pro-

vides insights into the work efficiency of different feature classification network models during

training and testing. On average, the recognition time for each image was approximately 0.052

Fig 11. Class activation mapping (CAM) of test samples. (A), (B), and (C) are samples with correct predictions, classed as None, Weak, and Strong. (D)

denotes the misclassified sample. Its essential actual value is Weak, and the predicted values are None.

https://doi.org/10.1371/journal.pone.0310356.g011
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seconds, satisfying the requirements for real-time recognition. The model size was 90 MB,

making it easily applicable in the field of aquaculture.

As a result, the model showed commendable performance in terms of memory utilization,

training duration, testing duration, and overall model size. The proposed discriminative

model for analyzing feeding behavior in cultured fish shows potential for deployment on edge

devices, addressing the real-time recognition requirements for fish feeding behavior in aqua-

culture. Although there were challenges related to memory usage and training time on laptop

devices, these issues can be mitigated by deploying the model on servers or devices with

enhanced performance in practical aquaculture settings.

Model applications

To facilitate the practical implementation of the model, it has been utilized as the core technol-

ogy to develop robust and practical software. The software interface, depicted in Fig 12,

Fig 12. Software function interface.

https://doi.org/10.1371/journal.pone.0310356.g012

Table 6. Comparison of processing time of different feature network models.

Model Training Efficiency Testing Efficiency

Temporal Features Classification Network 17.03it/s 19.87it/s

Spatial Feature Classification Network 20.00it/s 19.30it/s

Data Statistical Features Classification Network 19.23it/s 20.15it/s

https://doi.org/10.1371/journal.pone.0310356.t006
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features a range of efficient functions that enable the easy importation of fish-feeding videos

for identification. Through the recognition function, users can invoke the three-stream net-

work model based on time series, spatial features, and data statistical characteristics, as pro-

posed, to accurately assess the fish feeding intensity in the imported video. The software can

generate the corresponding CAM (Category Activation Mapping) video. Additionally, users

can employ the process analysis function to compare the original video with the CAM video.

This function allows for a comprehensive understanding of the software’s focus throughout

the entire recognition process, offering a reliable basis for staff to assist in analyzing and dis-

criminating results. The application of this software goes beyond efficient and accurate fish-

feeding status discrimination. It also contributes to intelligent and precise feeding practices in

the aquaculture industry, leading to significant cost reductions, substantial improvements in

economic benefits, and effective mitigation of water pollution issues. The software is a crucial

technical support tool for the healthy growth and sustainable development of fish.

Conclusions

In this study, we propose an innovative method to discern the feeding intensity of farmed fish

by integrating computer vision technology with Convolutional Neural Networks (CNN). Our

proposed three-stream network combines temporal, spatial, and data statistical features to

evaluate the feeding intensity of farmed fish. During the training and validation stages, these

three networks operate independently. However, during testing and practical application,

their classification results are intelligently integrated to produce the final discriminative out-

comes. By using images processed through computer vision technology as inputs to the CNN,

we enhance the network’s focus on specific features during training. Simultaneously, we lever-

age CNN as the core classification network to significantly reduce time, computation, and

labor costs. Ultimately, our proposed method achieves an impressive accuracy of 99.3%. Fur-

thermore, we thoroughly validate the considerable superiority of our model by comparing it

with alternative methods for discriminating fish-feeding states. We aim to implement this

technology in practical production. Currently, this technology can discern feeding states on

high-level GPU computers. To achieve industrialization, further algorithm optimization is

necessary, and the integration of multiple functions is required to establish an intelligent mon-

itoring system suitable for factory farming environments. This method should be applied to

different growth stages of farmed fish for validation. This approach can lead to more precise

and reliable discrimination results. Deploying the model to edge devices enables rapid and

accurate discrimination under low computing power conditions. Once the technology

matures, embedding it into plant protection drones capable of loading bait will facilitate intelli-

gent and precise autonomous feeding in large water surface aquaculture environments. In this

paper, the experiment is carried out in the recirculating aquaculture system. One of the advan-

tages of the recirculating aquaculture system is that it can maintain water quality. Therefore,

the water quality in this experiment is clearer and the image is clearer. In the actual breeding

environment, it can be considered to increase the underwater camera or use the infrared cam-

era for data acquisition to avoid the influence of water quality and other factors on the discrim-

inant results.

In conclusion, the methodology presented in this study promotes a scientific and intelligent

differentiation based on the feeding intensity of aquaculture fish in real-world production.

This method can provide scientific support for optimizing feed cost savings. The research pro-

vides robust technical reinforcement for the dynamic expansion of aquaculture, establishing a

crucial technical foundation for the healthy growth of farmed fish and the sustainable develop-

ment of aquaculture.

PLOS ONE Fish feeding intensity discrimination using a three-stream network model

PLOS ONE | https://doi.org/10.1371/journal.pone.0310356 October 21, 2024 21 / 24

https://doi.org/10.1371/journal.pone.0310356


Author Contributions

Conceptualization: Yanbin Dong, Kewei Cai.

Data curation: Yanbin Dong, Yuqing Wang.

Formal analysis: Yanbin Dong.

Funding acquisition: Ying Liu.

Investigation: Yanbin Dong, Shilong Zhao, Yuqing Wang.

Methodology: Yanbin Dong, Kewei Cai.

Project administration: Hongshuai Pang.

Resources: Yanbin Dong, Kewei Cai.

Software: Yanbin Dong, Shilong Zhao.

Supervision: Hongshuai Pang, Ying Liu.

Validation: Kewei Cai.

Visualization: Yanbin Dong.

Writing – original draft: Yanbin Dong.

Writing – review & editing: Kewei Cai, Ying Liu.

References
1. Doyle JM, Merovitch N, Wyeth RC, Stoyek MR, Schmidt M, Wilfart F, et al. A simple automated system

for appetitive conditioning of zebrafish in their home tanks. Behavioural Brain Research. 2017;

317:444–52. https://doi.org/10.1016/j.bbr.2016.09.044 PMID: 27659557

2. Li H, Chen Y, Li W, Wang Q, Duan Y, Chen T. An adaptive method for fish growth prediction with empiri-

cal knowledge extraction. Biosystems Engineering. 2021; 212:336–46. https://doi.org/10.1016/j.

biosystemseng.2021.11.012.

3. An D, Hao J, Wei Y, Wang Y, Yu X. Application of computer vision in fish intelligent feeding system—A

review. Aquaculture Research. 2021; 52:423–37. https://doi.org/10.1111/are.14907.

4. Zhang L, Li W, Liu C, Zhou X, Duan Q. Automatic fish counting method using image density grading

and local regression. Computers and Electronics in Agriculture. 2020; 179:105844. https://doi.org/10.

1016/j.compag.2020.105844.

5. Zhao J, Bao W, Zhang F, Zhu S, Liu Y, Lu H, et al. Modified motion influence map and recurrent neural

network-based monitoring of the local unusual behaviors for fish school in intensive aquaculture. Aqua-

culture. 2018; 493:165–75. https://doi.org/10.1016/j.aquaculture.2018.04.064.

6. Zhou C, Xu D, Chen L, Zhang S, Sun C, Yang X, et al. Evaluation of fish feeding intensity in aquaculture

using a convolutional neural network and machine vision. Aquaculture. 2019; 507:457–65. https://doi.

org/10.1016/j.aquaculture.2019.04.056.

7. Wang G, Muhammad A, Liu C, Du L, Li D. Automatic recognition of fish behavior with a fusion of RGB

and optical flow data based on deep learning. Animals (Basel). 2021; 11:2774. https://doi.org/10.3390/

ani11102774 PMID: 34679796

8. Wang Y, Yu X, An D, Wei Y. Underwater image enhancement and marine snow removal for fishery

based on integrated dual-channel neural network. Computers and Electronics in Agriculture. 2021;

186:106182. https://doi.org/10.1016/j.compag.2021.106182.

9. Hu J, Zhao D, Zhang Y, Zhou C, Chen W. Real-time nondestructive fish behavior detecting in mixed

polyculture system using deep-learning and low-cost devices. Expert Syst Appl. 2021; 178:115051.

https://doi.org/10.1016/j.eswa.2021.115051.

10. Taha Z, Razman MAM, Abdul Ghani AS, Abdul Majeed APP, Musa RM, Adnan FA, et al. The classifica-

tion of hunger behaviour of Lates Calcarifer through the integration of image processing technique and

k-Nearest Neighbour learning algorithm. Computers and Electronics in Agriculture. 2018; 342:012017.

https://doi.org/10.1088/1757-899x/342/1/012017.

PLOS ONE Fish feeding intensity discrimination using a three-stream network model

PLOS ONE | https://doi.org/10.1371/journal.pone.0310356 October 21, 2024 22 / 24

https://doi.org/10.1016/j.bbr.2016.09.044
http://www.ncbi.nlm.nih.gov/pubmed/27659557
https://doi.org/10.1016/j.biosystemseng.2021.11.012
https://doi.org/10.1016/j.biosystemseng.2021.11.012
https://doi.org/10.1111/are.14907
https://doi.org/10.1016/j.compag.2020.105844
https://doi.org/10.1016/j.compag.2020.105844
https://doi.org/10.1016/j.aquaculture.2018.04.064
https://doi.org/10.1016/j.aquaculture.2019.04.056
https://doi.org/10.1016/j.aquaculture.2019.04.056
https://doi.org/10.3390/ani11102774
https://doi.org/10.3390/ani11102774
http://www.ncbi.nlm.nih.gov/pubmed/34679796
https://doi.org/10.1016/j.compag.2021.106182
https://doi.org/10.1016/j.eswa.2021.115051
https://doi.org/10.1088/1757-899x/342/1/012017
https://doi.org/10.1371/journal.pone.0310356


11. Zhao J, Gu Z, Shi M, Lu H, Li J, Shen M, et al. Spatial behavioral characteristics and statistics-based

kinetic energy modeling in special behaviors detection of a shoal of fish in a recirculating aquaculture

system. Computers and Electronics in Agriculture. 2016; 127:271–80. https://doi.org/10.1016/j.

compag.2016.06.025.

12. Zhou C, Zhang B, Lin K, Xu D, Chen C, Yang X, et al. Near-infrared imaging to quantify the feeding

behavior of fish in aquaculture. Computers and Electronics in Agriculture. 2017; 135:233–41. https://

doi.org/10.1016/j.compag.2017.02.013.

13. Zhou C, Lin K, Xu D, Chen L, Guo Q, Sun C, et al. Near infrared computer vision and neuro-fuzzy

model-based feeding decision system for fish in aquaculture. Computers and Electronics in Agriculture.

2018; 146:114–24. https://doi.org/10.1016/j.compag.2018.02.006.

14. Guo Q, Yang X T, Zhou C, et al. Fish feeding behavior detection method based on shape and texture

features. Journal of Shanghai Ocean University. 2018. http://www.shhydxxb.com//index.aspx.

15. Salman A, Siddiqui SA, Shafait F, Mian A, Shortis MR, Khurshid K, et al. Automatic fish detection in

underwater videos by a deep neural network-based hybrid motion learning system. ICES Journal of

Marine Science. 2020; 77:1295–307. https://doi.org/10.1093/icesjms/fsz025.

16. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015; 521:436–44. https://doi.org/10.1038/

nature14539 PMID: 26017442

17. Goodfellow I, Bengio Y, Courville A. Deep Learning. The MIT Press: Cambridge, Massachusetts,

2016.
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