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Abstract

Background

Radiomics involves the extraction of quantitative information from annotated Computed-

Tomography (CT) images, and has been used to predict outcomes in Head and Neck Squa-

mous Cell Carcinoma (HNSCC). Subjecting combined Radiomics and Clinical features to

Machine Learning (ML) could offer better predictions of clinical outcomes. This study is a

comparative performance analysis of ML models with Clinical, Radiomics, and Clinico-Radio-

mic datasets for predicting four outcomes of HNSCC treated with Curative Radiation Therapy

(RT): Distant Metastases, Locoregional Recurrence, New Primary, and Residual Disease.

Methodology

The study used retrospective data of 311 HNSCC patients treated with radiotherapy

between 2013–2018 at our centre. Binary prediction models were developed for the four

outcomes with Clinical-only, Clinico-Radiomic, and Radiomics-only datasets, using three

different ML classification algorithms namely, Random Forest (RF), Kernel Support Vector

Machine (KSVM), and XGBoost. The best-performing ML algorithms of the three dataset

groups was then compared.

Results

The Clinico-Radiomic dataset using KSVM classifier provided the best prediction. Predicted

mean testing accuracy for Distant Metastases, Locoregional Recurrence, New Primary, and

Residual Disease was 97%, 72%, 99%, and 96%, respectively. The mean area under the

receiver operating curve (AUC) was calculated and displayed for all the models using three

dataset groups.
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Conclusion

Clinico-Radiomic dataset improved the predictive ability of ML models over clinical features

alone, while models built using Radiomics performed poorly. Radiomics data could therefore

effectively supplement clinical data in predicting outcomes.

1. Introduction

Head and Neck Squamous Cell Carcinoma (HNSCC) refers to a constellation of cancers in the

Head and Neck region and is an important contributor to cancer-related morbidity and mor-

tality. HNSCC is a significant health issue in India with an annual incidence of 77,000 new

cases contributing to one-third of all cancers diagnosed. Treatment outcomes of HNSCC can

be pretty variable, and there is scope for improvement in predicting treatment outcomes to

improve survival, reduce toxicity, and further the understanding of HNSCC.

Development in the field of Artificial Intelligence (AI) has enabled the analysis of large vol-

ume data, and Machine Learning (ML) tools are being increasingly utilized in diverse fields

within medicine. They are used for studying HNSCC [1]. Radiomics is an emerging method

used to obtain additional information from imaging. Radiomics involves the conversion of

medical images into quantitative data, thereby potentially enabling healthcare personnel in

better diagnostic, therapeutic and prognostic decision-making [2]. Statistical, shape-based, his-

togram, and texture-based features are extracted from the Regions of Interest (ROI) for analy-

sis and clinical correlation [3, 4]. Studies have shown that Radiomics facilitates diagnosis,

treatment planning, and predicting outcomes. The development of AI, principally ML and

deep learning algorithms has boosted the potential of the typically large-volume quantitative

Radiomics data [5].

This research evaluates the additional benefit of Radiomics from annotated diagnostic CT

images over clinical data in predicting the outcomes of HNSCC patients treated with radio-

therapy. This study is an extension of our previous study [6]. It presents the change in the per-

formance of individual models to predict Distant and Locoregional Recurrence, New Primary

and Residual Disease after adding Radiomics data to the previously built models using only

clinical data.

2. Methodology

This study developed and compared the analytics model to predict the clinical outcomes of

HNSCC. The clinical information was retrieved from the hospital medical records, and Radio-

mics information was obtained from diagnostic contrast CT images. The study included

HNSCC patients treated with curative intent radiotherapy at our centre. Though the minimum

sample size was calculated to be 256 (S1B in S1 Appendix), we included all eligible patients

treated between 2013–2018 [7]. Eligible cases included those treated with curative intent radio-

therapy (either as definitive or as an adjuvant to surgery), completed their prescribed treat-

ment, and had a minimum follow-up of three months post-treatment in addition to having the

CT images necessary for the extraction of Radiomics. Clearance was obtained from the Institu-

tional Ethics Committee before collecting the data from patient records, and the study was reg-

istered with the Clinical Trials Registry of India (CTRI Number: CTRI/2018/04/013517). The

details of the dataset are presented in Fig 1.
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2.1. CT image acquisition

All CT scans were acquired on Incisive CT 128-slice, or Big bore Philips CT-16 slice (Philips

Healthcare, Netherlands) multidetector CT scanner. The standard protocol was followed for

image acquisition. The scanning parameters were namely, region- skull base down to the tho-

racic inlet; energy, 120 kV; milliampere-seconds, 250 mAs; pitch, 0.993; detector collimation,

0.625 mm; rotation time, 0.75s; matrix, 512×512; section thickness, 3 mm; and field-of-view,

250 mm. Only contrast-enhanced CT scans were taken for Radiomics analysis. Non-ionic

iodinated contrast medium was used (Ultravist 300, Bayer Schering Pharma, Berlin, Germany,

50ml @ 4 mL/sec). Scans were obtained 70 seconds after intravenous contrast administration.

2.2. Radiomics data extraction

The radiation oncologist annotated the diagnostic CT images separately for the primary

tumour region and lymph node/s. Radiomics features were thereafter extracted from these

annotated regions. An example of annotation of tumour region and lymph node/s using open

source 3D Slicer software, version 4.10.0, is shown in Fig 2.

Pyradiomics toolbox [8], provided as an extension in the 3D-Slicer tool, was used to extract

Radiomics features from the gross tumour and lymph nodes. The extracted features were

structured in columns as inputs for each model. The data constituted of quantitative features

from medical images using various data characterization algorithms, including quantitative

information on Region of Interest (ROI) for statistical-based, transform-based, model-based,

and shape-based features [3]. The Radiomics dataset included:

• Shape-based features: 14

• Gray-level Dependence matrix features: 14

Fig 1. Flowchart of the study.

https://doi.org/10.1371/journal.pone.0277168.g001
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Fig 2. Illustration of original contrast CT-slices in axial view and its respective annotated slice using 3D slicer; a)

Tumour region b) Lymph nodes region.

https://doi.org/10.1371/journal.pone.0277168.g002
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• Gray-level Cooccurence matrix features: 24

• First-order statistics features:18

• Gray-level run length matrix features:16

• Gray-level size zone matrix: 16

• Neighbouring gray-tone difference matrix features: 5

2.3. Workflow of the study

2.3.1 Structuring of the data. The clinical factors and Radiomics data were structured in

separate non-mutually exclusive columns. The Radiomics dataset was placed alongside the

clinical features [6] in separate columns, making a total of 602 columns (388 Clinical and 214

Radiomics features) and 311 rows (samples).

2.3.2 Data pre-processing. The raw collected data must be pre-processed to make it suit-

able for ML algorithms. The collected data consisted of missing values, necessitating imputed

corrections beforehand. We used iterative imputation techniques [6] to impute the missing

values. To handle class-imbalance in the dataset, minority oversampling techniques such as

Randomoversampler, Synthetic Minority Oversampling Technique (SMOTE), BorderlineS-

MOTE, Support Vector Machine SMOTE (SVM SMOTE), and Adaptive Synthetic (ADA-

SYN) were used [6]. To build each model, all five minority oversampling techniques were

used; the results from the best-performing technique are reported.

After performing minority oversampling on the original dataset, the synthetic samples were

separated from the original samples. The original samples were divided into two parts: major-

ity and minority, based on class-labels. In our case, patients without any recurrence constituted

the majority (class-label 0). The training-testing split was then performed on samples from

majority-class using 70:30 ratio. To build the ML models, the training dataset was assembled

in such a way that it would contain train-split and synthetic samples, and testing dataset would

unconditionally include all original minority samples along with test-split.

Thereafter, the training dataset was scaled to zero mean and unit standard deviation using

standard scalar function. Due to curse-of-dimensionality resulting from a large number of var-

iables in relation to sample size, feature selection algorithms, namely Sequential Forward

Floating selection (SFFS) and Boruta algorithms, were implemented on the dataset. The best

k-features based on the highest accuracy (hyperparameter of SFFS) scores were chosen to

build ML models.

2.3.3 Fitting model on the training dataset. Predictive ML models using Radiomics

alone and combined Clinical-Radiomics data were then built to predict four clinical outcomes:

Distant Recurrence, Locoregional Recurrence, Residual Disease, and development of New Pri-

mary. RF, KSVM and XGBoost algorithms were used for fitting onto the training dataset. The

selected features were made to fit on the dataset, and the mean training accuracy was calcu-

lated for ten iterations.

2.3.4 Evaluation using test-split. The performance of the designed classifier was evalu-

ated using the testing dataset. Each value of the performance metrics [9] was reported as the

mean of ten iterations.

2.3.5 Visualising ROC plots and performance comparison. Stratified k-fold cross-vali-

dation was performed for ten folds, and its plots were visualized for each model to ensure con-

sistency of the performance reported throughout the dataset.

The best-performing ML model for each group- Clinical-only, Radiomics-only, and com-

bined Clinical-Radiomics datasets- was identified based on accuracy, macro and weighted F-1

PLOS ONE Radiomics utility for head and neck cancer using machine learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0277168 December 15, 2022 5 / 14

https://doi.org/10.1371/journal.pone.0277168


score, and area under the Receiver Operating Characteristic (ROC) curve (Fig 3). The repre-

sentative ML model for each of the three dataset groups was then compared to determine if

Radiomics could supplant or replace clinical data (S1C in S1 Appendix).

3. Results

A total of 311 patients with HNSCC were included in the study. The mean/median follow-up

duration of the cohort was 18 months (3–85.1 months). The details of the dataset are summa-

rized in Table 1. The Radiomics Quality score (RQS) was calculated to be 45% (S1A in S1

Appendix) [10]. The best-performing ML algorithm with each of the three datasets is com-

pared and reported below.

The SFFS algorithm, and utilizing accuracy score for selecting k_features, performed better

than Boruta for all three datasets in the optimal feature selection. Also, KSVM performed bet-

ter than RF and XGBoost while implementing the ML algorithm on the datasets.

It was observed that the model developed using Radiomics alone performed the poorest for

all four clinical outcomes. In contrast, the Clinico-Radiomics dataset provided the best predic-

tive performance. The persistence of residual disease on completion of treatment was the most

challenging clinical outcome to predict, and the Radiomics-alone dataset performed poorly in

this regard.

With Clinico-Radiomic data, the mean training and testing accuracy were calculated to be

100% and 97% for Distant Metastases, 100% and 72% for Locoregional Recurrence, 100% and

99% for development of New Primary, and 100% and 96% for persistent Residual Disease. Sen-

sitivity and specificity were calculated to be 96% and 98% for Distant Metastases, 100% and

82% for Locoregional Recurrence, 94% and 100% for New Primary, and 94% and 100% for

Residual Disease, respectively. Mean ROC was calculated to be 99%, 94%, 99%, and 98% for

Distant Metastases, Locoregional Recurrence, New Primary, and Residual Disease, respec-

tively. Further, the performance of the individual class of the designed binary classifier model

was measured for training and testing datasets using a weighted F1-score for imbalanced clas-

ses. It was calculated to be typically over 90%, except for Locoregional Recurrence, where the

score was only 70% (Tables 2–5), despite evidence of overfitting. In order to reduce overfitting

here, we attempted reiterating after changing learning-rate hyperparameters of SFSS and also

of KSVM and RF, with no significant improvement.

Fig 3. Flowchart describing workflow of the study using Clinical, Clinico-Radiomic and Radiomics datasets.

https://doi.org/10.1371/journal.pone.0277168.g003
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Table 1. Demographics of the retrospectively collected data of HNSCC (n = 311).

Patient Variable Frequency (%) Frequency of any recurrence (n = 96) p-value

Age in years Mean: 56.5 (Range:22–92)

< 60 years 178 (57.2) 59 (33.1%) 0.32

� 60 years 133(42.8) 37(27.8%)

Gender:

Female 54 (17.4) 17(31.5%) 0.51

Male 257 (82.6) 79(30.7%)

Site:

Oral Cavity 156 (50.2) 44(28.2%) 0.52

Oropharynx 38 (12.2) 13(34.2%)

Larynx, Hypopharynx 112 (36) 37(33%)

Other sites 5 (1.6) 2(40%)

Staging:

T1 35 (11.3) 15(42.8%) 0.33

T2 98 (31.6) 26(26.5%)

�T3 178 (57.1) 55(30.8%)

N0 120 (38.6) 38(31.6%) 0.28

N1 91 (29.2) 19(20.8%)

� N2 100 (32.2) 39(39%)

Group:

I -II 86 (27.6) 20(23.2%) 0.56

� III 225 (72.4) 76(33.7%)

Radiotherapy type:

Definitive 152 (48.9) 53(34.8%) 0.47

Adjuvant 159 (51.1) 43(27.0%)

Concurrent Chemotherapy:

Yes 173 (55.6) 58(33.5%) 0.15

No 138 (44.4) 38(27.5%)

https://doi.org/10.1371/journal.pone.0277168.t001

Table 2. Comparative results for Distant Recurrence (311 samples). The column of the model utilizing only clinical data from our previous study [6] is included for

comparison.

Model Name Distant Recurrence

Dataset Type Only Clinical Clinico-Radiomic Only Radiomics

Total number of independent variables (columns) 388 602 214

Best performing ML algorithm KSVM KSVM KSVM

Minority Oversampling method ADASYN SMOTE ADASYN

No. of samples after oversampling 573 562 571

No. of synthetic samples 262 251 260

No. of features selected by SFFS 18 42 23

No. of original samples for class-0 (no recurrence) 281 281 281

No. of original samples for class -1 (recurrence) 30 30 30

No. of samples in Training dataset for class 0 (no recurrence) 188 188 188

No. of samples in Training dataset for class 1 (recurrence) 262 251 260

No. of samples in Testing dataset for class 0 (no recurrence) 93 93 93

No. of samples in Testing dataset for class 1 (recurrence) 30 30 30

Mean training accuracy (CI) 0.99 (0.989–0.991) 1 (1.000–1.000) 0.87 (0.870–0.870)

Mean testing accuracy (CI) 0.94 (0.938–0.942) 0.97 (0.968–0.972) 0.84 (0.829–0.851)

(Continued)
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Table 2. (Continued)

Model Name Distant Recurrence

Dataset Type Only Clinical Clinico-Radiomic Only Radiomics

Sensitivity (CI) 0.87 (0.869–0.871) 0.96 (0.958–0.962) 0.95 (0.949–0.951)

Specificity (CI) 0.96 (0.959–0.961) 0.98 (0.978–0.982) 0.92 (0.919–0.921)

Training F1 score Class 0 (no recurrence) 0.99 (0.998 – 0.998) 1(0.999 – 0.999) 0.84 (0.835 – 0.847)

Training F1 score Class 1 (recurrence) 0.99 (0.998 – 0.998) 1(0.999 – 0.999) 0.89 (0.883 – 0.895)

Macro Training F1 score (CI) 0.96 (0.958–0.962) 0.98 (0.979–0.981) 0.85 (0.849–0.851)

Weighted Training F1 score (CI) 0.99(0.989 – 0.990) 1(0.996 – 1.000) 0.87 (0.868–0.873)

Testing F1 score Class 0 (no recurrence) 0.97(0.975 – 0.977) 0.98(0.977 – 0.989) 0.88 (0.873–0.882)

Testing F1 score Class 1 (recurrence) 0.91(0.905 – 0.917) 0.94(0.933 – 0.945) 0.75 (0.741–0.752)

Macro Testing F1 score (CI) 0.93 (0.928–0.932) 0.95 (0.948–0.952) 0.80 (0.798–0.802)

Weighted Testing F1 score (CI) 0.96 (0.958 – 0.969) 0.97(0.962–0.971) 0.85 (0.843–0.856)

Base Algorithm for SFFS KSVM KSVM KSVM

Mean AUC_ROC(CI) 0.97 (0.969–0.971) 0.99 (0.989–0.991) 0.79 (0.783–0.797)

https://doi.org/10.1371/journal.pone.0277168.t002

Table 3. Comparative results for Locoregional Recurrence (311 samples). The column of the model utilizing only clinical data from our previous study [6] is included

for comparison.

Model Name Locoregional Recurrence

Dataset Type Only Clinical Clinico- Radiomics Only Radiomics

Total number of independent variables (columns) 384 598 214

Best performing ML algorithm KSVM KSVM RF

Minority Oversampling method SMOTE BorderlineSMOTE SMOTE

No. of samples after oversampling 514 514 514

No. of synthetic samples 203 203 203

No. of features selected by SFFS 24 89 16

No. of original samples for class-0 (no recurrence) 257 257 257

No. of original samples for class -1 (recurrence) 54 54 54

No. of samples in Training dataset for class 0 (no recurrence) 172 172 172

No. of samples in Training dataset for class 1(recurrence) 203 203 203

No. of samples in Testing dataset for class 0 (no recurrence) 85 85 85

No. of samples in Testing dataset for class 1 (recurrence) 54 54 54

Mean training accuracy (CI) 0.96 (0.958–0.962) 1 (1.000–1.000) 0.87 (0.869 – 0.871)

Mean testing accuracy (CI) 0.73 (0.718–0.742) 0.72 (0.718 – 0.722) 0.71 (0.706 – 0.714)

Sensitivity (CI) 0.83 (0.828 – 0.832) 1 (1.000–1.000) 0.62 (0.618 – 0.622)

Specificity (CI) 0.73 (0.728–0.732) 0.82 (0.818–0.822) 0.83 (0.828–0.832)

Training F1 score Class 0 (no recurrence) 0.97 (0.964–0.976) 1 (0.996–1.000) 0.83 (0.813–0.835)

Training F1 score Class 1 (recurrence) 0.97 (0.952–0.975) 1 (1.000–1.000) 0.89 (0.872–0.892)

Macro Training F1 score (CI) 0.95 (0.945–0.955) 0.98 (0.978–0.982) 0.85 (0.848–0.852)

Weighted Training F1 score (CI) 0.97 (0.961–0.976) 1 (1.000–1.000) 0.86 (0.852–0.869)

Testing F1 score Class 0 (no recurrence) 0.82 (0.813–0.821) 0.63 (0.625–0.638) 0.73 (0.724–0.740)

Testing F1 score Class 1(recurrence) 0.69 (0.682–0.693) 0.72 (0.718–0.736) 0.68 (0.674–0.692)

Macro Testing F1 score (CI) 0.69 (0.687–0.693) 0.70 (0.697–0.703) 0.69 (0.688–0.692)

Weighted Testing F1 score (CI) 0.77 (0.752–0.779) 0.66 (0.652–0.669) 0.71 (0.701–0.721)

Base Algorithm KSVM KSVM RF

Mean AUC_ROC(CI) 0.73 (0.729–0.731) 0.94 (0.938–0.942) 0.78 (0.776–0.784)

https://doi.org/10.1371/journal.pone.0277168.t003
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ROC curves were obtained to visualize the results. Ten-split stratified k-fold cross-valida-

tion was performed using the best combination of ML workflow identified to ensure consis-

tency of reported ROC values (Fig 4).

The ROC value using only the clinical dataset was 0.99 (±0.00), 0.96 (±0.02), 0.99 (±0.00)

and 0.98 (±0.03), respectively, for Distance Recurrence, Locoregional Recurrence, New Pri-

mary, and Residual Disease. Similarly, using the Clinico-Radiomics dataset, the ROC values

were 0.99 (±0.00), 0.98 (±0.01), 0.99 (±0.00) and 0.95 (±0.05), respectively. Using only Radio-

mics, the ROC values were the lowest, with values of 0.74 (±0.10), 0.85 (±0.07), 0.82 (±0.06)

and 0.73 (±0.16).

4. Discussion

Accurate prediction of eventual outcomes carries great importance in medicine, where out-

comes can be pretty variable across patients, scenarios, and treatments. Radiomics has an

unexplored potential in clinical prediction and has been utilized in various degrees in radio-

therapy for HNSCC, including tumour segmentation, prognostication, and monitoring of

changes in normal tissues following radiotherapy [11]. Recent developments in AI have expo-

nentially enhanced the ability to analyze large volume data, further increasing the potential of

Radiomics. However, it has already been reasoned that it would be best to use Radiomics along

Table 4. Comparative results for New Primary (311 samples). The column of model utilizing only clinical data from our previous study [6] is included for comparison.

Model Name New Primary

Dataset Type Only Clinical Clinico- Radiomics Only Radiomics

Total number of independent variables (columns) 388 602 214

Best performing ML algorithm KSVM KSVM KSVM

Minority Oversampling method SMOTE ADASYN ADASYN

No. of samples after oversampling 588 594 587

No. of synthetic samples 277 283 276

No. of features selected by SFFS 42 43 53

No. of original samples for class-0 (no recurrence) 294 294 294

No. of original samples for class -1 (recurrence) 17 17 17

No. of samples in Training dataset for class 0 (no recurrence) 196 196 196

No. of samples in Training dataset for class 1 (recurrence) 277 283 276

No. of samples in Testing dataset for class 0 (no recurrence) 98 98 98

No. of samples in Testing dataset for class 1 (recurrence) 17 17 17

Mean training accuracy (CI) 1 (1.000–1.000) 1 (1.000–1.000) 0.87 (0.869–0.871)

Mean testing accuracy (CI) 0.96 (0.959–0.961) 0.99 (0.989–0.991) 0.78 (0.776–0.784)

Sensitivity (CI) 0.94 (0.938–0.942) 0.94 (0.938–0.942) 0.46 (0.457–0.463)

Specificity (CI) 0.98 (0.978–0.982) 1 (1.000–1.000) 1.0 (0.999–1.000)

Training F1 score Class 0 (no recurrence) 1 (1.000–1.000) 1 (1.000–1.000) 0.82 (0.813–0.829)

Training F1 score Class 1 (recurrence) 1 (1.000–1.000) 1 (1.000–1.000) 0.90 (0.889–0.910)

Macro Training F1 score (CI) 0.99 (0.987–0.993) 0.99 (0.987–0.993) 0.85 (0.848–0.852)

Weighted Training F1 score (CI) 1 (1.000–1.000) 1 (1.000–1.000) 0.87 (0.865–0.876)

Testing F1 score Class 0 (no recurrence) 0.99 (0.986–0.991) 0.99 (0.986–0.990) 0.85 (0.843–0.852)

Testing F1 score Class 1 (recurrence) 0.95 (0.948–0.952) 0.98 (0.978–0.982) 0.57 (0.562–0.583)

Macro Testing F1 score (CI) 0.92 (0.917–0.923) 0.97 (0.967–0.973) 0.70 (0.698 – 0.702)

Weighted Testing F1 score (CI) 0.98 (0.978–0.982) 0.99 (0.987–0.993) 0.81 (0.806–0.820)

Base Algorithm for SFFS KSVM KSVM KSVM

Mean AUC_ROC (CI) 0.98 (0.978–0.982) 0.99 (0.990–0.990) 0.80 (0.796–0.804)

https://doi.org/10.1371/journal.pone.0277168.t004
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with additional information, including clinical features, rather than in isolation to maximize

the potential of predictive modeling [12]. Therefore, this study was conducted assuming that

Radiomics when added to Clinico-Pathological data would improve the performance of ML

models in predicting outcomes of HNSCC treated with RT.

Clinico-Radiomic dataset performed the best in all the four outcome predictions referred to

in this study. Despite the models working on clinical data alone are already providing excellent

predictive abilities in our study, adding Radiomics further improved the predictive ability.

Radiomics have been studied for a myriad of applications across all disciplines involved in

HNSCC management, including molecular characterization [13], image segmentation [14],

pre-surgical decision making [15], prognostication, improving treatment quality and effi-

ciency, etc. However, most prognostication studies on Radiomics in HNSCC have utilized

PET-CT scans and MRIs to a lesser extent, given the wealth of biological and chemical data

captured in these images. In contrast, Radiomics has been used on diagnostic CT scans

because these are the most widely available scans used to evaluate the extent and planning of

treatment. CT scan Radiomics have been studied to a lesser extent with conflicting conclu-

sions. For example, Ger et al., concluded that neither CT nor PET was independently capable

of predicting survival in HNSCC [16], while Cozzi et al., were able to successfully predict

Table 5. Comparative results for Residual Disease (152 samples). The column of the model utilizing only clinical data from our previous study [6] is included for

comparison.

Model Name Residual Disease

Dataset Type Only Clinical Clinico- Radiomics Only Radiomics

Total number of independent variables (columns) 354 568 214

Best performing ML algorithm KSVM KSVM KSVM

Minority Oversampling method SMOTE ADASYN ADASYN

No. of samples after oversampling 270 270 270

No. of synthetic samples 118 118 118

No. of features selected by SFFS 312 98 15

No. of original samples for class-0 (no recurrence) 135 135 135

No. of original samples for class -1 (recurrence) 17 17 17

No. of samples in Training dataset for class 0 (no recurrence) 90 90 90

No. of samples in Training dataset for class 1 (recurrence) 118 118 118

No. of samples in Testing dataset for class 0 (no recurrence) 45 45 45

No. of samples in Testing dataset for class 1(recurrence) 17 17 17

Mean training accuracy (CI) 1.0 (0.999–1.001) 1.0 (0.999–1.001) 0.88 (0.879–0.881)

Mean testing accuracy (CI) 0.92 (0.906–0.914) 0.96 (0.957–0.963) 0.83 (0.822–0.838)

Sensitivity (CI) 0.89 (0.886–0.894) 0.94 (0.937–0.943) 0.85 (0.848–0.852)

Specificity (CI) 1.0 (0.999–1.000) 1.0 (0.999–1.000) 0.88 (0.877–0.883)

Training F1 score Class 0 (no recurrence) 1 (0.999–1.000) 1 (0.999–1.000) 0.86 (0.852–0.862)

Training F1 score Class 1 (recurrence) 1 (0.999–1.000) 1 (0.999–1.000) 0.9 (0.899–0.912)

Macro Training F1 score (CI) 0.99 (0.986–0.994) 0.99 (0.986–0.994) 0.85 (0.847–0.853)

Weighted Training F1 score (CI) 1 (0.999–1.000) 1 (0.999–1.000) 0.88 (0.874–0.882)

Testing F1 score Class 0 (no recurrence) 0.95 (0.939–0.954) 0.98 (0.965–0.986) 0.87 (0.862–0.878)

Testing F1 score Class 1 (recurrence) 0.88 (0.876–0.892) 0.94 (0.934–0.954) 0.75 (0.749–0.763)

Macro Testing F1 score (CI) 0.89 (0.886–0.894) 0.95 (0.944–0.956) 0.80 (0.797–0.803)

Weighted Testing F1 score (CI) 0.93 (0.924–0.931) 0.97 (0.968–0.985) 0.84 (0.832–0.841)

Base Algorithm for SFFS KSVM KSVM KSVM

Mean AUC_ROC(CI) 0.99 (0.986–0.994) 0.98 (0.977– 0.983) 0.85 (0.838–0.862)

https://doi.org/10.1371/journal.pone.0277168.t005
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survival and local control in a retrospective series of 110 patients with HNSCC treated with

radiotherapy [17].

However, fewer studies have attempted to combine Radiomics with AI to enhance its

potential. For example, a survey by Diamant et al., was able to successfully predict distant

metastases in HNSCC by applying CNN to Radiomics data [18]. A systematic review by

Giraud et al., summarizes some possible applications in HNSCC [19]. More recent reviews

have looked explicitly at this integrated application for predicting disease outcomes and treat-

ment toxicities [20, 21]. Despite promising reports, they all agree on the need for prospective

validation studies prior to clinical translation.

The ML algorithms gave the best performance when fitted onto the dataset under optimal

hypermeter settings that were obtained using grid search [22]. Also, the feature selection

method SFFS [23] automatically selected k_best features from an exhaustive list of variables so

that features with the best accuracy scores are chosen for model-building, thereby preventing

the curse of dimensionality [24].

While it provides proof-of-concept of integrated Clinical-Radiomic predictive ML models,

this study has several limitations. For one, it is a single-center study that relied on retrospective

Fig 4. ROC curves comparing the ML performance with three datasets groups (the thin line represents each

iteration’s ROC, and the thick line is the mean ROC). The column of the model utilizing only clinical data from our

previous study [6] is included for comparison.

https://doi.org/10.1371/journal.pone.0277168.g004
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data with small sample size and a considerably limited follow-up duration. Second, it used

only contrast CT images, which can add a degree of heterogeneity to the collected Radiomics

data. Radiomics naturally demands high-quality, standardized imaging for optimum perfor-

mance [25]. Factors such as motion artifacts, time-lapse between contrast administration and

image acquisition, image processing algorithms, etc., have been shown to affect data. The

study also does not work to determining the mechanisms underlying the possible correlation

between radiological findings and outcomes. Moreover, as with most other research [26] on

Radiomics and AI, the findings need multicentric protocol-constrained imaging and prospec-

tive validation prior to routine use. Developing healthcare data management systems with the

ability to recognize, classify and segregate data in real-time could greatly expedite the imple-

mentation of such AI applications in the clinic.

5. Conclusion

Radiomics features supplemented with clinical features predicted the clinical outcomes of

HNSCC treated with radiotherapy to a high degree of accuracy. In contrast, using only Radio-

mics data as input offered suboptimal performance. For all the models, KSVM performed bet-

ter than either RF or XGBoost. Weighted average training and testing F1-scores were equally

good with clinical and Clinico-Radiomic datasets but were poor with only the Radiomics data-

set. We conclude that only Radiomics data could be insufficient in predicting the HNSCC out-

comes, while Clinico-Radiomic data can provide predictions of clinical utility. With

prospective validation, such predictive models can be of great utility for clinical exploitation.
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