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Abstract

The Butuo Black Sheep (BBS) is well-known for its ability to thrive at high altitudes, resist

diseases, and produce premium-quality meat. Nonetheless, there is insufficient data regard-

ing its genetic diversity and population-specific Single nucleotide polymorphisms (SNPs).

This paper centers on the genetic diversity of (BBS). The investigation conducted a whole-

genome resequencing of 33 BBS individuals to recognize distinct SNPs exclusive to BBS.

The inquiry utilized bioinformatic analysis to identify and explain SNPs and pinpoint crucial

mutation sites. The findings reveal that reproductive-related genes (GHR, FSHR, PGR,

BMPR1B, FST, ESR1), lipid-related genes (PPARGC1A, STAT6, DGAT1, ACACA, LPL),

and protein-related genes (CSN2, LALBA, CSN1S1, CSN1S2) were identified as hub

genes. Functional enrichment analysis showed that genes associated with reproduction,

immunity, inflammation, hypoxia, PI3K-Akt, and AMPK signaling pathways were present.

This research suggests that the unique ability of BBS to adapt to low oxygen levels in the

plateau environment may be owing to mutations in a variety of genes. This study provides

valuable insights into the genetic makeup of BBS and its potential implications for breeding

and conservation efforts. The genes and SPNs identified in this study could serve as molec-

ular markers for BBS.

Introduction

Sheep (Ovis aries) is one of the most vital livestock species globally, supplying meat, milk,

wool, and other by-products for human consumption and use. Sheep have been domesticated

for over 10,000 years, dating back to Southwest Asia [1]. Since then, sheep have been widely

distributed across various regions and climates, adapting to different environmental and

human-induced pressures. As a result, sheep have developed noteworthy diversity in pheno-

typic traits, including coat color, horn shape, tail length, wool quality, and disease resistance

[2–4]. Coat color is an easily recognizable and distinctive phenotypic trait of sheep. The pro-

duction of melanin pigment by melanocytes in the skin and hair follicles determines the coat
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color in sheep. Eumelanin (black or brown) or pheomelanin (red or yellow) is produced

depending on the activity of enzymes and receptors involved in melanin synthesis and trans-

port [3, 5–7]. The genetic basis of coat color variation in sheep has been the subject of extensive

study, revealing the roles of several genes, such as MC1R [8], ASIP [9, 10], TYRP1 [7, 11],

MITF [12, 13], and KIT [14].

The Yi people in Butuo County, China, maintain a strong connection with sheep, treating

them as more than just a source of food and clothing but also a symbol of their identity and

social status. The Butuo Black Sheep (BBS) has garnered attention due to its adaptability, dis-

ease resistance, and ability to yield high-quality wool [2]. Furthermore, BBS is recognized as a

valuable genetic resource for sheep breeding and conservation purposes [15]. The distinguish-

ing features of BBS include its black coat color, large body size, long tail, and coarse wool.

However, limited information is available on BBS’s genetic diversity and origin, particularly

the genes accountable for their black coat color.

Next-generation sequencing (NGS) technologies have revolutionized genomics research,

enabling high-throughput and cost-effective sequencing of whole genomes [16, 17]. As a

result, the identification and characterization of SNPs in various species, including sheep [2,

18], is now comprehensive. Among individuals of the same species, SNPs are the most com-

mon type of genetic variation, and they have a crucial role in genetic diversity, disease suscepti-

bility, and response to environmental factors [19]. Identifying and analyzing SNPs can provide

valuable insights into the genetic makeup of a species and identify potential genetic markers

associated with economically important traits [18]. Several recent studies have utilized whole-

genome resequencing to investigate genetic diversity and identify SNPs in sheep breeds [20,

21]. For example, a survey of Australian Merino sheep identified over 15 million SNPs, provid-

ing insights into the genetic basis of wool quality [20]. In a previous study, several SNPs were

revealed to be associated with fat deposition and growth traits in Chinese Tan sheep [21].

The BBS have high genetic quality traits adapted to the harsh environment of low oxygen in

the plateau and the lack of information on their SNPs data, this objective of this study was to

(1) identify SNPs that are specific to BBS or different from other breeds, (2) infer the evolu-

tionary history and demographic dynamics of BBS, and (3) explore the potential adaptive sig-

nificance and functional consequences of these SNPs for BBS. The results of this study will not

only enhance our understanding of the genetic diversity and adaptability of BBS but also pro-

vide valuable resources for future genetic improvement and conservation strategies. It is

expected that the findings of this study will contribute to the genetic and genomic research of

sheep and other livestock species.

Materials and methods

Animal and ethics approval

The experiments were carried out following the guidelines of the animal care committee of

Xichang University (No. XCU20230918). The test sheep were sourced from the BBS Breeding

Farm in Butuan County and genomic DNA extraction was performed on blood collected from

the jugular vein (Blood was taken from the jugular vein without any anesthesia. There was no

health risk to the animal.). A high-throughput DNA extraction kit was used to isolate DNA of

33 BBS from the blood. The extracted DNA underwent two types of analysis: (1) purity and

integrity assessment through 1% agarose gel electrophoresis, and (2) precise quantification of

DNA concentration using the Qubit system. This study subjected quantitative quality-checked

DNA samples to a multiplex PCR panel mix and amplification system. The PCR reactions

were carried out on a PCR instrument.
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After purification of the PCR products using carboxyl magnetic beads, a second round of

PCR amplification was performed using sequencing primers with attached barcodes and a

high-fidelity PCR reaction system. Different barcodes were used to distinguish between vari-

ous samples. The multiplex PCR capture and library construction process was completed after

carboxymagnetic bead purification of the amplified products. DNA samples that passed the

quality control measures underwent library construction using the appropriate products for

targeted sequencing. Following library construction, preliminary quantification was per-

formed using Qubit 2.0, followed by accurate determination of the effective concentration of

the library using qPCR to ensure library quality. Once the library was successfully qualified,

the samples proceeded to the next stage of high-throughput sequencing. Beijing Compass Bio-

technology Co., Ltd. (http://www.kangpusen.com/) produced all the aforementioned and con-

ducted 60K chip resequencing, and the raw data was preserved at the NCBI database (No.

PRJNA1079389).

Data analysis

Marker loci and quality control

To avoid anomalies in population analysis that could lead to erroneous results, potentially

caused by rare alleles, loci with high missing and heterozygosity rates, the original marker loci

were filtered by the following parameters: loci with a minor allele frequency (MAF) of less

than 0.05 were removed; loci with a missing rate of more than 20% were removed; loci with a

heterozygosity ratio of more than 60% were removed; non-biallelic loci were removed.

To ensure accurate data analysis, the following filtering conditions were applied to the raw

data after sequencing: remove reads with adapters attached; discard paired reads if the N con-

tent in a sequencing read exceeds 1% of the total bases in that read; exclude paired reads where

the number of low-quality bases (Q< = 5, Q = -10*lgP) in a sequencing read exceeds 50% of

the total bases in that read. Based on the analysis above, it is confirmed that all base quality

scores Q are greater than 3, indicating an error detection rate of less than 0.001.

Alignment

High-quality clean reads were obtained by performing quality control and then were aligned

to the reference genome using the Burrows-Wheeler-Alignment Tool (BWA) software (ver-

sion 0.7.17, https://sourceforge.net/projects/bio-bwa/files/). Subsequently, the sequencing

depth and genome coverage of each sample were calculated. Alignment resulted in a minimum

alignment rate requirement of 95%.

Detection and annotation of SNPs

Following alignment to the sheep genome, Genome Analysis Toolkit (GATK) software (ver-

sion 4.0, https://software.broadinstitute.org/gatk/) was used to detect SNP variations across

the entire genome. Before analysis, the reads were aligned and removed duplicates against the

reference genome. After the alignment, SNP and INDEL variants were identified using the

HaplotypeCaller module, and the respective files were generated. To filter SNPs and INDELs,

the VariantFiltration module, which applied strict metrics like QD (Quality by Depth), FS

(Fisher Strand Bias), MQ (Mapping Quality), SORMQRankSum (Mapping Quality Rank Sum

Test), and ReadPosRankSum (Read Position Rank Sum Test) were used. Finally, the SNP vari-

ations underwent strict filtering criteria. These included SNP cluster filtering, where no more

than two SNPs were allowed within a 5bp region, nearby SNP filtering for INDELs (removing

SNPs within 5bp of an INDEL), adjacent INDEL filtering (the distance between two INDELs
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should not be less than 10bp), and any genotype with GQ (Genotype Quality) less than 20.0

was marked as lowGQ in the sample.

The SNPs were annotated using the Annovar software. Moreover, variants in the exonic

region were separately annotated.

Detection and annotation of small INDELs

INDELs in short fragments (<10 bp) also indicate differences between the sample and refer-

ence genome. INDELs in coding regions may cause frameshift mutations, resulting in gene

function alterations. Following the acquisition and alignment of clean reads, the Haplotype-

Caller module of the GATK tool was employed to detect INDELs. Specifically, INDELs with a

depth threshold of 10x, a quality score of�30, and a mutation frequency of�0.05 were consid-

ered significant.

Functional analysis of genes associated with SNP and INDEL variations

Enrichment analysis was conducted after identifying genes implicated in SNP and INDEL var-

iations. The R package clusterProfiler (version 4.05) was utilized for gene function annotation

and visualization. Gene Ontology annotation, which incorporates three categories: biological

process (BP), molecular function (MF), and cellular component (CC), was conducted via the

enrichGO function. The enrichKEGG function was implemented to annotate the potential sig-

naling pathways in which the DEGs might be engaged, utilizing the Kyoto Encyclopedia of

Genes and Genomes (KEGG). The R package ggplot2 was used to visualize all the results gen-

erated by the enrichment analysis.

Identification of essential genes

The online tool Strings (version 11.0, available at https://string-db.org/) was used to analyze

the protein-protein interactions of genes implicated in SNP and INDEL variations, revealing

their interactions (parameters: Organism: Ovis aries; minimum required interaction score was

set to high confidence 0.7, other parameters were set to default to obtain high confidence of

protein network interactions). Cytoscape software (version 3.6.1) was used to visualize the

interactions found. Essential genes were also identified using the Cytoscape plugin Cyto-

Hubba, which identified the intersection of the top 20 DEGs ranked by four methods (Degree,

EPC, MCC, MNC) as essential genes. Moreover, critical subnetworks were identified, and

functional enrichment analysis was performed using the Cytoscape plugin MCODE. The

resulting seed genes were also classified as essential genes.

Results

Quality control statistic

Over 36G of the total sequencing amount was obtained through the re-sequencing process

(Table 1), all details are shown in (S1 Table). The range of raw reads averaged 164,023,208,

ranging from 121,365,097 to 258,903,016. Following the elimination of low-quality sequences,

the content of clean reads went from 121,353,890 to 258,896,358, with an average of

163,998,651. The base error discovery rate (Q30) averaged 95.21%, ranging from 93.63% to

96.47%. The GC content averaged 43.13%, ranging from 42.13% to 43.72%. It was observed

that the resequencing results obtained were moderately accurate.
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Mapping statistic

Relevant statistical data can be obtained by aligning the total reads to the genome (Table 2,

S2 Table). The research results indicate that the total reads range from 244,837,496 to

525,220,801, with an average of 331,174,653. The number of sequences mapped successfully to

the reference genome ranges from 230,256,924 to 496,082,600, with an average of 313,704,075

—the alignment rate averages at 95.64%, with a range of 94.87% to 97.38%. The percentage of

duplicated alignment reads falls between 4.91% and 8.31%, with an average of 6.08%, indicat-

ing that the rate of unique alignment positions is higher than 95%. These findings imply some

variation in the total number of read sequences, mapped sequences, alignment rate, and pro-

portion of duplicate sequences in the samples studied, but all of them lie within a reasonable

range. These results have valuable reference implications for subsequent scientific research

and data analysis.

Distribution of SNP quality and type statistics

The accuracy and reliability analysis of sample SNP detection results indicate that the identi-

fied SNPs are consistent and similar across all samples. This suggests that the SNP detection in

this study meets the requirements and provides a significant reference value for subsequent

research and analysis (Fig 1A and 1B). Additionally, by statistically analyzing mutation types,

it was found that among the existing six mutation types (C: G>A: T, C: G>G: C, C: G>T: A,

T: A>A: T, T: A>C: G, and T: A>G: C), the C: G>T: A and T: A>C: G mutation types are

the most frequent (>400,000 occurrences), while the T: A>A: T mutation type is the least reg-

ular (less than 200,000 occurrences) (Fig 1C). These results suggest that the C: G>T: A and T:

A>C: G mutation types are dominant mutation types, which may be closely related to the evo-

lutionary history of the BBS.

Further statistical analysis of mutation types indicates that base transition ranges from

8,874,483 to 9,716,534 with an average of 9,316,743, and base transversions range from

3,782,145 to 4,189,671 with an average of 3,985,658 (Table 3). The ratio of transitions to trans-

versions is approximately 2.33, suggesting that base transitions happen at a rate of about 2.33

times that of transversions. Within these SNPs, heterozygotes range from 6,688,682 to

8,533,738, with an average of 7,791,796. Homozygotes range from 5,247,508 to 5,989,638, with

Table 1. Sequencing information statistics of 33 BBS population.

sample maximum minimum mean standard deviation

raw reads 258,903,016 121,356,097 164,023,208 36,625,189

clean reads 258,896,358 121,353,890 163,998,651 36,633,472

Q20 (%) 98.99 98.00 98.55 0.26

Q30 (%) 96.47 93.63 95.21 0.78

GC (%) 43.72 42.13 43.13 0.34

https://doi.org/10.1371/journal.pone.0303419.t001

Table 2. Mapping information statistics of 33 BBS population.

sample maximum minimum mean standard deviation

total reads 525,220,801 244,837,496 331,174,653 74,353,947

mapped reads 496,082,600 230,256,924 313,704,075 70,122,732

mapped ratio (%) 97.38 94.87 95.64 0.50

dup ratio (%) 8.31 4.91 6.08 0.67

https://doi.org/10.1371/journal.pone.0303419.t002
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Fig 1. Statistic of mutation information.

https://doi.org/10.1371/journal.pone.0303419.g001

Table 3. SNP type statistics of 33 BBS population.

max min mean standard deviation

SNPnumber 13,906,205 12,659,300 13,302,482 332,415

Transition 9,716,534 8,874,483 9,316,743 46,251

Transversion 4,189,671 3,782,145 3,985,658 33,128

Ti/Tv 2.35 2.31 2.33 0.48

Heterozygosity 8,533,738 6,688,682 7,791,796 41,368

Homozygosity 5,989,638 5,247,508 5,507,476 39,276

https://doi.org/10.1371/journal.pone.0303419.t003
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an average of 5,507,476. These findings indicate that base transitions dominate the BBS popu-

lation, with a higher probability of allele heterozygosity than homozygosity.

Differential SNP detection and annotation

Further statistical analysis demonstrates that the range of mutations in UTR3 was 71,500 to

77,431, with a mean of 74,925 (Table 4). The content of mutations in UTR5 was from 56,802

to 62,109, with a standard of 59515. In Downstream, the modifications ranged from 81565 to

88208, with a mean of 84,518, while in Upstream, they ranged from 81,911 to 91,097, with a

mean of 86243. Variation in Exonic was between 98,759 and 109,906, with a standard of

103,573. Variation in Intergenic was between 8,022,017 and 8,856,633, with a mean of

8,440,805. Variation in Intronic was between 4,431,525 and 4,860,611, with a mean of

4,642,039. Variation in Splicing was between 524 and 598, with a standard of 561. These find-

ings highlight various SNP positions among the population of BBS, encompassing regulatory,

coding, and non-coding regions. This genetic variation could give rise to the observed diversity

in the BBS population.

Identification of important mutation sites

Further analysis revealed that specific SNP mutation sites were closely associated with approxi-

mately 200 functional genes (S4 Table). These genes have been categorized into four groups

based on the mutation sites: UTR (UTR 3’ or UTR 5’), InterIntro (intronic and intergenic),

Exonic, and downstream. Functional enrichment analysis was performed on these genes to

investigate their potential functions (S5 Table). Regarding UTR genes, they were principally

enriched in pathways associated with inflammation, including Cytokine-cytokine receptor

interaction, Chemokine signaling pathway, Hepatitis C, Hepatitis B, immune response, and

positive regulation of interleukin-1 beta production (Fig 2). The ACAA2 and BAD genes are

implicated in cellular response to hypoxia.

Functional enrichment analysis of the genes contained in InterIntro revealed that the muta-

tions affect genes primarily responsible for transcriptional regulation processes (Fig 3), includ-

ing gene expression, glutamatergic synapses, nuclei, transcriptional preinitiation complex,

transcriptional activator activity, and RNA polymerase II transcriptional regulatory regions.

This functional role is consistent with the sequence contained within this region. Additionally,

two extensively researched signaling pathways have been identified: the PI3K-Akt signaling

pathway (which involves genes ITGB1, GHR, GH, NTRK2, ITGA4, ITGA11, VEGFC) and

Growth hormone synthesis, secretion, and action (which includes genes GHR, MAPK10,

GHRHR, GH).

Table 4. Variant position statistics of 33 BBS population.

min max Mean standard deviation

UTR3 71,500 77,431 74,925 2,984

UTR5 56,802 62,109 59,515 1,847

downstream 81,565 88,208 84,518 3,100

upstream 81,911 91,097 86,243 2,874

exonic 98,759 109,906 103,573 6,427

intergenic 8,022,017 8,856,633 8,440,805 42,145

intronic 4,431,525 4,860,611 4,642,039 14,126

splicing 524 598 561 55

https://doi.org/10.1371/journal.pone.0303419.t004
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In exonic mutation-related genes, they are predominantly enriched in two functional path-

ways (Fig 4): the PI3K-Akt signaling pathway, the AMPK signaling pathway, and positive reg-

ulation of the p38MAPK cascade. These genes also play a role in signaling pathways connected

to reproduction and inflammation, such as ovarian steroidogenesis and uterus development.

They also impact melatonin receptor activity relating to coat color regulation (MTNR1A,

MTNR1B), as well as inflammation and immune-related pathways, including hypertrophic

cardiomyopathy, cytokine-cytokine receptor interaction, signaling pathways regulating pluri-

potency of stem cells and phospholipase C-activating G-protein-coupled receptor signaling

pathway. Technical term abbreviations have been explained upon first use of the term.

Fig 2. Enrichment analysis of genes related to UTR mutation.

https://doi.org/10.1371/journal.pone.0303419.g002

Fig 3. Enrichment analysis of genes associated with InterIntro mutation.

https://doi.org/10.1371/journal.pone.0303419.g003
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These results suggest that the SNP variations in the population of BBS play a significant role

in multiple functions. This might have been a trait that BBS developed during the process of

evolution to adjust to the challenging environment of the local plateau with low oxygen.

Enrichment analysis was used to understand the function of the genes associated with these

critical SNPs. The study computed and obtained 16 essential genes (Fig 5, V-shaped) using

the CytoHubba plugin, namely ACACA, BMPR1B, CSN1S1, CSN1S2, CSN2, DGAT1, ESR1,

FSHR, FST, GHR, LACB, LALBA, LPL, PGR, PPARGC1A, STAT6. The annotation of these

core genes (Table 5) divulged that they could be categorized into three classes: Reproductive-

related genes (GHR, FSHR, PGR, BMPR1B, FST, ESR1), lipid-related genes (PPARGC1A,

STAT6, DGAT1, ACACA, LPL), and protein-related genes (CSN2, LALBA, CSN1S1, CSN1S2)

are potentially linked to the growth and reproduction of BBS. These mutations may result in

the production of single lambs and slow growth in the breed.

Discussion

The genetic progress, growth, and reproduction of BBS pose limitations. Its genetic progress

and development are relatively slow, potentially due to specific genetic mutations. Further-

more, their reproductive rate usually results in single lambs, postulating constraints to popula-

tion growth. To better understand these limitations and potential genetic reasons, it is

necessary to perform genomic resequencing of BBS blood. This technique will enable us to

identify the distribution of SNPs, offering possible insights into the genetic factors influencing

these limitations.

Specific genes associated with BBS reproduction were identified, as expected. Mutations in

these genes can result in a small litter size of only one lamb, which limits BBS development. In

cattle, variants of the GHR gene are associated with reproductive and milk production traits

[22, 23]. Meanwhile, in sheep, polymorphisms in the FSHR gene are correlated with differ-

ences in litter size [24, 25]. Additionally, the PGR gene’s variants play a role in reproductive

traits for cattle [26]. Sheep show an increase in litter size and ovulation rate related to the

Fig 4. Enrichment analysis of genes related to exonic mutations.

https://doi.org/10.1371/journal.pone.0303419.g004
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mutation of the BMPR1B gene (FecB) [27–30]. For goats, variants of the FST gene are linked

with litter size [31]. Lastly, polymorphisms in the ESR1 gene have been associated with litter

size in pigs and sheep [32–34]. The FecB gene regulates sheep reproduction by influencing

ovulation rate and litter size among these genes. Mutations in the FecB gene significantly

increase ovulation rate and litter size, resulting in the birth of twins or triplets [35]. Meanwhile,

Table 5. Annotation of hub genes.

Gene Symbol Description

Reproductive-related GHR growth hormone receptor

FSHR follicle stimulating hormone receptor

PGR progesterone receptor

BMPR1B bone morphogenetic protein receptor type 1B

FST follistatin

ESR1 estrogen receptor 1

Lipid-related PPARGC1A PPARG coactivator 1 alpha

STAT6 signal transducer and activator of transcription 6

DGAT1 diacylglycerol O-acyltransferase 1

ACACA acetyl-CoA carboxylase alpha

LPL lipoprotein lipase

Protein-related CSN2 casein beta

LALBA lactalbumin alpha

CSN1S1 casein alpha s1

CSN1S2 alpha-S2-casein

https://doi.org/10.1371/journal.pone.0303419.t005

Fig 5. PPI analysis of hub genes.

https://doi.org/10.1371/journal.pone.0303419.g005
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the mutation enhances ovarian quality, increasing fertilization, and pregnancy rates [36, 37].

Additionally, two genes, MTNR1A and MTNR1B, have been identified, which are implicated

in animal reproductive processes and the regulation of animal coat color. Research has demon-

strated that MTNR1A may facilitate melatonin synthesis, whereas MTNR1B has the converse

effect [38, 39]. By regulating the activity of tyrosine hydroxylase, MTNR1A and MTNR1B can

affect the synthesis and dispersion of melatonin, ultimately influencing skin color. In addition,

the level of melatonin is closely linked to the reproductive performance of Hu sheep [40–43]

and varies with changes in the oestrus cycle [43, 44].

Additionally, mutations closely related to immunity and inflammation have been discov-

ered, which could enable BBS to endure challenging environments above 3100 m in Butuo

County, allowing them to grow normally. Moreover, the genes ACAA2 and BAD related to

mutations are involved in the cellular response to the hypoxia pathway, indicating that BBS

potentially possesses a high adaptability to high-altitude hypoxia. In the hypoxic environment

of high altitudes, immunity, and inflammation are regulated by various factors and signaling

pathways. For instance, activating the NF-κB signaling pathway under high-altitude hypoxia

aids animals in maintaining fundamental physiological functions [45]. Furthermore, the regu-

lation of inflammatory mediators, like IL and TNF, shifts under high-altitude hypoxia, thereby

boosting the animal’s immune system stability [46, 47]. The ACAA2 gene primarily involves

fatty acid degradation and can abolish the cell apoptosis caused by hypoxia treatment [48].

Presently, there is no direct evidence supporting the role of this gene in promoting high-alti-

tude hypoxia adaptation in research on animal adaptation to high-altitude hypoxia. However,

the downregulation of ACAA2 in hepatocellular carcinoma boosts adaptation to hypoxia and

triggers epithelial-mesenchymal transition. It also stimulates the NF-κB signaling pathway and

accelerates the loss of adipose tissue in hypoxia [49]. The BAD gene expression level increases

2-fold under hypoxia induction, and the methylation status of CpG islands is affected [50].

The BAD gene regulates cell apoptosis primarily by affecting the phosphorylation levels of

Ser112, Ser136, and Ser155, participating in cell apoptosis regulations [51]. The BAD gene’s

expression levels elevate in heart, liver, and intestinal cells exposed to hypoxia [52].

Two general signaling pathways, PI3K-Akt and AMPK, have been identified as playing

essential roles in inflammation, immunity, reproduction, growth, energy metabolism, and sub-

stance metabolism. These results are in agreement with previous findings on related genes.

The PI3K-Akt signaling pathway is associated with cell proliferation, survival, and differentia-

tion [53, 54]. It regulates the function of immune cells and inflammation responses [55, 56]

and controls the development and operation of reproductive cells [57, 58]. It also regulates

energy and substance metabolism [59], affecting glucose metabolism, fat metabolism, and pro-

tein synthesis. AMPK, the cellular energy sensor, can regulate cells’ energy balance and meta-

bolic pathways. It regulates energy and substance metabolism, facilitating glucose uptake and

oxidation, restraining fatty acid and cholesterol synthesis, and enhancing protein synthesis

and degradation [60–63]. At the same time, the AMPK signaling pathway regulates inflamma-

tory responses and immune cell function and exerts a regulatory effect on cellular growth and

proliferation [64–66]. In summary, the PI3K-Akt and AMPK signaling pathways are intri-

cately linked and interact in various biological processes, co-regulating critical physiological

functions such as inflammation, immunity, reproduction, growth, energy metabolism, and

substance metabolism.

Conclusions

In conclusion, the study offers valuable insights into BBS’s genetic diversity and adaptability.

Identifying significant genes and signaling pathways linked to reproduction, immunity,

PLOS ONE Uncovering the genetic diversity and adaptability of Butuo Black Sheep through whole-genome re-sequencing

PLOS ONE | https://doi.org/10.1371/journal.pone.0303419 June 10, 2024 11 / 16

https://doi.org/10.1371/journal.pone.0303419


inflammation, and hypoxia enhances understanding of BBS and is relevant for breeding and

conservation efforts. Above all, these genes should be deem as markers in the BBS population,

but more functional experiments should be conducted. These findings are significant for

genetic enhancement and conservation strategies in sheep and other livestock species.
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