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Abstract

Data scarcity and discontinuity are common occurrences in the healthcare and epidemiolog-

ical dataset and often is needed to form an educative decision and forecast the upcoming

scenario. Often to avoid these problems, these data are processed as monthly/yearly aggre-

gate where the prevalent forecasting tools like Autoregressive Integrated Moving Average

(ARIMA), Seasonal Autoregressive Integrated Moving Average (SARIMA), and TBATS

often fail to provide satisfactory results. Artificial data synthesis methods have been proven

to be a powerful tool for tackling these challenges. The paper aims to propose a novel algo-

rithm named Stochastic Bayesian Downscaling (SBD) algorithm based on the Bayesian

approach that can regenerate downscaled time series of varying time lengths from aggre-

gated data, preserving most of the statistical characteristics and the aggregated sum of the

original data. The paper presents two epidemiological time series case studies of Bangla-

desh (Dengue, Covid-19) to showcase the workflow of the algorithm. The case studies illus-

trate that the synthesized data agrees with the original data regarding its statistical

properties, trend, seasonality, and residuals. In the case of forecasting performance, using

the last 12 years data of Dengue infection data in Bangladesh, we were able to decrease

error terms up to 72.76% using synthetic data over actual aggregated data.

Introduction

Any process that involves deriving high-resolution data from low-resolution variables is

referred to as downscaling. This method relies on dynamical or statistical approaches and is

extensively utilized in the field of meteorology, climatology, and remote sensing [1, 2]. Sig-

nificant exploration of the downscaling methods has been done in the field of geology and

climatology to enhance the out of existing models like the General Circulation Model

(GCM) [3–8], Regional Climate Model (RCM) [9], Integrated Grid Modeling System

(IGMS) [10], System Advisor Model (SAM) [10] and to make it usable for the forecast of geo-

graphically significant region and time. Several methods has been used to downscale these

data such as BCC/RCG-Weather Generators (BCC/RCG-WG) [11–13], and Statistics Down-

scaling Model (SDSM) [11, 14–19], Bayesian Model Averaging (BMA) [20]. Even machine
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learning methods has been used like Genetic algorithm (GA) [9], K Nearest Neighbourhood

Resampling (KNNR) [9], Support Vector Machine (SVM) [11, 21–23]. Except for the

machine learning algorithms, which are methods that are finding their applications in new

domains, the rest of the methods are tailored to suit the outputs of the models, as mentioned

earlier.

This class of methods has recently been applied in the disaggregation of spatial epidemio-

logical data [24, 25]. Nevertheless, significant work has yet to be done for the temporal down-

scaling of epidemiological data. The temporal downscaling techniques are often classical

interpolation techniques that do not do justice to aggregated data. This phenomenon can be

well illustrated with an example. Consider the case of monthly Dengue infection data of 2017

from Fig 1, which has been downscaled using linear interpolation by considering the aggre-

gated value as the value of the end date of a month in Fig 2. In this case, if we consider the

monthly aggregate of the downscaled data, it does not match the original aggregate. This

downscaled data, which differs from the original data in such statistical measures, shall result

in decisions and knowledge that cannot be far from the truth.

The paper aims to achieve the following:

• To propose a novel algorithm named Stochastic Bayesian Downscaling (SBD) algorithm

based on the Bayesian approach that can regenerate downscaled temporal time series of

varying time lengths from aggregated data preserving most of the statistical characteristics

and the aggregated sum of the original data.

Fig 1. Monthly data of Dengue 2017. The monthly aggregate of the DENV infection in Bangladesh in the year 2017. The data has been aggregated to monthly scale to

avoid the discontinuity observed in the daily scale.

https://doi.org/10.1371/journal.pone.0295803.g001
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• To present two downscaling case studies of epidemiological time series data (namely Den-

gue and COVID-19 data of Bangladesh) to showcase the workflow and efficacy of the

algorithm.

• To present a comparison between the forecasting performance of aggregated data and algo-

rithm generated synthetic data to showcase the improvement achieved (for synthetic data

over aggregated data) in terms of scale independent error.

The paper is organized as follows. Materials and method section describes the data used for

the paper and its sources and the methodology at length with the proposed SBD algorithm.

The section titled “Comparison of the Synthesized Data with the Real Data” compares the syn-

thesized data with the actual data of two different epidemiological cases (Dengue and COVID-

19) in Bangladesh and shows how the SBD algorithm could generate statistically accurate

approximate of the actual with very little input in both cases discuss the benchmark metric

used for evaluating the output. Section titled “Improvements in Forecasting Accuracy” shows

the improvement of the forecasting accuracy using synthesized data over aggregated data

using a statistical forecasting toolbox in the dengue scenario of Bangladesh using the last 12

years of monthly aggregated data, Forecasting model selection procedures, and residuals.

Finally, we concludes our paper with an overview of the paper and how our paper has contrib-

uted to the existing literature and scopes for improvements and fields of application of the

SBD algorithm in the conclusion section.

Fig 2. Prior distribution for daily data of 2017. The figure depicts the downscaled data using linear interpolation by considering the aggregated value as the value of the

end date of a month using the data illustrated in Fig 1. In this case, if we consider the monthly aggregate of the downscaled data, it does not match the original aggregate.

This downscaled data, which differs from the original data in such statistical measures, shall result in decisions and knowledge that cannot be far from the truth.

https://doi.org/10.1371/journal.pone.0295803.g002
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Materials and methods

Data

The dengue data from Bangladesh used in this paper are from January 2010 to July 2022 and

are collected from DGHS [26], and IEDCR [27]. The COVID-19 data of Bangladesh are from

8 March 2020 to December 2020 and are collected from the WHO data repository [28].

Methodology

The SBD algorithm can be segmented into three sequential parts, as exhibited in Fig 3. Initially,

the algorithm considers a prior distribution to generate synthetic downscaled data. The SBD

algorithm considers the aggregated data as the prior distribution of the downscaled data. For

example: If we have the monthly epidemiological data of dengue for the year 2017, thus to

attain the prior distribution for the downscaled data, we divide the data by 30. The fact is well

illustrated in Figs 1 and 2. Fig 1 depicts the monthly distribution of the DENV (Dengue Virus)

infection in Bangladesh for the year 2017, and Fig 2 represents the prior distribution obtained

by the method described above.

Based on the prior distribution, initial statistical properties of the synthetic data are

obtained except for the standard deviation (σ). As σ is scaling independent, hence scaling

method used to obtain the prior distribution from the monthly aggregate keeps the σ identical

to the monthly aggregate. To overcome this problem, we consider,

s0 ¼
sprior distribution

30
ð1Þ

Fig 3. Flow diagram of Stochastic Bayesian Downscaling algorithm. The diagram depicts the flow diagram of the

novel proposed algorithm. The algorithm works in three unique phases. The first phase (Initial Data Generator)

generates a initial approximation based on the prior distribution, the second phase (Overthrow Correction) removes

any abrupt fluctuation introduced during the de-aggregation in the first step, and finally the final step(Volume

Correction) rectifies the any displacement of data point volume over the aggregation unit in the second step thus

aggregation of this downscaled data agrees with the initial data.

https://doi.org/10.1371/journal.pone.0295803.g003
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where σ0 is the standard deviation considered for the distribution to be fitted to generate the

downscaled data by the algorithm and σpriordistribution is the standard deviation of the obtained

prior distribution. Later on, in section titled “Comparison of the Synthesized Data with the

Real Data”, we will see that the initial assumption of the standard deviation considered in (1) is

a good approximation for the downscaled data.

Initial data generation. The “Initial Data Generator” phase feeds on the aggregated data,

length of the aggregate interval, and σ0 to give an initial downscaled data based on a “Distribu-

tion Generator”. Based on the prior distribution, a proper statistical probability distribution

(PD) is to be considered to be fitted to generate the data. The “Distribution Generator” aims to

fit the selected PD to the prior distribution based on the statistical properties obtained for the

initial phase. The challenge in this scenario and every step of the algorithm is ensuring that the

synthetic data produced in every step is non-negative integers, as we are dealing with epidemi-

ological data. Thus specific measures have been deployed to tackle these challenges, which are:

• To ensure non negativity consider the transformation:

ŷ ¼ y þminðjyjÞ

• To ensure that the data points are integer irrespective of the selection of PD, we round off

the data to the nearest integer and subtract one from randomly selected data points in

Fig 4. 2019 Dengue infected cases daily, pre correction. Initial approximation without overthrow correction exhibits a staircase like property due to higher gradient

change of the prior distribution.

https://doi.org/10.1371/journal.pone.0295803.g004
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Table 1. Comparison of actual vs SDB algorithm generated synthetic data using 2019 Dengue data of Bangladesh.

Month Actual Initial Distribution Overthrow Correction Volume Correction

January 38 38 42 38

February 18 18 13 18

March 17 17 18 17

April 58 58 61 58

May 193 193 300 193

June 1884 1884 2500 1884

July 16253 16253 17617 16253

August 53636 53636 49581 53636

September 16856 16856 18259 16856

October 8143 8143 8419 8143

November 4011 4011 4094 4011

December 1247 1247 1450 1247

Total 102354 102354 102354 102354

The table exhibits the comparison of the number of cases each month for executing the SBD algorithm on the Dengue 2019 data of Bangladesh with the actual data.

Here we can see the total number of infected individuals in each algorithm step is the same. In the case of the monthly sum, we see some anomaly in the overthrow

correction case, which has been fixed in the volume correction step.

https://doi.org/10.1371/journal.pone.0295803.t001

Fig 5. 2019 Dengue infected cases daily, post correction tol = 176.4, iter = 30. Initial approximation with overthrow correction exhibits a much proper approximation

of the real case scenario preserving its original trend.

https://doi.org/10.1371/journal.pone.0295803.g005
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each aggregated unit such that the synthesized data has the same sum as the aggregated

unit

Thus imposing these measures, the “Distribution Generator” generates synthetic distribu-

tion for each aggregated unit. Thus, looping over the entire aggregated timeline generates the

initial distribution of the downscaled data concerning the aggregated data. This initial distribu-

tion is a suitable approximation to the actual data but can be improved with further refine-

ment. The synthetic data will result in the exact aggregated data from which it is generated.

Overthrow correction. This step is often necessary for time series data with an abrupt

change in gradient or in case of initial approximation with abnormally large overthrow as the

approximations are probabilistic. In case of data with the abrupt change in gradient, the initial

approximation is often left with a staircase-like structure as exhibited in the Fig 4. The problem

can be corrected using the overthrow correction measure, which is demonstrated in Fig 5.

The overthrow correction part takes a tolerance, δ, iteration limit, n, and a radius of an

open interval, r. The step initially determines overthrow using tolerance between two neigh-

boring points, i.e., if yi − yi−1 > δ or yi − yi+1 > δ then yi is an overthrow. After identifying an

overthrow, we consider an open interval of radius r around the overthrow point and execute

the distribution generator on that open interval. This redistributes the sample within the open

interval diminishing the overthrow to some extent. This process is iterated n times over the

entire time series to ensure satisfactory results. The strength of the overthrow correction step

can be dictated by the two parameters δ and n. The strength of the overthrow correction is

directly proportional to n and is inversely proportional to δ. Selecting the correct parameter

value can ensure a good approximation of the real-life scenario.

Volume correction. The overthrow correction disrupts the property of the synthesized

time series to conserve its aggregated sum equal to the given aggregated distribution due to its

local correction property. The scenario best illustrates the Table 1. This problem is addressed

in this step. To maintain aggregated sum equal to the original data, we consider each aggre-

gated unit and adjust the sum accordingly, adding/subtracting 1 from randomly chosen indi-

ces until the sum equates as required.

The Stochastic Bayesian Downscaling (SBD) algorithm. The algorithm calls for a

unique name. From now on, we shall address it as Stochastic Bayesian Downscaling (SBD)

algorithm. The structural part of the algorithm has been discussed at length in the first three

segments of the methodology sub-section. The proper pseudo code of the SBD algorithm is as

follows:

Algorithm 1. Stochastic Bayesian Downscaling (SBD) Algorithm
Require: Aggregated value vector, v
Overthrow tolerance, δ
Iteration limit, n
Radius of the open interval, r
Standard deviation, σ

Ensure: downscaled time series, �v
for elem in v do

�v = Distribution Generator(elem,σ)
end for
for i from 1 to n do
find a vector of coordinates of overthrow points
for elem in overthrow points do
open interval centering elem of radius, r = Distribution Genera-

tor(sum of the elements of open interval,σ)
end for

end for
for elem in v do
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if vi 6¼ sum of euiquivalent aggregate in �v then
d=vi-sum of equivalent aggregate in �v
while d 6¼ 0 do
if d > 0 then

�vrandomly picked index ¼ �vrandomly picked index þ 1

d− = 1
else

�vrandomly picked index ¼ �vrandomly picked index � 1

d− = 1
end if

end while
end if

end for
Algorithm 2. Distribution Generator

Require: Total sum of the down scaled distribution, s
Standard deviation, σ

Ensure: Down scaled approximation over the length of the aggregate, �v
�v = Fit the decided distrubiton to the given down scaled time frame
if elems in �v < 0 then

�v ¼ �v þ jminð�vÞj
end if
if elems in �v are not integer then

�v ¼ roundð�vÞ
end if
if s 6¼

P
�v then

d ¼ s �
P

�v
while d 6¼ 0 do
if d > 0 then

�vrandomly picked index ¼ �vrandomly picked index þ 1

d− = 1
else

�vrandomly picked index ¼ �vrandomly picked index � 1

d− = 1
end if

end while
end if
The SBD algorithm is heavily dependent on the random selection of numbers that are

prone to generate non-reproducible results. Thus seeding the random number generator is

highly recommended to ensure reproducible results.

The novelty of SBD algorithm is its consideration of the prior distribution as initialization

and deploying the underlying distribution to generate synthesized downscaled data, which is

non-negative and conserves the aggregated value of the given data.

Comparison of the synthesized data with the real data

To determine the accuracy of the SBD algorithm, we test the SBD algorithm against some real-

world data. Here, we have taken 2020 COVID-19 data on infected individuals in Bangladesh

and 2022 (January to July), Dengue data on infected individuals in Bangladesh. The data, as

mentioned earlier, are daily data on the number of newly infected individuals nationwide. We

aim to convert this data to monthly aggregate and feed the aggregated data to the algorithm to

generate downscaled daily data; hence we can compare the accuracy of the synthetic daily data

with the actual daily data. To determine the accuracy of the approximation, we will use two

error measures and do component analysis on the real and synthetic data to see if the synthetic

data can well approximate the underlying properties of the real data. In case of the component
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decomposition, we will use the additive model mentioned in (2),

yi ¼ Trendþ Seasonalityþ Residual ð2Þ

as the procured data has some zero values for which the multiplicative model mentioned in (3)

yi ¼ Trend� Seasonality� Residual ð3Þ

is not suitable in this scenario.

Error measures for benchmark

To compare the result with the real world data we shall use two error terms that describes the

overall error of the approximation. These are as follows:

• Root Mean Square Error:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1
ðxi � x̂iÞ

N

s

Fig 6. Monthly data of Dengue (2022). Monthly aggregate of 2022 Dengue data from January to July.

https://doi.org/10.1371/journal.pone.0295803.g006
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• Mass Absolute Error

MAE ¼

XN

i¼1
jxi � x̂ij

N

where, xi is the actual data and x̂ i is the predicted data.

Since many of the data points in the actual and synthesized cases is popluated with 0 hence

Mass Absolute Percentage Error (MAPE), and Scaled Mass Absolute Percentage Error

(SMAPE) are undefined in this scenario.

Dengue

Preprocessing and result. In case of this simulation, we took Bangladesh’s 2022 daily

Dengue infected data from January to July. To feed this data into the SBD algorithm, we con-

vert the daily data to monthly aggregate as illustrated in Fig 6. For majority of the statistical

work done in the paper we have used R.

We feed in this data considering,

• Initial standard deviation, s0 ¼
sprior distribution

30
¼

556:6431703

30
¼ 18:55477234.

• Over throw tolerance, δ = 0.6× (Range of the initial distribution).

• Iteration limit, n = 100.

Fig 7. Synthetic data of Dengue. SDB algorithm generated synthesized daily number of infected cases of Dengue in 2022 from January to July.

https://doi.org/10.1371/journal.pone.0295803.g007
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• Radius of open interval, r = 3.

• Underlying distribution to be normal.

and generate the synthesized data. Fig 7 illustrates the synthesized data, which can be said

to be a good approximation of the actual given the aggregated prior distribution (Fig 8).

Fig 8. Actual data of Dengue. Daily number of infected cases of Dengue in 2022 from January to July.

https://doi.org/10.1371/journal.pone.0295803.g008

Table 2. Aggregation comparison of actual vs. SBD algorithm generated synthetic data in the case study of Dengue.

Month Actual Initial Distribution Overthrow Correction Volume Correction

January 126 126 119 126

February 20 20 27 20

March 20 20 20 20

April 23 23 32 23

May 163 163 206 163

June 737 737 733 737

July 1491 1491 1443 1491

Total 2580 2580 2580 2580

The column named “Actual” represent the actual data and the following three columns (mentioned in its order of progression) represent the aggregation of downscaled

data (generated for the purpose of comparison and validation) at each phase of SBD algorithm. The final outcome of the algorithm denoted in the table as “Volume

Correction” column is in agreement with the actual data. A distinction of this algorithm is that at each phase of the process, the SDB algorithm maintains the total sum

of the over aggregation unit (in this case month) equal to that of the actual data which helps to maintain the accuracy of the synthetic data.

https://doi.org/10.1371/journal.pone.0295803.t002
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Error metrics and statistical measures. The calculated error measures are:

• MAE = 6.60664, which implies that the average error between the actual and synthesized

data is 6.60664.

• RMSE = 12.64499 which implies that the standard deviation of the residuals/errors is

12.64499. The fact is well illustrated in Fig 14.

Table 3. Statistical measure comparison of 2022 actual Dengue data vs. SDB algorithm generated data.

Measures Observed Synthesized

Mean 12.22748815 12.22748815

Standard Deviation 20.28993189 18.49672823

Minimum 0 0

Lower Quartile(Q1) 0 0

Median 2 1

Upper Quartile(Q2) 17 19

Maximum 99 72

This table illustrates the comparison of the basic statistical measures of the synthesized data with respect to the actual

data. The second and third column represent the statistical measures observed for the actual data and algorithm

generated data respectively. The synthetic data was able to replicate the mean of the actual data exactly with out being

provided with it. The rest of the statistics are close enough approximation except that of the maximum value. A smart

way to achieve this is can be an open avenue for research.

https://doi.org/10.1371/journal.pone.0295803.t003

Fig 9. Trend of Dengue data of 2022 (Actual). Trend of the actual dengue data.

https://doi.org/10.1371/journal.pone.0295803.g009
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The error metric shows satisfactory results. The following Table 2 validates if the synthe-

sized data honours the aggregated sum of the prior distribution.

The total number of cases in each scenario has been maintained equally. As discussed ear-

lier, we can see that the initial distribution holds the monthly sum consistently, which gets dis-

rupted in the overthrow correction phase and later corrected in the volume correction phase.

We shall now explore the basic statistical properties of the synthetic data with respect to the

actual data.

It is to be noted that the mean of the synthesized data equates to that of the original data,

although it was not plugged into the SBD algorithm in any manner as illustrated in Table 3. As

previously discussed that σ0 is a good approximation to the original σ. All the rest of the mea-

sures are somewhat close, but the maximum varies by a lot. The maximum is hard to anticipate

from the aggregated data; hence it is an avenue that demands further exploration.

Component decomposition and comparison. We now want to do component decom-

position of both the actual and synthetic data based on the model mentioned in (2). How-

ever, component decomposition is no benchmark for accuracy, but SBD algorithm aims to

improve the outcome of forecasting techniques highly influenced by the components within

a time series data. Thus comparing these components can answer the question of whether

the components-based characteristics of the original time series are present within the syn-

thesized data.

In the case of the trend component (Figs 9 and 10), both the actual and the synthesized data

shows similar result and trend of the actual data have been well approximated by the trend of

the synthesized data.

Fig 10. Trend of Dengue data of 2022 (Predicted). Trend of the synthetic dengue data.

https://doi.org/10.1371/journal.pone.0295803.g010

PLOS ONE Downscaling epidemiological time series data for improving forecasting accuracy

PLOS ONE | https://doi.org/10.1371/journal.pone.0295803 December 14, 2023 13 / 33

https://doi.org/10.1371/journal.pone.0295803.g010
https://doi.org/10.1371/journal.pone.0295803


In the case of the seasonality component (Figs 11 and 12), both the actual and the synthe-

sized data show major weekly and minor sub-weekly seasonality. The synthesized data’s sea-

sonality approximates the actual data’s seasonality well.

In the case of the residual component (Figs 13 and 14), both the actual and the synthesized

data show a similar result, although the residual of the synthetic data may look noisy at first

glance but upon closer inspection, it is evident that the residual of the synthetic data shows less

deviation from the standard value in comparison to the actual data. The synthesized data’s

residual has well approximated the actual data’s residual.

As mentioned earlier, the key takeaway from the discussion is that the SBD algorithm could

generate an excellent approximation of the dengue data from the monthly aggregated data

based on some statistical properties of the prior distribution. In the following section, we shall

also test SBD algorithm’s efficacy in another epidemiological scenario.

COVID-19

Preprocessing and result. In case of this simulation, we took Bangladesh’s 2020 daily

COVID-19 infected data from March to December [29, 30]. To feed this data into the SBD

algorithm, we convert the daily data to monthly aggregate as illustrated in Fig 15,

We feed in this data considering,

• Initial standard deviation, s0 ¼
sprior distribution

30
¼

32021:87439

30
¼ 1067:395813.

• Over throw tolerance, δ = 0.2× (Range of the initial distribution).

Fig 11. Seasonality of Dengue data of 2022 (Actual). Seasonality of the actual dengue data.

https://doi.org/10.1371/journal.pone.0295803.g011
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• Iteration limit, n = 100.

• Radius of open interval, r = 3.

• Underlying distribution to be normal.

and generate the synthesized data. Fig 16 illustrates the synthesized data, which can be said

to be a good approximation of the actual given the aggregated prior distribution (Fig 17).

Error metrics and statistical measures. The calculated error measures are:

• MAE = 257.41806, which implies that the average error between the actual and synthesized

data is 257.41806, which is reasonable considering the mean of the data is 1717.424749.

• RMSE = 346.6241, which implies that the standard deviation of the residuals/errors is

346.6241. The fact is well illustrated in Fig 23.

it is to be noted that the error term of this scenario must not be compared with the error

term of the previous case as they are of varying scale. Compared to the scale of the data, the

error metric shows satisfactory results. The following Table 4 validates if the synthesized data

honours the aggregated sum of the prior distribution.

We shall now explore the basic statistical properties of the synthetic data with respect to the

actual data.

It is to be noted that the mean of the synthesized data equates to that of the original data,

although it was not plugged into the SBD algorithm in any manner as illustrated in Table 5.

As previously discussed that σ0 is a good approximation to the original σ. All the rest of the

Fig 12. Seasonality of Dengue data Of 2022(Predicted). Seasonality of the synthetic dengue data.

https://doi.org/10.1371/journal.pone.0295803.g012
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measures are somewhat close, but the maximum varies by a lot. The maximum is hard to

anticipate from the aggregated data; hence it is an avenue that demands further

exploration.

Component decomposition and comparison. We now want to do component decompo-

sition of both the actual and synthetic data based on the model mentioned in (2). However,

component decomposition in no way is a benchmark for accuracy, but as SBD algorithm aims

to improve the outcome of forecasting techniques which are highly influenced by the compo-

nents within a time series data. Thus, comparing these components can answer the question of

whether the original time series’s components-based characteristics are present in the synthe-

sized data.

In case of the trend component (Figs 18 and 19) both the actual and the synthesized data

shows similar result and trend of the actual data have been well approximated by the trend of

the synthesized data.

In case of the seasonality component (Figs 20 and 21), both the actual and the synthesized

data shows major weekly seasonality. The seasonality of the synthesized data has well approxi-

mated the seasonality of the actual data.

In the case of the residual component (Figs 22 and 23), both the actual and the synthesized

data shows a similar result, although the residual of the synthetic data may look a bit noisy at

first glance but upon closer inspection, it is evident that the residual of the synthetic data

shows less deviation from the standard value in comparison to the actual data. The residual of

the synthesized data has well approximated the residual of the actual data.

Fig 13. Residual of Dengue data of 2022(Actual). Residual of the actual dengue data.

https://doi.org/10.1371/journal.pone.0295803.g013

PLOS ONE Downscaling epidemiological time series data for improving forecasting accuracy

PLOS ONE | https://doi.org/10.1371/journal.pone.0295803 December 14, 2023 16 / 33

https://doi.org/10.1371/journal.pone.0295803.g013
https://doi.org/10.1371/journal.pone.0295803


The key takeaway from the discussion above is that the algorithm could generate an excel-

lent approximation of the COVID-19 data from the monthly aggregated data based on some

statistical properties of the prior distribution. We shall also test SBD algorithm’s efficacy in a

forecasting scenario in the following section.

Improvements in forecasting accuracy

In this section, we shall forecast the Dengue infection case in Bangladesh using statistical fore-

casting tools. The use of statistical modelling is one of the helpful ways that may be utilized for

the forecasting of dengue outbreaks [31, 32]. Previous research carried out in China [33], India

[34], Thailand [35], West Indies [36], Colombia [37], and Australia [38] on infectious diseases

made substantial use of the time series technique in the field of epidemiologic research on

infectious diseases [38]. A number of earlier research looked at the Autoregressive Integrated

Moving Average (ARIMA) model as a potential tool for use in forecasting [39–44].In addition,

the ARIMA models have seen widespread use for dengue forecasting [42, 45–47]. When estab-

lishing statistical forecasting models, these are frequently paired with Seasonal Auto-regressive

Integrated Moving Average (SARIMA) models, which have proven to be suitable for assessing

time series data with ordinary or seasonal patterns [34, 36, 38, 48–50]. It is likely that develop-

ing a dengue incidence forecasting model based on knowledge from previous outbreaks and

environment variables might be an extremely helpful tool for anticipating the severity and fre-

quency of potential epidemics.

Fig 14. Residual of Dengue data of 2022(Predicted). Residual of the synthetic dengue data.

https://doi.org/10.1371/journal.pone.0295803.g014
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The idea of seasonality using the Fourier coefficient naming Fourier ARIMA model was

introduced by [51, 52].

Zt ¼ d0 þ
Xp

i¼1

alZt� i þ
Xq

j¼1

bJet� j þ
Xr

k¼1

½ak sin ðoktÞ þ bk cos ðoktÞ�Zt� m þ et ð4Þ

where, δ0 is the constant term and ωk is the periodicity of the data.

We aim to forecast the monthly and synthesized daily data using the forecasting men-

tioned above techniques and compare the forecast accuracy based on error measures. We

use SARIMA and Fourier-ARIMA models to forecast the monthly and synthesized data. The

model in each case is chosen based on the lowest value of Akaike’s Information Criterion

(AIC), Akaike’s Information Criterion correction (AICc), and Bayesian Information Crite-

rion (BIC).

Model selection method

Box-Jenkins method is a generalized model selection pathway which works for time series irre-

spective of its stationarity or seasonality. The method is illustrated in Fig 24.

Fig 15. Monthly data of Covid-19 (2020). Monthly aggregate of 2020 COVID-19 infected data of Bangladesh from March to December.

https://doi.org/10.1371/journal.pone.0295803.g015
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Error measures of model

The error measures for comparison is Mean Absolute Scaled Error(MASE) which is defined as

MASE ¼
1

n

Pn
i¼1
jYi � Ŷi j

1

T� m

PT
t¼mþ1

jYt � Yt� mj

We used this metric as it is scale-independent; hence is perfect for comparison [53, 54]. We also

could have taken MAPE as a metric, but MAPE is undefined for such cases as the data is popu-

lated with zero values. We also use RMSE and MAE to gauge the error in the forecast [55, 56].

Forecast on the aggregated data

The actual data is monthly Dengue infection data of Bangladesh from 2010 to July 2022. Fol-

lowing Box-Jenkin’s method, we firstly check for the stationarity of the data based on the Aug-

mented Dicky Fuller (ADF) test. ADF test returns the value of -4.7906 with p-value = 0.01,

which implies that the data is stationary.

We run multiple SARIMA models and calculate their AIC, AICc and BIC and the best

model is chosen based on the minimum value of the criterion. We present 5 of the top results

in Table 6.

Here, the best model to use is SARIMA (1, 0, 0)(0, 1, 1)12. We fit the given model, which

gives us the coefficients presented in Table 7:

Fig 16. Synthetic data of Covid-19. Synthesized daily number of infected cases of COVID-19 in 2020 from March to December.

https://doi.org/10.1371/journal.pone.0295803.g016
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To check the goodness of fit of the model, we use the Ljung box test, which returns the p-

value = 0.9996 > 0.05, i.e. we accept the null hypothesis: “The model does not show lack ness of
fit/ the residuals are not autocorrelated/ the residuals are random white noise.”

Given everything in place, we forecast the infection for the rest of 2023, i.e. from August to

December. The forecast is illustrated in the given figure (Fig 25).

Fig 17. Daily data of Covid-19 (2020). Daily number of infected cases of COVID-19 in 2020 from March to December.

https://doi.org/10.1371/journal.pone.0295803.g017

Table 4. This table illustrates that the synthetic data agrees with the monthly sum of the actual data.

Month Actual Initial Distribution Overthrow Correction Volume Correction

March 51 51 51 51

April 7616 7616 9226 7616

May 39486 39486 41261 39486

June 98330 98330 94075 98330

July 92178 92178 92115 92178

August 75335 75335 75605 75335

September 50483 50483 50766 50483

October 44205 44205 45126 44205

November 57248 57248 55805 57248

December 48578 48578 49480 48578

Total 513510 513510 513510 513510

The total number of cases in each scenario has been maintained equally. As discussed earlier, we can see that the initial distribution holds the monthly sum consistently,

which gets a little disrupted in the overthrow correction phase and is later on corrected in the volume correction phase.

https://doi.org/10.1371/journal.pone.0295803.t004
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To validate the goodness of the fit, we can analyze the model residual, illustrated in Fig 26.

Here, the top graph is the residual with the timeline of the original data. The bottom left graph

represents the Autocorrelation Function (ACF) with respect to the lag of the data. Almost all

the values are within the significance e level, and the bottom right figure shows the distribution

of the model’s residuals. It implies that the residuals are distributed generally with zero means.

Table 5. Statistical measure comparison of actual vs. SDB algorithm generated synthetic data.

Measures Observed Synthesized

Count 299 299

Mean 1717.424749 1717.424749

Standard Deviation 1044.457258 1007.554237

Minimum 0 0

Lower Quartile(Q1) 1115.5 1225

Median 1666 1696

Upper Quartile(Q2) 2521.5 2481.5

Maximum 4019 3735

This table illustrates the comparison of the basic statistical measures of the synthesized data with respect to the actual

data. The second and third column represent the statistical measures observed for the actual data and algorithm

generated data respectively. The synthetic data was able to replicate the mean of the actual data exactly with out being

provided with it. The rest of the statistics are close enough approximation except that of the maximum value. A smart

way to achieve this is can be an open avenue for research.

https://doi.org/10.1371/journal.pone.0295803.t005

Fig 18. Trend of Covid-19 data of 2020(Actual). Trend of the actual COVID-19 data.

https://doi.org/10.1371/journal.pone.0295803.g018
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Fig 19. Trend of Covid-19 data of 2020(Predicted). Trend of the synthetic COVID-19 data.

https://doi.org/10.1371/journal.pone.0295803.g019

Fig 20. Seasonality of Covid-19 data of 2020(Actual). Seasonality of the actual COVID-19 data.

https://doi.org/10.1371/journal.pone.0295803.g020
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Fig 21. Seasonality of Covid-19 data of 2020(Predicted). Seasonality of the synthetic COVID-19 data.

https://doi.org/10.1371/journal.pone.0295803.g021

Fig 22. Residual of Covid-19 data of 2020(Actual). Residual of the actual COVID-19 data.

https://doi.org/10.1371/journal.pone.0295803.g022
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To calculate the accuracy of the given forecast, we calculate the aforementioned error mea-

sures presented in Table 8.

The error measures are acceptable given the magnitude of the data, but there is room for

improvement shall be demonstrated in the following subsection.

Forecast on the synthesized data

The synthesized data is daily Dengue infection data of Bangladesh from 2010 to July 2022. Fol-

lowing Box-Jenkin’s method, we firstly check for the stationarity of the data based on the Aug-

mented Dicky Fuller (ADF) test. ADF test returns the value of -6.6531 with p-value = 0.01,

which implies that the data is stationary.

We run multiple Fourier ARIMA models and calculate their AIC, AICc and BIC. The best

model is chosen based on the minimum value of the criterion. We present 5 of the top results

in Table 9. Here in each case of Fourier transformation, we used one pair of trigonometric

terms where each pair is comprised of a sine and a cosine term as defined in (4) and the peri-

odicity of the Fourier term is used to be 365.25. Prior to this we have used box cox transforma-

tion of λ = 0.49.

Here, the best model to use is ARIMA(7,0,7). We fit the given model, which gives us the

coefficients in Table 10.

To check the goodness of fit of the model, we use the Ljung box test, which returns the p-

value = 0.07749 > 0.05, i.e. we accept the null hypothesis: “The model does not show lack ness of
fit/ the residuals are not autocorrelated/ the residuals are random white noise”.

Given everything in place, we forecast the infection for the rest of 2023, i.e. from August to

December. The forecast is illustrated in the given figure (Fig 27).

Fig 23. Residual of Covid-19 data of 2020(Predicted). Residual of the synthetic COVID-19 data.

https://doi.org/10.1371/journal.pone.0295803.g023
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Fig 24. Box-Jenkin’s method of model selection. Flow chart of Box-Jenkin’s Method.

https://doi.org/10.1371/journal.pone.0295803.g024

Table 6. Selection of best model based on criteria for aggregated data.

Model AIC AICc BIC

SARIMA(1, 0, 0)(0, 1, 1)12 2603.57 2603.76 2612.22

SARIMA(1, 0, 0)(0, 1, 2)12 2604 2604.32 2615.53

SARIMA(1, 0, 0)(1, 1, 1)12 2604 2604.62 2615.84

SARIMA(1, 0, 1)(0, 1, 1)12 2604.36 2604.68 2615.89

SARIMA(2, 0, 0)(0, 1, 1)12 2604.42 2604.73 2615.95

The table depicts the AIC, AICc and BIC of the simulated SARIMA model for aggregated data and best model is

selected based on the minimum value of the criterion.

https://doi.org/10.1371/journal.pone.0295803.t006
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To validate the goodness of the fit, we can analyze the model residual, illustrated in Fig 28.

Here, the top graph is that of the residual with the timeline of the original data. The bottom left

graph represents the Autocorrelation Function (ACF) with respect to the lag of the data.

Almost all the values are within the significance e level, and the bottom right figure shows the

distribution of the model’s residuals. It implies that the residuals are distributed normally with

zero mean.

Table 7. Coefficients of SARIMA (1, 0, 0)(0, 1, 1)12.

ar1 sma1

0.5511 -0.8546

S.E. 0.0721 0.0912

Coefficients of SARIMA (1, 0, 0)(0, 1, 1)12 model to fit and forecast actual monthly data of Dengue infection in

Bangladesh from 2010 to July, 2022. Here, ar implies autoregressive, SMA implies seasonal moving average, and the

trailing number enumerates their coefficient ordering. SE implies the standard error of the mean.

https://doi.org/10.1371/journal.pone.0295803.t007

Fig 25. Dengue infection forecast(Monthly). The figure illustrates the forecast generated by SARIMA (1, 0, 0)(0, 1, 1)12 from actual aggregated data.

https://doi.org/10.1371/journal.pone.0295803.g025
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To calculate the accuracy of the given forecast, we calculate the aforementioned error mea-

sures presented in Table 11.

The error measures are acceptable, given the magnitude of the data. In comparison to the

error measures of the actual data illustrated in Table 8, we can see improvement in the

Table 11. Comparing the MASE term of the two tables shows about 72.76% decrement in

error terms using the synthetic data over actual data.

Fig 26. Residual of the SARIMA (1,0,0,)(0,1,1) [12]. The figure illustrates in the bottom left graph that the ACF values for different choices of lag are all contained

within the significance level (The dotted blue)and in the bottom right graph that the residuals are normally distributed with it’s mean about 0.

https://doi.org/10.1371/journal.pone.0295803.g026

Table 8. Error measures for the forecast of the SARIMA (1, 0, 0)(0, 1, 1)12 of the actual aggregated data.

Data RMSE MAE MASE

Monthly 4092.712 753.6765 0.409654

The table depicts the error measures considered for the model. The errors are with in acceptable ranges given the

magnitude of the data. The MASE is a point to be noted as it will used to compare and contrast the improvements

achieved using synthetic data.

https://doi.org/10.1371/journal.pone.0295803.t008
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Conclusion

In this paper, a novel temporal downscaling algorithm named Stochastic Bayesian Downscal-

ing (SBD) algorithm has been proposed that can generate downscaled/deaggregated time series

data of varying time length from the aggregated data. We have presented two case studies of

Bangladesh using Dengue, 2022 data ranging from January to July and COVID-19, 2020 data

to exhibit the workflow of the algorithm. In both case studies, the algorithm-generated syn-

thetic data managed to replicate the mean of the actual data without ever being provided with

it. In the case of the other statistical measures, the synthetic data could approximate it closely

except for the maximum value. A way out of this issue is still an open question for research.

Finally, we have tested how the classical statistical forecasting methods respond to the synthetic

data with respect to actual aggregated data using monthly Dengue data of Bangladesh for the

last 12 years. Our findings show that using synthetic data over actual aggregated data, we were

able to reduce the scale-free error measure by 72.76%.

The SBD algorithm presented in this paper is designed to handle integer data by imposing

certain restrictions but can be generalized to handle real numbers upon relaxing such restric-

tions. Hence, exploring diverse use cases in public health, epidemiology, economics, and

finance can be a future direction of research. In this paper, we have only studied how statistical

forecasting models respond to synthetic data compared to actual data. Repeating similar

Table 9. Selection of best model based on criteria.

Model AIC AICc BIC

ARIMA(7,0,7) 21711.25 21711.4 21827.03

ARIMA(5,0,0) 21819.04 21819.08 21876.94

ARIMA(3,0,0) 22147.88 22147.9 22192.91

ARIMA(2,0,0) 22527.02 22527.04 22565.61

ARIMA(1,0,0) 23476.24 23476.25 23508.4

ARIMA(0,0,0) 33245.98 33271.71 33271.71

The table depicts the AIC, AICc and BIC of the simulated Fourier ARIMA model for SDB generated data and best

model is selected based on the minimum value of the criterion.

https://doi.org/10.1371/journal.pone.0295803.t009

Table 10. Coefficients of ARIMA(7,0,7).

ar1 ar2 ar3 ar4 ar5 ar6 ar7 ma1

-0.5273 0.3109 1.2946 1.0562 0.2775 -0.6222 -0.7940 0.8055

S.E. 0.0513 0.0310 0.0419 0.0755 0.0323 0.0353 0.0488 0.0471

ma2 ma3 ma4 ma5 ma6 ma7 intercept s1–365

0.0718 -1.0032 -1.1256 -0.5327 0.3051 0.6454 3.3498 6.6197

S.E. 0.0340 0.0365 0.0602 0.0321 0.0356 0.0303 1.4789 1.6859

c1–365

-0.7430

S.E. 1.6857

Coefficients of ARIMA(7,0,7) model to fit and forecast SDB generated data of Dengue infection in Bangladesh from 2010 to July 2022. Here, ar implies auto-regressive,

ma implies the moving average, s and c represent the coefficient of the sine and cosine of Fourier term, intercept implies the constant term, and the trailing number

enumerates their coefficient ordering. SE implies the standard error of the mean.

https://doi.org/10.1371/journal.pone.0295803.t010
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studies for the predictive class of machine learning models like Long Short Term Memory

(LSTM), XGboost, etc is a further scope of research.

The downscaling algorithm has been predominantly used in geology to facilitate outputs

of the prevalent models in the field. Very few applications have been made in epidemiol-

ogy, and most of the application is spatial downscaling. This paper contributes to the cur-

rent body of knowledge by proposing a parametric, probabilistic one-dimensional

downscaling algorithm using aggregated data in the field of epidemiology that facilitates

existing classical statistical forecasting tools box to generate better forecasts than the aggre-

gated data. As we know, forecasting models like ARIMA and SARIMA are sensitive to data

discontinuity and outliers, hence, the SBD algorithm can be implemented as pre model

cleaning step to curate better results on a finer scale. As the SBD algorithm can increase

data volume to a significant scale (e.g. downscaling monthly data to daily data can increase
the number of data points to 30 times on average) while preserving key statistics and proper-
ties of the data, hence such downscaled data can open the avenue for exploration using

state of the art neural network model which often requires large volume of data to generate

fruitful outcome.

Fig 27. Dengue infection forecast(Daily). The figure illustrates the forecast generated by ARIMA(7,0,7) from actual aggregated data.

https://doi.org/10.1371/journal.pone.0295803.g027
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Supporting information

S1 Data.

(CSV)

S2 Data.

(CSV)

Fig 28. Residuals from regression with ARIMA (7, 0, 7) errors. The figure illustrates in the bottom left graph that the ACF values for different choices of lag are mostly

contained within the significance level (The dotted blue)and in the bottom right graph that the residuals are normally distributed with it’s mean about 0.

https://doi.org/10.1371/journal.pone.0295803.g028

Table 11. Error measures for the forecast of the ARIMA (7, 0, 7) of the synthetic daily data.

Data RMSE MAE MASE

Daily 18.71255 6.593062 0.1115845

The table depicts the error measures considered for the model. The errors are with in acceptable ranges given the

magnitude of the data. In comparision to the Table 8, the scale independent error term, MASE shows 72.76%

decrement.

https://doi.org/10.1371/journal.pone.0295803.t011
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