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Abstract

Precisely detecting the ultra-low-level severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2) is crucial. The detection mechanism must be sensitive, low-cost, portable,

fast, and easy to operate to tackle coronavirus disease 19 (COVID-19). This work proposes

a sensor exploiting graphene surface plasmon resonance to detect SARS-CoV-2. The gra-

phene layer functionalized with angiotensin-converting enzyme 2 (ACE2) antibodies will

help efficient adsorption of the SARS-CoV-2. In addition to the graphene layer, ultra-thin lay-

ers of novel two-dimensional materials tungsten disulfide (WS2), potassium niobate

(KNbO3), and black phosphorus (BP) or blue phosphorus (BlueP) used in the proposed sen-

sor will increase the light absorption to detect an ultra-low SARS-CoV-2 concentration. The

analysis presented in this work shows that the proposed sensor will detect SARS-CoV-2 as

small as*1 fM. The proposed sensor also offers a minimum sensitivity of 201 degrees/

RIU, a figure-of-merit of 140 RIU−1, and enhanced binding kinetics of the SARS-CoV-2 to

the sensor surface.

1 Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a critical biological patho-

gen responsible for coronavirus disease 2019 (COVID-19). Recently, COVID-19 has caused an

unprecedented health problem worldwide due to the high progression rate of fatality. SARS-

CoV-2 is a positive-sense single-stranded ribonucleic acid (RNA) virus [1]. Several research

groups have proposed and demonstrated efficient, cost-effective, and real-time detection tech-

niques for the SARS-CoV-2 virus [2–8]. Culture-based techniques that detect nucleic acid or

proteins and serological-based techniques that detect the created antibodies are commonly

used for virus diagnosis [9]. Recent advances in molecular technology have led to the develop-

ment of nucleic acid-dependent amplification techniques for virus detection, e.g., the reverse

transcriptase quantitative polymerase chain reaction (RT-qPCR) technique. RT-qPCR is

known as the gold standard for detecting several critical viruses, such as SARS-CoV-2, human

immunodeficiency virus (HIV), and cytomegalovirus (CMV) [2].

RT-qPCR is highly sensitive and selective for SARS-CoV-2 detection [3]. Nevertheless, its

application is limited due to significant false-negative cases (*15%), long processing time,
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costly instruments, and the requirement of skilled human resources and uninterrupted power

supply over a long period [4, 5]. Conversely, colorimetric-based loop-mediated isothermal

amplification (LAMP) techniques have been proposed for SARS-CoV-2 detection to overcome

the limitations of an RT-qPCR technique [5]. LAMP techniques show a high nucleic-acid

amplification efficiency but are time-consuming and tedious as they use electrophoresis for

detection. Additionally, the decision regarding the color change of reaction vessels by human

eyes is potentially a subjective issue and may significantly impact the test results [6]. A chest

computer tomography (CT) scan can also be used to detect the SARS-CoV-2 [7]. However,

such a technique cannot be used for asymptomatic patients, early-stage detection, and the

measurement of the mass density of virus [10]. Serological tests, e.g., enzyme-linked immuno-

sorbent assay (ELISA), can also be used for SARS-CoV-2 diagnosis [8]. Serological methods

have shown high efficiency and are low-cost, but they suffer from low sensitivity (S) and false-

negative reports [3].

In the last few years, optical sensors based on plasmonics have attracted significant atten-

tion in virus detection due to their simplicity, flexibility, label-free operation, and short

response time [2, 11–15]. Plasmonics-based optical sensors have been proposed to detect

many critical pathogens, such as dengue virus envelope (E)-protein, thyroglobulin, HIV-1,

and SARS-CoV-2 [3, 16–20]. Besides, optical biosensors have recently been proposed to detect

SARS-CoV-2 proteins, such as spike and nucleo-capsid [21–25]. In particular, a toroidal plas-

monic meta-sensor has recently been proposed to detect SARS-CoV-2 spike (S)-protein using

terahertz (THz) wavelength signal, demonstrating a limit of detection (LoD) of only *4.2 fM

[19]. However, the plasmonic meta-sensor suffers from insensitivity to S-protein concentra-

tion between 20 and 50 fM and low quality-factor (Q-factor).

More recently, a surface plasmon resonance (SPR) based method has been proposed to

examine the affinity of SARS-CoV-2 S-protein to angiotensin-converting enzyme 2 (ACE2)

[26]. Additionally, plasmonic photo-thermal effect and localized SPR (LSPR) have been pro-

posed to detect selected sequences of SARS-CoV-2 by nucleic acid hybridization techniques

[4]. However, thermo-plasmonic heat cannot discriminate between two similar gene

sequences, and a sensor employing this effect shows low detection accuracy. Furthermore, a

near-infrared (NIR) plasmonic sensor has been suggested for SARS-CoV-2 S-protein detection

using a phase interrogation technique [3]. Although an NIR plasmonic sensor shows high sen-

sitivity, its performance is limited due to the complex technology required for phase variation

measurement.

Recently, graphene surface plasmon (SP) has drawn significant interest for application in

sensing due to two-dimensional (2-D) graphene’s promising properties, such as high π-conju-

gation structure, shallow thickness and mass, and high mechanical strength [27]. In SPR sen-

sors, the sample bio-molecules should be efficiently adsorbed by the sensor surface to increase

the sensitivity [28–30]. Therefore, bio-molecular recognition elements (BREs) are often placed

on top of SPR-based sensors to functionalize the metal film for enhanced bio-molecule adsorp-

tion. Since graphene surfaces can be modified by introducing different BRE functional groups,

such as epoxy, hydroxyl, ketone, and carboxyl in their basal plane, graphene-based sensors

show high bio-molecule adsorption capability [31]. Recently, apart from graphene, a few other

2-D materials, such as molybdenum disulfide (MoS2) and blue phosphorus (BlueP), have been

shown to significantly improve sensor sensitivity when used in simple metal-based SPR sen-

sors [32]. Moreover, an SPR biosensor based on bimetallic films gold (Au)-silver (Ag) and

BlueP has shown good sensitivity [33] but limited performance in detecting ultra-low concen-

trations of biological molecules. However, using different 2-D materials like tungsten disulfide

(WS2), potassium niobate (KNbO3), and black phosphorus (BP) in addition to graphene in a
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silver (Ag) based SPR biosensor is still unexplored, although they have optical properties

promising for an SPR sensor.

This work proposes a graphene SPR sensor for ultra-low-level SARS-CoV-2 detection. SPR

plays a pivotal role in the sensing principle of the proposed sensor [34–36]. The proposed sen-

sor is based on the Kretschmann configuration, thus being simple. ACE2 functionalizes the

graphene layer for efficient adsorption of the SARS-CoV-2 S-protein sample [20]. The pro-

posed sensor uses thin layers of novel 2-D materials between graphene and Ag layers, such as

WS2, KNbO3, and BP or BlueP, to increase the light absorption and hence, the sensor’s sensi-

tivity. The optical and electronic properties of 2-D hetero-structures highly depend on the

number of 2-D material layers and the stacking patterns. Due to their excellent sensitivity

enhancement effects, such as 2-D materials BlueP/BP, KNbO3, and WS2, we believe our pro-

posed biosensor will find applications in practical biosensing [37].

This work is a theoretical work based on detailed analytical and numerical calculations. We

apply the finite difference time domain (FDTD) simulation technique to characterize the sen-

sor response to incident light and determine the sensor performance parameters. SARS-CoV-

2 S-proteins are detected by calculating the change in resonance angle for SPR excitation. We

use the Langmuir model to calculate the equilibrium dissociation constant (KD) to determine

the binding kinetics between ACE2 and S-protein [16]. The proposed sensor shows the pros-

pect of detecting ultra-low SARS-CoV-2 concentration of only *1 fM, which is crucial for the

early detection of this deadly virus. The proposed graphene SPR sensor also shows a high sen-

sitivity, figure-of-merit (FoM), selectivity, and resolution while detecting the SARS-CoV-2

compared to the state-of-the-art SPR sensors. Furthermore, the proposed sensor offers a signif-

icantly small KD, showing enhanced binding of SARS-CoV-2 on the sensor surface.

The rest of the paper is prepared as follows: Sec. 2 illustrates and discusses the proposed

sensor configuration and optimization of layer thicknesses. Then, Sec. 3 presents the optical

properties of different materials, theoretical analysis of sensor performance parameters, and

simulation methods. Next, we present and discuss the SARS-CoV-2 detection approach, analy-

sis of binding between ACE2 and S-protein, and the calculated sensor performances in Sec. 4.

Finally, in Sec. 5, we conclude the proposed sensor results.

2 Proposed sensor

2.1 Configuration

The proposed graphene SPR sensor is designed based on the Kretschmann configuration, as

shown in Fig 1. The incident light on the metal–dielectric interface at the resonance angle (θr)
excites SPR, significantly absorbing the incident light. The θr for SPR changes based on the

refractive index of the dielectric material, i.e., the sample layer. The sample layer refractive

index varies due to the presence of SARS-CoV-2. Therefore, SARS-CoV-2 can be detected by

measuring the change in θr. SARS-CoV-2 samples will be placed on the top surface of the pro-

posed sensor structure, which is a graphene layer. In practice, we need binding molecules to

immobilize antibodies on the graphene surface to capture SARS-CoV-2. We use 1-pyrenebuty-

ric acid N-hydroxy-succinimide ester (PBASE) that permits the binding of functional groups

to graphene without disrupting the carbon atomic structure [38] and acts as an interfacing

molecule and a probe linker [20]. PBASE contains an aromatic pyrenyl group, which physi-

cally interacts with graphene through π–π interaction. PBASE also contains a succinimidyl

ester group, which covalently reacts with the amino group on the antibody by an amide bond

[39].

SARS-CoV-2 consists of four fundamental physical proteins: S, E, matrix, and nuclei-capsid

proteins. S-protein is immunogenic and shows amino acid sequence variation, permitting the

PLOS ONE Graphene surface plasmon sensor for ultra-low-level SARS-CoV-2 detection

PLOS ONE | https://doi.org/10.1371/journal.pone.0284812 April 25, 2023 3 / 20

https://doi.org/10.1371/journal.pone.0284812


specific detection of SARS-CoV-2 [40]. Hence, this work uses S-protein as the sensing element

to identify SARS-CoV-2 [20]. The S-protein contains protrusions that only bind to specific

receptors on the host cell, such as ACE2, dipeptidyl peptides-4, amino-peptides N, and carci-

noembryonic antigen-related cell adhesion molecule 1 [41]. Recent research results have con-

firmed that ACE2 is an effective receptor for SARS-CoV-2 S-protein, with SARS-CoV-2

grasping ACE2 cells primarily by endocytosis [42]. Therefore, thiol-tethered DNA is used in

this work as an ACE2 layer for receiving and detecting SARS-CoV-2 samples [43].

In this work, ACE2 antibodies are placed throughout the top surface of the sensor with 50

nm separations between the neighboring ACE2 antibodies. ACE2 height and width are

assumed to be 3 nm and 2.1 nm, respectively [17]. To block the free space between ACE2 anti-

bodies, we use ethanolamine as a blocker [44]. Each ethanolamine blocker is 3.5 nm long and

separated from neighboring blockers by 50 nm. The ethanolamine blockers support keeping

the ACE2 antibodies static in their places and prevent the adsorption of non-specific elements

on the graphene surface [45]. SARS-CoV-2 samples can be collected from human nasopharyn-

geal swabs and preserved in a phosphate-buffered saline (PBS) solution [46]. The PBS solution

containing SARS-CoV-2 S-proteins makes the sensing layer, which can flow over the sensor

surface through a flow channel as an analyte [45]. In this work, the PBS sensing layer volume is

set to 100 μL and 200 μL to investigate the sensor performances. We note that the PBS is neu-

tral to the SARS-CoV-2 S-protein and often used for analyzing proteins [47].

The proposed graphene SPR sensor is built on a semi-infinite boro-silicate (BK7) prism

material, as shown in Fig 1. The light is incident on the multi-layer structure from the prism

side, and the reflected light is recorded on the same side. The incident light excites surface plas-

mon polaritons (SPPs) at the metal–dielectric, i.e., metal–multi-layer interface. The excitation

of plasmonic modes is sensitive to the thickness of the metal layer. This work uses a 46-nm-

thick Ag layer as this thickness peaks the SPP excitation [48]. For SPR, Ag is preferred to other

metals, such as Au or copper (Cu), as it shows dense plasmonic interaction with light at low

loss [49]. The scattering cross-section of Ag is greater than other metal choices [50]. Besides,

Ag offers a narrower SPR spectrum than other metals, which is essential for plasmonic

biosensors.

Fig 1. Schematic illustration of the proposed graphene SPR sensor for SARS-CoV-2 S-protein detection.

https://doi.org/10.1371/journal.pone.0284812.g001
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The multi-layer 2-D structure interfaces with the metal layer with WS2. To date, MoS2 has

been commonly used for such planar plasmonic structures. MoS2 and WS2 belong to the same

family of chemical characteristics. However, WS2 is more stable than MoS2, especially at high

temperatures [51]. Additionally, WS2 effectively absorbs more light than MoS2 or other transi-

tion metal dichalcogenide (TMD) materials [52, 53]. Therefore, WS2 helps decrease the inci-

dent light’s reflection when interfaced with Ag.

In the proposed structure, a KNbO3 layer follows the WS2 layer. KNbO3 has a high optical

permittivity that enhances the electric flux density within the sensor [54]. Additionally, the

imaginary part of the refractive index of KNbO3 is zero. Hence, KNbO3 increases the light con-

finement without incurring losses. The layer that follows KNbO3 is a phosphorene family

material BP or BlueP. The BP or BlueP layer is sandwiched between KNbO3 and graphene.

The sensitivity of the proposed sensor increases significantly as BP and BlueP have a high real

part of the refractive index, enhancing the light confinement [55].

Using several 2-D materials in the proposed structure will increase the fabrication complex-

ity slightly. However, the fabrication of various 2-D materials is usually cheap nowadays. In

addition, the significant performance enhancement from the proposed sensor justifies using

different 2-D materials at a reasonable cost increase. Furthermore, the sensor will be available

for reuse after the purification of the used sensing channel.

2.2 Optimization of layer thicknesses

The proposed graphene SPR sensor has several layers, each having an essential effect on the

overall performance. However, appropriate optimization of layer thicknesses is critical to get

the best response from the proposed sensor. Here, we have optimized the layer thicknesses of

the proposed sensor using the approach discussed in Refs. [56, 57]. In particular, we examine

the effect of each layer thickness on the reflected light intensity (R) profile as a function of the

incidence angle (θi). The optimization of layer thicknesses depends on the minimum reflected

light intensity (Rmin) and full-width at half-maximum (FWHM) of the R-profile. The FWHM

is the spectral width of the R-profile corresponding to 50% reflectivity (FWHM = Δθi,(0.5))

[58]. While the light absorption is maximum on the sensor surface at Rmin, the FWHM repre-

sents the loss in the metal layer. Therefore, both Rmin and FWHM are crucial for the sensitivity

enhancement of a sensor, and an optimized layer thickness should produce both Rmin and

FWHM as small as possible.

The layer thicknesses are optimized sequentially. First, the layer thickness of WS2 is opti-

mized, and then that of KNBO3, BP, and graphene. To optimize the layer thicknesses, we

change each layer thickness while the thicknesses of all other layers are fixed. We optimize the

WS2 layer thickness from calculations, as shown in Fig 2(a). When WS2 = 0.8 nm, Rmin and

FWHM show minimum values. Furthermore, the increase of the WS2 thickness (dWS2
) broad-

ens the FWHM of R-profiles as Rmin value increases. Therefore, we set dWS2
¼ 0:8 nm for the

proposed sensor structure. Subsequently, we calculate the effects of KNbO3 keeping dWS2
at the

optimized value. We determine Rmin and FWHM values when the thickness of KNbO3

(dKNbO3
) is varied from 10 nm to 14 nm, as shown in Fig 2(b). In this case, both Rmin and

FWHM are minimum when dKNbO3
¼ 12:2 nm.

Following a similar procedure, we optimize dBP and dBlueP when dAg, dWS2
, and dKNbO3

are at

their optimized values. We show the change in R and FWHM with dBP and dBlueP in Fig 2(c).

We note that, initially, R decreases very minutely with dBP and is minimum at dBP = 1.59 nm.

However, R increases when dBP > 1.59 nm. By contrast, FWHM always increases with dBP and

is minimum when dBP = 0.53 nm, which is BP mono-layer thickness. We find that when dBP

increases from 0.53 nm to 1.59 nm, Rmin decreases by 0.52% whereas FWHM increases by
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16.66%. A narrow FWHM of the R-profile is required for high signal-to-noise ratio (SNR) and

accuracy of θr detection [59]. Therefore, dBP = 0.53 nm is set for the proposed structure. We

note that R decreases initially with dBlueP and is minimum at dBlueP = 0.615 nm. However, R
increases when dBlueP > 0.615 nm. The thickness of a BlueP single layer is 0.123 nm [60].

Therefore, 0.615 nm represents five layers of BlueP. On the other hand, FWHM decreases

slightly and becomes minimum at dBlueP = 0.615 nm. Therefore, we set dBlueP = 0.615 nm for

the proposed structure.

The change of graphene layer thickness changes the surface plasmon wave vector, eventu-

ally changing θr. Fig 2(d) shows that, as dGraphene increases, both R and FWHM decrease since

the incident light confinement at the metal–dielectric interface enhances [58]. When dGraphene

increases from mono-layer, i.e., 0.34 nm, to five layers, i.e., 1.70 nm, R decreases by 12.93%

as the absorption of incident light increases. However, Rmin and FWHM both increase when

dGraphene >1.70 nm [58]. Therefore, the proposed sensor uses dGraphene = 1.70 nm.

3 Modeling and simulation

3.1 Optical properties

The optical properties of the proposed sensor’s layer materials are dispersive. Therefore, the

sensor’s response depends on the incident light’s wavelength. The sensor has been designed

for an incident wavelength of 633 nm, frequently used in experiments [67]. This work calcu-

lates the wavelength-dependent refractive index of the BK7 prism following the discussion pre-

sented in Ref. [58] and of Ag using the Drude-Lorentz model [61].

The wavelength-dependent refractive index of WS2 has been calculated using [62]

nWS2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2
N þ

d

a

� �

�
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N þ
d

a

� �2

� 4n2
0
n2
sub

sv
u
u
t

; ð1Þ

where N ¼ n2
0
þ n2

sub, n0 and nsub are the refractive indices of air and substrate, respectively.

Fig 2. Reflectance (R) of the proposed sensor structure in Kretschmann configuration against layer thicknesses of

(a) WS2, (b) KNbO3, (c) BP (solid) and BlueP (dashed), and (d) Graphene.

https://doi.org/10.1371/journal.pone.0284812.g002
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The parameter δ is the fractional change of the complex reflection ratio, and α is defined as

a ¼ 4ik0 dWS2

n0n2
subcos yisin

2yi
ðn2

0
� n2

subÞ½n2
sub � n2

0
þ N cosð2yiÞ�

; ð2Þ

where k0 = 2π/λ and λ is the operating wavelength. The refractive index of KNbO3 depends on

λ according to the following expression [63]

nKNbO3
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4:4222þ
0:09972

l
2
� 0:05496

� 0:01976l
2

r

: ð3Þ

We have used the refractive index of BP from Ref. [64]. Furthermore, the refractive index of

graphene has been calculated by [66]

nGraphene ¼ 3þ i
CG

3
l; ð4Þ

where CG is a constant with a value of 5.44 μm−1 [68]. The calculated refractive indices for

BK7, Ag, WS2, KNbO3, BP, and graphene are given in Table 1. The indices of PBASE, ACE2,

blocker, and PBS solution of the proposed sensor are obtained from the literature and are also

given in Table 1.

The index of the sensing layer (ns) varies according to the following expression when

SARS-CoV-2 S-proteins bind to ACE2 antibodies in the PBS layer [69]

ns ¼ nþ bD; ð5Þ

where n is the index of the PBS solution, β is the index progress coefficient with a value of

*0.186 cm3/gm for PBS [70, 71], and D is the mass density of S-protein in gram per deciliter.

We calculate D using the following expression [48]

D ¼ C �M; ð6Þ

where C is the S-protein molar concentration in the PBS solution, and M is the S-protein

molecular weight, which is 180 kDa or 180×2.5875×10−19 gm [42, 72]. We can write 1

Table 1. Refractive indices and thicknesses of the proposed sensor layers.

Material Refractive index Thickness (nm) Reference

ACE2 1.13 2.10 [43]

Blocker 1.4539 3.23 [44]

PBASE 1.74 1.13 [45]

Sensing layer 1.3348 100 [47]

BK7 1.515 semi-infinite [58]

Ag Real: 0.055 46 [61]

Imag: 4.285

WS2 Real: 4.90 0.8 [62]

Imag: 0.3124

KNbO3 2.165 12.20 [63]

BP Real: 3.50 0.53 [64]

Imag: 0.01

BlueP Real: 2.1666 0.615 [65]

Imag: 0.1005

Graphene Real: 3.0 1.70 [66]

Imag: 1.1419

https://doi.org/10.1371/journal.pone.0284812.t001
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fM = 1 × 10−15 gm × 411.04 gm/L, or = 4.1104 × 10−12 gm/dL. Also, 1 fM dissolved in 100 μL

PBS solution is equivalent to 4.1104 × 10−12 × 100 × 10−6 gm/dL. Therefore,

D = 4.1104 × 10−12 × 100 × 10−6/10−15 gm/ dL’0.041104 gm/dL for 100 μL PBS solution.

Then ns = 0.041104 × 0.00186 + 1.3348’1.33485 for 1 fM S-protein concentration in 100 μL

PBS saline.

A similar procedure is applied for the 200-μL PBS solution to determine ns for varying S-

protein concentrations.

In this work, we consider 100-μL and 200-μL PBS in the sensing layer separately, where the

molar mass of PBS is 411.04 gm/L. We vary the SARS-CoV-2 S-protein concentration from

zero to 800 fM in the PBS solution. The sensing layer refractive index ns, due to the inclusion

of the SARS-CoV-2 S-protein, is calculated using Eqs (5) and (6) and presented in Fig 3. When

the S-protein concentration is zero, the refractive index of the sensing layer is 1.3348, which

increases linearly as the S-protein concentration increases. We note that 200-μL PBS shows a

higher ns than 100-μL PBS as the mass density of S-protein increases with the PBS solution vol-

ume.

3.2 Sensor performance parameters

The sensitivity (S) and FoM are the main performance parameters of SPR-based sensors.

These parameters are determined using the R-profile. The sensitivity is defined as the ratio of

Δθr and Δns [73]

S ¼
Dyr
Dns

; ð7Þ

where Δθr is the change in resonance angle θr for Δns change in ns. On the other hand, FoM is

defined as [74]

FoM ¼
S

Dyi;ð1=2Þ

; ð8Þ

where Δθi,(1/2) is the full-width of θi at the half-maximum points on the R-profile.

Fig 3. Sensing layer refractive index (ns) vs. SARS-CoV-2 S-protein concentration for 100-μL and 200-μL PBS

solutions.

https://doi.org/10.1371/journal.pone.0284812.g003

PLOS ONE Graphene surface plasmon sensor for ultra-low-level SARS-CoV-2 detection

PLOS ONE | https://doi.org/10.1371/journal.pone.0284812 April 25, 2023 8 / 20

https://doi.org/10.1371/journal.pone.0284812.g003
https://doi.org/10.1371/journal.pone.0284812


3.3 Simulation method

In this work, we solve 2-D full-field Maxwell’s equations using the FDTD method to calculate

the interaction of the incident light with the sensor structure and determine the SPR dynamics.

For this purpose, we use Lumerical FDTD Solutions. Since the structure is invariant in the z-

direction, both 3-D and 2-D models produce the same results [75]. The 2-D simulation setup

of the proposed sensor is shown in Fig 4. Fig 4 also shows the positions of the incident light

source and reflection and transmission detection planes. The simulation area is 1600 nm in the

x-direction and 1000 nm in the y-direction. We apply a non-uniform meshing technique with

ultra-fine mesh grids in FDTD simulations to limit the overall error to<0.05%. Furthermore,

the simulation boundaries in the x-direction are PML, while Bloch boundaries terminate those

in the y-direction. The incident light is a plane wave with a 633 nm wavelength and TM polari-

zation. The incident light source is located at 750 nm from the BK7–Ag interface, whereas the

reflected light intensity is recorded at 775 nm from the same interface.

For total internal reflection, the incidence angle θi must be greater than the critical angle

(θc). The total light absorption of the sensor is A = 1 − T − R, where T is the transmission coef-

ficient. Here, as the incident light will experience an attenuated total reflection, T = 0; there-

fore, we can write A = 1 − R. When SPs are excited at the resonance incident angle, R drops

sharply. In this work, we vary θi from 55˚ to 85˚, with a step size of 0.099˚ to calculate the R-

profile for mass level S-protein concentrations. Additionally, for ultra-low-level SARS-CoV-2

detection, we vary θi from 65.30˚ to 65.60˚, with a step size of 0.00149˚.

4 Results and discussion

4.1 Detection approach and limit of detection

As the SARS-CoV-2 S-protein concentration in PBS changes, the sensing layer experiences a

refractive index variation. Consequently, the SP wave vector changes, eventually changing θr.
Fig 5(a) shows R-profiles of the proposed sensor as a function of θi for different SARS-CoV-2

S-protein concentrations. When the sensing layer contains only the PBS, without any SARS-

CoV-2 S-protein, θr is 65.44˚. The change of R-profile depends on the refractive indices of the

buffer layer, such as the PBS, and the target molecule, such as the S-protein concentration.

When the S-protein concentration is 1 fM, θr shifts to 65.445˚ and 65.450˚ for 100-μL or 200-

μL PBS, respectively. Thus, the change in θr, i.e., Δθr, is 0.005˚ and 0.01˚ when 1 fM SARS-

CoV-2 S-protein is present in 100-μL and 200-μL PBS, respectively, as shown in Fig 5(b). Rmin

Fig 4. (a) Simulation setup in the xy plane and (b) Material layers in the simulation domain.

https://doi.org/10.1371/journal.pone.0284812.g004
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also decreases slightly when the S-protein concentration increases due to the enhanced absorp-

tion of the incident light.

Fig 5(b) shows Δθr = θr(PBS+ACE2+S-protein) − θr(PBS+ACE2) calculated from the R-profiles as

the S-protein concentration varies for 100- and 200-μL PBS solutions. We note that Δθr
increases significantly with the S-protein concentration. Increasing the S-protein concentra-

tion increases the sensing layer refractive index, enhancing light absorption. As a result, the

Δθr shifts more. However, Δθr does not vary noticeably when S-protein concentration is ≳ 600

fM in 100-μL PBS solution, as shown in Fig 5(b). Similarly, Δθr shows a saturating behavior

when the S-protein concentration is ≳ 500 fM in 200-μL PBS solution. A similar tendency has

been observed in the literature, showing Δθr saturation behavior when the S-protein concen-

tration is >104 copies/ml [20]. Now, the refractive index increases more with the S-protein

concentration in the 200-μL PBS solution than in the 100-μL PBS solution, as shown in Fig 3.

Therefore, the saturation behavior is manifested at a smaller S-protein concentration in the

200-μL PBS solution than in the 100-μL PBS solution. The maximum θr shifts are Δθr(max) =

12.56˚ and 12.72˚ for 100-μL or 200-μL PBS solutions, respectively.

To detect the SARS-CoV-2 S-protein, Δθr values are used. As S-proteins incrementally

adsorb to the sensor surface, θr keeps shifting to greater values until it reaches the maximum

[76]. S-proteins are detected when Δθr> 0. Now, LoD is determined from the minimum S-

protein concentration for which a non-zero Δθr is registered. The proposed sensor shows Δθr
> 0 even when the SARS-CoV-2 S-protein concentration is only 1 fM, enabling the proposed

sensor to detect as low as 1 fM SARS-CoV-2 S-protein.

The LoD of a sensor is an essential parameter, especially when detecting a critical pathogen

like SARS-CoV-2. In Table 2, we compare the LoD of the proposed sensor with some recently

proposed sensors that use plasmonic techniques to detect the SARS-CoV-2 S-protein. The pro-

posed sensor shows a much smaller LoD than that reported by these state-of-the-art sensors.

We note that the plasmonic meta-sensor of Ref. [19] shows an LoD of *4.2 fM, relatively

close to that obtained from the proposed sensor in this work. However, the meta-sensor oper-

ates in the THz range and is bulky. The meta-sensor also does not work for the entire range of

the S-protein concentration.

Fig 5. (a) R-profile of the proposed graphene SPR sensor for different SARS-CoV-2 S-protein concentrations as a

function of θi. In this case, SARS-CoV-2 S-proteins are added to 100-μL PBS solution. (b) Δθr against SARS-CoV-2 S-

protein concentration for 100-μL and 200-μL PBS solution.

https://doi.org/10.1371/journal.pone.0284812.g005
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4.2 Sensor resolution and binding affinity

In Fig 6(a), we show the proposed sensor’s resolution (SR) as a function of the S-protein con-

centration. The resolution of a sensor can be determined by [81]

SR ¼ Dns

DyrðminÞ

DyrðmaxÞ
; ð9Þ

where Δθr(min) is the minimum spectrum resolution, and Δθr(max) is the maximum θr shift. The

maximum SR is 0.25 × 10−5 RIU when the S-protein concentration is 800 fM for 100-μL PBS

solution. When the S-protein concentration is 1 fM, the SR is 0.015 × 10−5 RIU and

0.016 × 10−5 RIU for 100-μL and 200-μL PBS solutions, respectively. The SR of the proposed

sensor signifies its ability to detect SARS-CoV-2 S-protein in minute index variations such as

on the order of 10−5 RIU, which is significant compared to the recently reported SR values in

the literature [81–83].

In an SPR sensor, a flow channel is typically used to inject an aqueous solution to the sensor

surface [84]. In our proposed sensor, the PBS solution containing SARS-CoV-2 can be injected

into the channel where ACE2 antibodies are immobilized on the graphene surface. SARS-

CoV-2 S-proteins must bind to ACE2 antibodies on the sensor surface to change the refractive

Fig 6. (a) SR and (b) KD as a function of S-protein concentration of the proposed graphene SPR sensor for 100-μL

and 200-μL PBS solutions.

https://doi.org/10.1371/journal.pone.0284812.g006

Table 2. Comparisons of LoD of the proposed sensor with different recently proposed sensors for SARS-CoV-2 S-

protein detection.

Sensor device Assay components LoD

MRT-PCR [77] SARS-CoV-2 5 μM

dd-PCR [78] SARS-CoV-2 0.00187 ng

RT-LAMP [79] SARS-CoV-2 0.025 μg/μl

FET biosensor [20] SARS-CoV-2 1 fg/ml

Meta-sensor [19] Gold NPs, SARS-CoV-2 *4.2 fM

Photo-thermal biosensor [4] Gold NPs, SARS-CoV-2 0.22 pM

NIR biosensor [3] ITO, tellurene, MoS2-COOH, SARS-CoV-2 *301.67 nM

LSPR biosensor [80] Au nano-spikes in opto-microfluidic chip *0.5 pM

This work Graphene, PBASE, ACE2, SARS-CoV-2 1 fM

https://doi.org/10.1371/journal.pone.0284812.t002
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index of the sensing layer. The binding between the immobilized ACE2 antibodies and S-pro-

teins is denoted by the association constant (KA) or the dissociation constant (KD), where KD =

1/KA. We can derive an expression for KD using the Langmuir model [16]

KD ¼ C
DyrðmaxÞ

Dyr
� 1

� �

: ð10Þ

Langmuir model is a ligand binding model to justify the affinity of analyte-antibody bind-

ings [85]. Generally, the KD value for proteins on an SPR sensor is< 10 nM [86]. The KD value

should be as small as possible because a smaller KD value represents a greater binding affinity

of the sensor to its target element. Fig 6(b) shows KD of the proposed sensor as a function of

the S-protein concentration. We note that the binding affinity between ACE2 and S-protein

increases with the S-protein concentration. The KD value is smaller with the 200-μL PBS solu-

tion than that with the 100-μL PBS solution due to the increasing number of S-proteins in

greater PBS volume enhancing the chances of binding between ACE2 and S-proteins. We note

that the proposed sensor shows a smaller KD value compared to recent reports on kD values in

the literature [86].

4.3 Sensing performance

The selectivity of the proposed graphene SPR SARS-CoV-2 sensor can be determined from the

change in θr as the S-protein concentration changes [16]. Fig 5(b) shows Δθr for different S-

protein concentrations for two PBS solutions. Δθr increases with the S-protein concentration,

with the increase more significant for the 200-μL PBS solution, signifying that the proposed

sensor has an affinity toward S-proteins [48]. As Δθr sensitively changes with the S-protein

concentration, the proposed sensor is highly selective of the S-protein. The proposed sensor

shows comparatively greater selectivity compared to recent reports in the literature [16, 87,

88].

Fig 7(a) shows the sensitivity of the proposed graphene SPR sensor as a function of the

SARS-CoV-2 S-protein concentration. As the sensitivity depends on the change of θr and

increasing S-protein concentration shows a more significant change in θr, we find that the sen-

sitivity increases as the S-protein concentration increases. Also, the 200-μL PBS solution shows

Fig 7. (a) S and (b) FoM using BP and (c) S and (d) FoM using BlueP as a function of S-protein concentration of

the proposed graphene SPR sensor for 100-μL and 200-μL PBS solutions.

https://doi.org/10.1371/journal.pone.0284812.g007
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greater sensitivity than the 100-μL PBS solution because the S-protein number increases with

PBS solution volume, which increases Δθr. When the S-protein concentration is 1 fM, S = 201

degrees/RIU and 210 degrees/RIU for 100-μL and 200-μL PBS solutions, respectively. Further-

more, the proposed sensor shows the maximum sensitivity of 371 degrees/RIU when the S-

protein concentration is 800 fM for 200-μL PBS solution.

The FoM of the proposed sensor has been presented in Fig 7(b) as a function of the S-pro-

tein concentration. We note that FoM increases with the increase of S-protein concentration.

When the S-protein concentration is 800 fM, the FoM is maximum with values of 233 RIU−1

and 275 RIU−1 for 100-μL and 200-μL PBS solutions, respectively. Moreover, 1 fM S-protein

concentration shows 140 RIU−1 and 148 RIU−1 FoM for 100-μL and 200-μL PBS solutions,

respectively. As the increasing S-protein concentration raises ns, θr increases. In addition, as

the FoM is directly related to the sensitivity according to Eq (11), it increases when the sensi-

tivity increases.

Fig 7(c) shows the sensitivity of the proposed sensor as a function of the SARS-CoV-2 S-

protein concentration using BlueP instead of BP. The sensitivity increases as the S-protein con-

centration increases. The sensitivity with BlueP is comparable to that with BP at the ultra-low-

level S-protein concentration. However, when the S-protein concentration increases, the sen-

sor with BlueP shows greater sensitivity than with BP. When the S-protein concentration is

800 fM, the sensitivity for the sensor with BlueP is 365 degrees/RIU and 435 degrees/RIU for

100-μL and 200-μL PBS solutions, respectively, *10% greater than the sensor with BP.

Fig 7(d) shows the FoM as a function of the SARS-CoV-2 S-protein concentration using

BlueP instead of BP. BlueP shows greater FoM than BP for ultra-low-level and mass-level S-

protein concentrations. For example, when the S-protein concentration is 1 fM, FoMs for the

sensor with BP are 152 RIU−1 and 153 RIU−1 for 100-μL and 200-μL PBS solutions, respec-

tively, *4% greater than the sensor with BP. Furthermore, when the S-protein concentration

is 800 fM, FoMs for the sensor with BlueP are 282 RIU−1 and 318 RIU−1 for 100-μL and 200-

μL PBS solutions, respectively, *15% greater than the sensor with BP. The enhancement in

FoM with the BlueP can be attributed to its narrower R spectrum than BP.

As the proposed sensor has several layers of different refractive indices, calculating the dis-

persion relation is numerically challenging. This work analyzes the dispersion relations using

the radiative mode [89]. The in-plane wave vector can be given by [89]

b ¼
o
ffiffiffiffiffiffiffiffiffiffiεprism
p

c
sinyr; ð11Þ

where εprism is the dielectric constant of the prism, ω is the angular frequency, and c is the

speed of light in vacuum. Fig 8(a) shows the dispersion relation of the proposed sensor. We

compute the reflectivity of the proposed sensor as a function of the frequency and θi. The fre-

quency is varied from 4.2827 × 1014 Hz to 5.2138 × 1014 Hz and θi is varied from 55˚ to 85˚.

We find that the dispersion curve moves away from the air light-line. We note that at>630

nm wavelength (ω = 2.9 × 1015 Hz), dispersion relations for both 100-μL and 200-μL PBS solu-

tions move farther from the light line.

On the other hand, SPPs suffer damping in metal, decreasing the propagation length signif-

icantly [90]. Mainly, damping depends on the dielectric constant of metal at the oscillation fre-

quency of SPPs. Losses may also occur due to the coupling of SPPs to radiation modes.

Propagation loss depends on the sensing layer’s dielectric constant [91]. The propagation
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length can be defined by [92]

L ¼
1

Dyi;ð1=2Þnp
o

c
cosyr

; ð12Þ

where np is the refractive index of the prism. Also, the propagation loss can be calculated by

[92]

a ¼ ½� 10logð1=eÞ�=L � 4:343=L: ð13Þ

Fig 8(b) shows that the propagation length increases with the SARS-CoV-2 S-protein con-

centration. Also, the 200-μm PBS solution shows a greater propagation length than the 100-

μm PBS solution since the sensing layer’s refractive index increases with the S-protein concen-

tration, enhancing light confinement. Our proposed sensor shows a small propagation length

<10 μm, which is a short-range SPP. As a result, the propagation loss decreases with the S-pro-

tein concentration, as shown in Fig 8(c). When the propagation length increases from 2.62 μm

to 5.84 μm, the propagation loss decreases from 1.44 dB/μm to 0.72 dB/μm for 200-μm PBS

solution. Compared to the existing literature, the proposed sensor performs better in decreas-

ing the loss [92].

The proposed sensor’s sensitivity and FoM performances are significantly better than the

state-of-the-art optical sensors. We compare the sensitivity and FoM of the proposed sensor in

Table 3 with some recently reported sensors. We have compared the minimum sensitivity and

FoM achievable from the proposed sensor at the LoD with those reported in the literature. We

have considered the sensors for comparison that specifically use similar 2-D materials. The

compared sensors also operate at 633 nm incident wavelength and report results for a sample

of *1.3349 refractive index, which is the same ns value of this work at 1 fM S-protein concen-

tration in 200-μL PBS solution.

5 Conclusion

Tackling the COVID-19 pandemic requires rapid, low-cost, and sensitive detection of ultra-

low-level SARS-CoV-2. The proposed sensor will detect SARS-CoV-2 in real time without

Fig 8. (a) Dispersion relations of the proposed sensor when the S-protein concentration is 1 fM using BP. The most

left straight line is the light line, (b) Propagation length, and (c) Propagation loss of the proposed sensor as a function

of the SARS-CoV-2 S-protein concentration for 100-μL and 200-μL PBS solutions.

https://doi.org/10.1371/journal.pone.0284812.g008
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requiring any label or complicated sample preparation. The proposed sensor shows a signifi-

cant change in the SPR resonance when the SARS-CoV-2 concentration varies even at the fem-

tomolar level, and hence is suitable for sensitive ultra-low-level SARS-CoV-2 detection and

early detection of COVID-19. The proposed sensor’s sensitivity and FoM performances are

significantly better than the state-of-the-art optical sensors. The proposed sensor also shows

much stronger binding kinetics with the sensor surface than recent reports in the literature.

The results and analysis confirm that the proposed sensor is promising for SARS-CoV-2 detec-

tion and may find applications in detecting other biochemical and biological analytes.
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