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Abstract

The recent commercialization of unoccupied aerial vehicles (UAVs) has facilitated their

incorporation into a variety of ecological studies. While UAVs are able to provide accurate

visual data of marine species from an aerial perspective, these devices have some limita-

tions that make measuring marine animals below the surface challenging. Many marine

organisms are often visible from the air, but are deeper in the water column, and current

methods cannot measure animals below the surface. Here, we developed and tested a ste-

reo-video camera (SVC) system that was mounted onto a commercially-available UAV. We

used the SVC-UAV to conduct remote body-size measurements for two marine species: the

green sea turtle (Chelonia mydas) and the nurse shark (Ginglymostoma cirratum). When

comparing SVC measurements to those taken by hand, the SVC-UAV had a mean absolute

error (MAE) of 4.44 cm (n = 6; mean percent error (MPE) = 10.6%) for green sea turtles and

7.16 cm absolute error (n = 1; PE = 3.6%) for the nurse shark. Using a linear model, we esti-

mated the slope of the SVC versus hand measurements for green sea turtles to be 1.085

(±0.099 SE), and accounting for the standard error, a measurement bias was not apparent.

Using model selection, based on a global model predicting MAE from animal distance to the

SVC and body size, the top ranked model was the intercept-only model. This indicates that

neither animal distance nor body size strongly influenced measurement error. Incorporating

SVC systems into UAVs can allow for relatively accurate measurements of near surface-

dwelling marine species. To our knowledge, there is no other stand-alone SVC for UAVs

available that offers similar accuracy and utility.
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Introduction

Unoccupied aerial vehicles (UAVs), commonly referred to as drones, are increasingly incorpo-

rated into the toolboxes of many ecologists [1–4]. These tools provide researchers with an

aerial platform to monitor organisms that are challenging to observe directly [5]. For this rea-

son, UAVs are frequently used to study many marine taxa, including sea turtles, crocodiles,

sharks, and whales (e.g., [6–9]). Moreover, technological innovation means that novel sensors,

such as thermal cameras or LiDAR, are continually incorporated into the available sensor

array for UAVs and, in turn, this increases the quantity and type of data these devices can col-

lect [10].

Morphometric data can provide valuable insights into a species’ ecology and population sta-

tus following disturbance or recovery efforts [11–15]. However, accurately measure body size

can be challenging when using UAVs [1–4]. This might initially appear paradoxical as most

modern UAVs can measure their altitude, and so if the width of the camera’s field of view at a

given altitude is known, then it is possible to determine the size of an object within the viewing

window. Indeed, such altimetry-based methods have proven useful for measuring large marine

animals, such as whales and elasmobranchs [16–18]. For smaller marine animals (<2m), an

error of *5 cm can translate into a higher error rate (i.e. greater percent error) and can mean

the difference between classifying an individual as an immature or mature, but for larger ani-

mals, such as whales, a*5 cm error may be negligible. Further, issues associated with image

resolution and uncertainty regarding the exact altitude of the drone can lead to higher mea-

surement error [19–21]. Regardless, problems associated with image resolution and uncer-

tainty regarding the exact distance of the camera relative to the animal of interest may

ultimately reduce measurement accuracy. This is especially pertinent when studying marine

megafauna whose depth in the water column may not be readily measurable or if the animal is

non-orthogonal to the camera (i.e. diving or surfacing during video acquisition). To address

this issue, some studies have suggested using LiDAR or structure-from-motion (SfM) technol-

ogy to assess body size [10, 22]. These tools have proven highly practical, but may still produce

measurement errors up to 6 cm [23]. Additionally, depending on the choice of altimeter

(barometer or laser altimeter), uncertainty related to predicted body length of whales

decreased with altitude, suggesting a relationship with error and altitude [19]. There are also

GPS-based systems, such as Real-Time Kinematic (RTK) drones, that have on-board GNSS

RTK receivers that gather data from satellites and a stationary base (ground) station to more

accurately correct image location, in real time as it flies [24]. However, if field surveys are con-

ducted offshore or in remote locations, a portable base station may be required to maximize

the accuracy of an RTK drone. RTK drones are all quite expensive, which may be prohibitive

for marine wildlife studies with limited budgets. As such, there is an opportunity to explore

other methods that may be more suitable to boat-based surveys, such as the use of UAV-

mounted stereo-video cameras (SVCs). We provide a comparison of the advantages and disad-

vantages of using altimetry versus SVC-based methods for morphometric data collection from

vessel-based aerial surveys in Table 1 [25]. Notably, aerial SVCs have several advantages for

this particular application, such as not depending on altimetry data, nor are animals required

to be orthogonal to the cameras.

SVCs consist of two cameras that collect video footage of the same object, but from differ-

ent, albeit fixed, angles. If the distance between each camera and their relative angle to each

other is also known, then accurate object size data can be extracted from resulting images

using trigonometry [26]. Hand-held SVCs are frequently used to remotely measure marine

animals in-water, including sharks [27], bony fish [28], whales [29], and turtles [30, 31]; how-

ever, there are currently no studies that have explored the capabilities of UAV-mounted SVCs
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to measure body size in marine animals. In fact, some studies have suggested that SVCs are

prohibitively large and cumbersome to be used for this purpose [10, 22, 23, 32]. Nevertheless,

technical advancements in UAVs, batteries, and advanced manufacturing approaches, such as

3D printing, provide new opportunities for the design of novel, stereo-video equipped UAVs.

Preliminary stereo-video camera system design considerations

Our primary objective was to design, build, and test a stand-alone SVC fixture that could be

mounted to a commercial UAV, and be used for non-contact measurement of underwater tar-

gets. Key design considerations and constraints included lightweight design, compatibility

with SeaGIS software (i.e., CAL and EventMeasure, SeaGIS Pty Ltd., Bacchus Marsh, Victoria,

Australia), and adaptability to commercially-available UAVs. During the design phase of the

proof-of-concept prototype, a key challenge was mounting the SVC system in a manner that

minimally impacted the UAV’s flight dynamics, and maximized flight time. During the con-

cept generation phase, adding a SVC gimbal mount was considered, however testing revealed

that dynamically rotating the SVC may destabilize the UAV, depending on the SVC to UAV

size ratio. The current fixed camera design utilizes the UAV’s planar rotation ability, parallel

to the horizon, which allows the user to keep moving objects (e.g., sea turtles) within the SVC’s

point of view. In future work, we will examine the trade-offs between SVC camera distance,

SVC gimbal mounting, and reduction in UAV flight performance. We also tested the impact

of filming an underwater object from the air to account for image distortion due to refraction

[33]. However, we did not account for the relationship between water salinity and the corre-

sponding index of refraction, as the index of refraction varies very little across freshwater and

sea water. For example, at a wavelength of 546.1 nm and 30˚C water temperature, the index of

refraction is 1.39807 for seawater at 35% salinity and 1.38919 for fresh water at 0% salinity [34,

35]. This is significantly less than the measurement error from single camera UAV systems,

and we considered this negligible for our application.

Here, we present a functional proof-of-concept for a SVC equipped UAV. We also test the

use of this device to accurately measure body size in marine species. Such a tool has the poten-

tial to facilitate data collection for many marine species that lack body size data for certain life

stages. For example, a gap analysis focused on sea turtle juvenile life stages found that studies

on juvenile leatherback (Dermochelys coriacea) and hawksbill (Eretmochelys imbricata) sea tur-

tles, in particular, are lacking globally, and that all species in the Indian, South Pacific and

South Atlantic Oceans are data poor [36]. However, with sufficient body length data, it is

Table 1. Comparison of the altimetry and stereo-video camera methods for morphometric measurements.

Method Advantages Disadvantages

Altimetry-
Based

• Single camera • May need additional sensors for higher accuracy

(e.g., altimeter) which also require calibration (e.g.,

altimeter drift)

• Good accuracy from high altitude • Object must be orthogonal to camera or requires

ortho-correction

• May require base stations (RTK drones)

SVC-Based • Altitude data not needed • Two or more cameras needed

• Can calibrate for multiple zoom

configurations

• Accuracy affected by object’s distance from camera

• Can measure objects non-orthogonal to

camera (e.g., diving, submerged in water,

etc.)

https://doi.org/10.1371/journal.pone.0276382.t001
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possible to conduct length-based population assessments that can help inform population

trends, age-class specific survival rates, size-at-maturity, and other critical vital rates [13, 37–

40].

Materials and methods

Ethics statement

Research conducted in Eleuthera was permitted by the Bahamian Department of Marine

Resources (permit MA&MR/FIS/9). All researchers involved in animal handling obtained

IACUC training and were permitted through the University of West Florida. In figures with

photographs of researchers participating in testing the SVC-UAV system, the individual who

is identifiable has given written informed consent (as outlined in PLOS consent form) to

publish.

Testing the effect of refraction on SVC measurement accuracy

To examine how refraction affects SVC measurement accuracy, a SeaGIS swimmable SVC sys-

tem was fixed to the high dive of a pool to record a fixed length object at increasing depths in

the pool (Fig 1). The swimmable system uses two GoPro Hero 5 Black cameras set to 1920 x

1080 video format, medium field of view, and 30 frames/sec. The two cameras were spaced

with their lenses 0.8 m apart, and were inwardly converged at 4˚. Pool testing was conducted

at the University of West Florida Aquatic Center.

Prior to in-water measurements, the SVC was calibrated in the air using the method

described by Harvey and Shortis [41]. In short, the calibration used multiple images of a 3D

aluminum cuboid frame marked with 56 precisely known reference points. The locations of

these points were measured from multiple images taken from 20 standardized orientations of

the calibration cube. Images were analyzed in SeaGIS CAL software v.3.23 to calibrate both the

internal and external parameters of the SVC [42]. The calibration calculates the camera param-

eters, including the focal lengths (i.e., the distance that the lens converges light) of the cameras.

We used a custom scale bar with identifying distance markers (Length 1 = 0.4499 m, Length

2 = 0.7653 m, and total bar length = 1.2152 m) as the measurement object. The scale bar was

placed in the pool and leveled horizontally with floats. Cords were connected to each side and

vertically attached to a steel beam that allowed the bar’s depth to be adjusted by wrapping the

cord around the beam. Video was collected from the high-dive (3 m from surface), with the

swimmable SVC system, from 0 (surface) to 1.07 m depth at 0.15 m increments. The distance

(altitude) between the SVC and the measuring bar ranged from 2.9—5.2 m.

Unoccupied aerial vehicle platform and stereo-video camera mounting

system design

We selected the DJI Matrice 600 to carry the custom SVC based on its large payload capacity

of 15.5 kg, and maximum flight time of 32 min [43]. Figs 2 and 3 provide visual context to the

SVC design, mounting, and operation. The SVC system was comprised of a custom built

frame and two camera housings with GoPro Hero 5 Black cameras (Fig 4). The frame was

made from solid 2.54 cm diameter pine wood dowels. We used pine as it has a high strength-

to-weight ratio; however, future work will explore using structural composites, such as carbon

fiber [44]. The cameras were mounted to the frame with unique left and right adjustable three

piece housings (Fig 4). These were designed in SOLIDWORKS 2018 (Dassault Systemes)

before being 3D printed with acrylonitrile butadiene styrene (ABS) plastic using an Airwolf

EVO printer and assembled with stainless steel fasteners for corrosion resistance. The camera
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power buttons and touchscreens could be accessed when in the housings. The camera hous-

ings were a fixed distance of *0.8 m apart and the convergence of their focal point could be

adjusted from *0˚to *15˚for calibration [41, 45]. For this design and subsequent experi-

ments, the cameras were inwardly converged at approximately *4˚. Each camera was set to

1080p video format, medium field of view, and 30 frames/sec, based on the video requirements

of the SeaGIS EventMeasure software v.5.22, however higher resolution video will be tested in

the future. We followed the same EventMeasure protocol for calibration as the swimmable in-

water SVC system with the sole exception that we used calibration settings for measuring in

air rather than water.

Bahamas field trials: Study site, animal capture, and filming techniques

We tested the accuracy of the SVC-UAV on juvenile green sea turtles (Chelonia mydas) and

nurse sharks (Ginglymostoma cirratum) in July 2019 in the waters off Cape Eleuthera, the

Bahamas (24˚49’54“N, 76˚19’45“W). We collected physical measurements by hand and used

those as the control to quantify the accuracy of the SVC-UAV system. Sea turtles were cap-

tured using a rodeo technique [46]. After hand capture, turtles were hauled on-board the boat

to measure the maximum straight carapace length (SCL), from the nuchal scute to the poste-

rior tip of a supracaudal scute (±0.1 cm; SCL); and curved carapace length (CCL). SCL was

measured using metal calipers and CCL was measured using a flexible tape measure [46]. After

data collection (which usually lasted less than 15 min), turtles were released within 100 m of

their initial capture location. In contrast, nurse sharks were captured using a baited hand-line.

Once hooked, the sharks were brought alongside the boat and a rope with a noose was looped

around the caudal fin. Using the hand-line that was still hooked in the shark’s mouth as well as

Fig 1. Examining the feasibility of using stereo-video footage collected from the air to measure objects below the

water surface. (A) Calibrating the SeaGIS SVC to a custom scale bar before testing. (B) SeaGIS swimmable stereo-

video camera on the high dive, stereo-video camera in red dashed outline. (C) Underwater scale bar testing mechanism

at 5.0 m depth. Testing was conducted at the University of West Florida Aquatic Center.

https://doi.org/10.1371/journal.pone.0276382.g001
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the rope around the caudal fin, it was possible to keep the shark stable and immobile. During

this time, total length (TL; snout to tip of caudal fin) of the shark was measured using a flexible

tape measure [47, 48]. The shark was released within 10 min after capture by cutting the hook

and releasing the noose around the caudal fin.

To record the free-swimming animals via the SVC-UAV, we first synchronized the cameras

using an unique initial cue (such as hand clapping or fingers touching) [41]. The UAV was

then positioned directly above the animal at *2–8 m altitude. Notably, in practice many stud-

ies use a minimum altitude of 30 m to avoid interaction with sensitive avian species [49]. We

did not specifically control altitude during the field trial, as our objective was to simulate mea-

suring free swimming animals in the field where scientists may need to opportunistically mea-

sure animals under a variety of altitudes. Further, we did not measure altitude directly, but

rather used the SVC image analysis software to measure range, which is the distance between

the cameras and the object being measured, and we accounted for range in the statistical analy-

sis (see sections Stereo-video image analysis and Statistical Analysis). As our initial proof-of-

concept design was tested at relatively low altitudes, our future work will explore cameras with

Fig 2. Conceptual overview of stereo-video camera mounting to an unoccupied aerial vehicle. Dashed lines

indicate the convergence points of left and right cameras on object, relative to UAV height above the water surface and

underwater object. (Turtle silhouette image by Spotila and Chatterji—no copyright).

https://doi.org/10.1371/journal.pone.0276382.g002
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a 4X zoom, which may allow us to use this method at higher altitudes. The animals were

released after hand measurements in the general direction of the SVC-UAV or off to the side

of the boat to allow for adequate video footage to be obtained (i.e., obtain enough video frames

where the nuchal and supracaudal scutes were visible). The animals were followed with

SVC-UAV until they were no longer visible, such as the animal dove deeper than visible from

the surface or swam outside the viewing area of the single gimbal camera, which we viewed

live on a computer tablet that we used to fly the UAV. The SVC was synchronized for a second

time upon retrieval, as a back-up.

We simultaneously filmed the released animals in the water using the in-water swimmable

stereo-video camera, the same system used in the pool testing. This system has been previously

established to remotely measure body lengths with reasonably high accuracy [30, 50]. We con-

ducted this additional measurement simultaneously so as to provide an additional comparison

for the accuracy of the SVC-UAV compared to a more traditional in-water remote measure-

ment method.

Stereo-video image analysis

We analyzed video footage using SeaGIS EventMeasure software v.5.22. EventMeasure pro-

duces length measurements (i.e., the distance between two fixed points) along with an estimate

of measurement error. The resulting video footage from the two cameras was synchronized

using the unique initial cue, and the same two measurement points were selected within an

image pair from the right and left cameras (Fig 5) [50]. To maintain acceptable precision, the

root mean square (RMS) error should be< 20 mm [41]. Here, the RMS error calculates the

exactness of the 3D intersection between the image pairs [41]. To reduce measurement error

from individual video frames, the average of five distance measurements were used as the final

value, which is standard practice for SVC measurements [51]. We measured body length from

the same locations as those used for hand measurement. For the nurse shark, which swims

with lateral flexion, we took care to select frames where the animal’s body was as straight as

possible to avoid additional measurement error.

Fig 3. Unoccupied aerial vehicle in flight with stereo-video camera system mounted, and left camera highlighted.

https://doi.org/10.1371/journal.pone.0276382.g003
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Fig 4. Stereo-video camera housing. Custom ABS plastic 3D printed housing, which allows access to camera functions for the GoPro Hero 5 Black

camera. Housing is fastened using stainless steel screws and wingnuts for corrosion resistance.

https://doi.org/10.1371/journal.pone.0276382.g004

Fig 5. Stereo-video camera software interface. (A) Left and (B) right camera views of a nurse shark (Ginglymostoma cirratum) measured for total

length, and (C) zoomed-in image of the right camera image of the shark. In (C), the photo has been enhanced for contrast and to sharpen edges to aid

in shark visibility. Red lines indicate the measurement vectors for total length.

https://doi.org/10.1371/journal.pone.0276382.g005
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Statistical analysis

For both the preliminary pool testing and field trials, we calculated several different metrics of

measurement error. We ascertained the mean absolute error between the known length of the

scale bar and the measurement collected from the swimmable SVC system. Mean absolute

error (MAE) was calculated as:

MAE ¼
1

n

Xn

j¼1

jðv � vestÞj ð1Þ

where MAE is the mean absolute error, v is the distance between two reference points, and vest

is the estimated distance calculated in EventMeasure. In addition, we also calculated the per-

cent error as:

d ¼ 100 � jðv � vestÞ=vj ð2Þ

where δ is the percent error. We then calculated mean percent error (MPE) across all measure-

ments. We calculated root mean square error (RMSE) as well as:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

j¼1

ðv � vestÞ
2

s

ð3Þ

For the pool testing, we also examined the relationship of the MAE of the measurements

and depth using a generalized linear model (GLM) with a gamma distribution. We used this

distribution as there were some minor departures of the residuals from a normal distribution

as determined by examining the quantile-quantile plot and comparing the fitted values to the

residuals.

For the field trials, we evaluated accuracy with two different methods. Firstly, we ascer-

tained the absolute error, square error and percent error of measurement by hand (the “true”

measurement) and the measurement collected from the SVC-UAV system. We calculated the

MAE, RMSE, and MPE to assess the relationship between the SVC system measurements to

the “true” measurement achieved with calipers for sea turtles and measuring tape for the nurse

shark using Eqs 1–3. Secondly, to evaluate potential bias in the SVC-UAV measurements, we

conducted a linear regression to estimate the slope of the relationship between the SVC and

hand measurements for the turtles. We did not use the shark for this analysis as we were only

able to measure a single individual. If the slope was equal to one, then this would suggest a per-

fect agreement between the two measurement types, and also suggests that no bias in measure-

ments is present. We collected five measurements from separate video frames from each

individual turtle, which enabled us to use the mean across the measurements for each individ-

ual as this is typical practice for measurements collected via stereo-video cameras [51]. We

found the assumptions of a linear model were upheld based on visual inspection of the qq

plots, the fitted values and the residuals, and the frequency distribution of the residuals.

We also evaluated the relationship with MAE and the distance of the cameras to the sea tur-

tle and the body size of the turtles using a linear mixed model with a repeated effect for multi-

ple measurements for each individual, using the individual measurements from different video

frames, as the ranges differed by frame. We used the global model:

Absolute Error ¼ b0 þ b1 � Rangeþ b2 � SCLþ �i;j ð4Þ

where β0 is the intercept, each βi is the variable-specific contribution to the slope, the range is

the distance between the SVC and the turtle, SCL is the straight carapace length calculated in

EventMeasure, and the residual error is �i,j� N(0, �2) of turtle i. Once again, we ascertained
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the assumptions of a linear model were upheld, based on the qq plots, plotting the fitted values

to the residuals, and the frequency distribution of the residuals. We performed this analysis on

individual measurements from different video frames as the absolute error and range varied

by video frame.

Lastly, we assessed the background level of error associated with manual measurements to

contextualize the error for the SVC-UAV system. To achieve this, we estimated the measure-

ment error from manual measurements of sea turtle SCL from green sea turtles repeatedly

caught and measured during a long-term monitoring survey conducted by the Cape Eleuthera

Institute. Using this data-set, we calculated the measurement error from turtles that were re-

caught within 30 days (to control for potential size differences due to somatic growth). We cal-

culated error using Eqs 1–3.

In all, we used the information theoretic approach for model selection based on Akaike

Information Criterion correction for small sample sizes (AICc) [52, 53]. All analyses were per-

formed in R v.3.6.3 (R Development Core Team 2018) and R Studio v.1.3.1073 (R Studio,

Inc.).

Results

Initial pool testing

In the initial pool experiments, the MAE was 2.12 cm (±0.44 standard error (SE); S1 Table. In

comparison, the MAE of measurements made during the scale bar calibration in the air was

0.319 cm (±0.59 SE; S2 Table). We also tested the relationship of the measurement accuracy

with depth, and absolute error ranged from 0.1055 cm in 0.3048 m depth to 11.97 cm in

0.1524 m depth, but there was not a linear relationship with depth. Beyond 1.07 m depth, the

water refraction was too severe to permit measurement. Based on the GLM (with a gamma dis-

tribution) to statistically test the relationship between MAE and depth, the null model

(AICc = 118.8) and test model (AICc = 120.2) with depth as the explanatory variable were

within 2 ΔAICc (S3 Table). This suggests that the null and test models had equivalent fits to

the data while balancing model parsimony; thus, depth was not a strong predictor of percent

error within the depth range that we collected measurements (Fig 6).

Field trials

For the Eleuthera field trials, we measured 6 C. mydas with body lengths ranging from 27.8—

62.2 cm SCL, and 1 G. cirratum with a body length of 198 cm TL. The MAE for green sea tur-

tles was 4.44 cm (± 0.99 SE) and for the nurse shark, it was 7.16 cm (no SE available as n = 1,

Table 2). Measurement data are provided in the Supporting Information (S3 Table). In com-

parison, the MAE from the in-water SVC system for green sea turtles was 6.31 cm (±0.980 SE,

range 0.391—20.4, n = 6 individuals). In-water measurements were not collected on the shark

due to logistical limitations. The MAE for C. mydas hand measurements was 3.81 cm (±0.455

SE, range 0–40, n = 96 measurements).

We examined the relationship between the SVC-UAV and hand measurements for green

sea turtles. The estimated slope was 1.085 (±0.099 SE, 95% confidence interval 0.808—1.36)

from a linear model, using the mean of 5 measurements across different frames for each indi-

vidual. The 95% confidence interval for the slope estimate encompassed 1.0, and this suggests

there is not a consistent negative or positive bias to the SVC-UAV measurements for green sea

turtles (Fig 7). When we performed model selection on potential predictors of absolute error,

range and the sea turtle SCL, the null model was the only model present in the confidence set

(S3 Table). This suggests that neither range nor SCL strongly influenced measurement error

(Fig 8).
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Discussion

Here, we provide a functional proof-of-concept for mounting an SVC system onto a UAV.

The SVC-UAV permits non-invasive measurements of body size in animals. We demonstrate

that this method can provide accurate measurements of marine species. However, due to the

effects of light refraction, we expect that measurements would only be accurate within the top

meter of the water column using our current approach. In addition, since the focal individual

must be visible above the water surface, this will exclude measurements of animals that are

deeper in the water column. Thus, surface-dwelling or intertidal invertebrates, fish, reptiles,

birds and mammals may be excellent candidate species for the current approach, but for now,

it may not be practical for demersal and benthic species in deeper water.

Our study underlines the fundamental proof-of-concept of this new technology to remotely

measure marine organisms aerially. Our initial pool testing indicated that there was no rela-

tionship between measurement error and depth up to the point where water refraction makes

the measurement points indiscernible (*1 m depth). This suggests that as long as an organism

Fig 6. Relationship of absolute error of aerial SVC measurements and depth. The solid line and gray shaded area

are the generalized linear regression and standard error, respectively. Depth measurements of<0 indicate

measurements made from the camera in the air only, just above the water surface.

https://doi.org/10.1371/journal.pone.0276382.g006

Table 2. Measurement accuracy of the stereo-video camera mounted to an unoccupied aerial vehicle and in-water swimmable stereo-video camera.

Species N MAE RMSE MPE

SVC-UAV SVC SVC-UAV SVC SVC-UAV SVC

Chelonia mydas 6 4.44 ± 0.99 6.31 ± 0.98 4.97 ± 7.67 8.21 ± 18.0 10.59% ± 2.54 1.33% ± 0.16

Ginglymostoma cirratum 1 7.16 NA 7.16 NA 3.62% NA

SVC-UAV = stereo-video camera mounted to an unoccupied aerial vehicle, SVC = in-water swimmable stereo-video camera, MAE = mean absolute error, RMSE = root

mean square error, and MPE = mean percent error (± standard error). In-water SVC measurements were not collected for G. cirratum and standard errors are not

provided for G. cirratum as only 1 individual was measured.

https://doi.org/10.1371/journal.pone.0276382.t002
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is relatively close to the surface, then accurate measurements can be obtained with the

SVC-UAV. Moreover, we could not directly measure the depth of the animals in the field trial,

because they were being filmed with the SVC-UAV while swimming, so the depth limitations

for the field survey may differ from those in the pool testing. However, future work to better

understand the correlation between measurement accuracy and depth during field surveys

and to address improved measurement with depth would be advantageous. For example, using

specialized lenses or underwater image amelioration techniques (e.g., Sea Thru water removal

algorithm [54]) may help to improve measurement errors due to refraction, though these

would need to be validated directly. Further, Odzer et al. [55] found that in using UAVs to

detect marine organisms, depth, seagrass cover, and glare affected model sea turtle detections.

Secondly, we found no relationship between the measurement error of SCL measurements

and the distance between the SVC-UAV and the sea turtles (Fig 8). It is possible that within

the range of our flight altitude (2—8 m), measurement error generally did not increase. This

follows with other studies that have investigated the relationship between object distance and

measurement accuracy [30, 56]. Also, body size was not a strong predictor of measurement

error, and this also suggests the SVC-UAV system is not limited in the size of organisms that

can be measured, and would be useful across a range of animal sizes. However, as there was a

fair amount of variance in the measurement errors for each turtle and relatively low sample

size, the model selection process may not have been able to balance model fit to the data with

potentially informative predictors of measurement error. Hopefully, this will be resolved in

future iterations of the SVC-UAV and additional validation studies with larger sample sizes. In

Fig 7. Comparison of hand measurements to SVC-UAV for green sea turtles (n = 6) from the field trial in Eleuthera, Bahamas. The dashed line

and gray shaded area are the linear regression and standard error, respectively. The solid black line is the 1:1 line for the hand and SV-UAV

measurements; points that fall on this line have equivalent measurements for both methods.

https://doi.org/10.1371/journal.pone.0276382.g007
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practice, the use of the mean of multiple measurements across different video frames of the

same individual reduces measurement error; indeed, some practitioners recommend using the

mean of 10 measurements from unique video frames [51]. We used a mean of 5 measurements

here, because some of our video files were damaged, most likely due to the heat and intense

sunlight during the field study in Eleuthera in July. It would serve future researchers well to

shade the cameras as much as practicable.

Our results indicated that the MAE for the UAV-SVC system for measuring both sea turtles

and sharks was 4.44 cm and 7.16 cm, respectively. Notably, this error was similar to the error

from physical hand measurements (MAE = 3.81 cm) of juvenile sea turtles in the Bahamas. In

general, there are several reasons behind this degree of error, including picture quality, the

effect of surface ripples in distorting the body shape, and light refraction [55]. However, all

types of measurement, including physically measuring objects, have some degree of error. So,

it is important to contextualize this error as it compares to error associated with more conven-

tional measurements, such as direct hand measurements or in-water SVC systems. In this

study, the MAE for the handheld SVC was 6.31 cm (percent error 1.34% ± 0.16 SE) and Sieg-

fried et al. [30] measured percent error to be 0.98% (±0.01). In addition, Hodgson et al. [57]

reported the estimated slope for a linear regression comparing standard length from physical

and photogrammetric measurements was 1.02 (95% CI 0.98—1.07) when measuring Austra-

lian sea lions (Neophoca cinerea), which is similar to our slope estimate for green sea turtles of

1.0855 (±0.099 SE). Dawson et al. [23] tested the accuracy of photogrammetry using a UAV

equipped with a gimballed micro4/3 camera and 25 mm lens with the objective of measuring

Fig 8. Relationship between absolute error and (A) range and (B) straight carapace length from the stereo-video camera system mounted to an

unoccupied aerial vehicle. The dashed line and gray shaded area are the linear regression and standard error, respectively.

https://doi.org/10.1371/journal.pone.0276382.g008
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southern right whales (Eubalaena australis). The authors used a floating reference target, flight

altitudes ranged 16—30 m, and the UAV single gimbal camera had a mean percent error of

1.0% (SD = 4.9 cm). Our SVC-UAV system has slightly higher errors than other commercial

systems, however, additional options for photogrammetry allow scientists to select the best sys-

tem for their study objectives and budgetary limitations (i.e., Table 1).

While our measurement errors are slightly higher than other remote UAV methods (e.g.,

[23, 57]), our approach provides a baseline to assess the feasibility of SVC-UAV systems, and

will aid future improvements to SVC-equipped UAVs. When accuracy is of vital importance,

then direct measurements and hand-held SVC systems will provide the most accurate data.

Our SVC-UAV system is advantageous over single-camera UAVs, because it is low cost, and

does not require animals to be at the surface nor orthogonal to the cameras. Yet, the UAV-SVC

would also be a good option when traditional sampling or in-water sampling is not feasible

due to logistical or safety constraints or larger sample sizes are required than can be achieved

by hand-capture. For example, where water bodies are too shallow to access by boat, or in-

water operations are not safe due to tidal currents, fishing activities, etc. If populations are

remote or research programs have limited field crew capacity, then the aerial SVC may also be

a good solution, especially as drones can survey large areas quickly [32]. In addition, aerial

SVCs will also be practical if a lower level of accuracy is acceptable. For example, for some

data-poor populations, simply being able to assign individuals to size categories (e.g., 5 cm size

bins) or life stages (e.g., small juvenile, large juvenile, etc.) would be an advancement and so

measurements with slightly higher error may be acceptable (e.g. [58]). Further, a sufficiently

large enough sample size, given unbiased measurements, would also reduce the need for highly

accurate measurements.

In general, MAE was greater in the field test than in the pool test. There are several factors

that probably lead to this. First, we measured live animals who were actively swimming,

which could induce additional error (i.e., availability of video frames where measurement

points were visible). Although, because SCL in turtles is measured across the hard carapace,

it seems improbable that body flexion would be an issue, unlike in sharks [27, 30]. Second,

the pool testing was performed indoors, where wind, waves and sunlight did not affect the

video quality. Furthermore, our analysis of the slope of the SVC-UAV to the manual SCL

measurements indicated a possible slight positive bias (although the 95% CI encompassed

1.0). If a slight positive bias was persistent, then it may be possible to apply a correction factor

to the SVC-UAV measurements to improve accuracy. However, this should be further tested

on a larger data set and in a variety of field conditions. Third, the UAV was actively flying

over the turtles and sharks and this produced additional ripples on the water surface that

probably increased image distortion. This suggests that there may be an optimal distance

between the surface of the water and the maximum altitude of the UAV, although we did not

investigate this directly.

The ethical considerations in terms of animal welfare and flight altitude are important to

consider as well. For this proof-of-concept study, we flew between 2—8 m altitude as the ani-

mals were released from the boat after hand measurement and other data were collected (in

support of long-term sea turtle monitoring by the Cape Eleuthera Institute). Some nations cur-

rently have altitude restrictions for UAVs studying marine wildlife. For example, in the United

States, the National Oceanographic and Atmospheric Agency (NOAA) requires the minimum

altitude for UAV flights for marine mammals for public wildlife viewing to be 304.8 m

(although a lower minimum altitude could be permitted as part of a scientific research permit

[59]). In general, more research needs to be conducted to understand responses of marine

wildlife to UAVs. Bevan et al. [9] studied responses of marine wildlife to UAVs, and they

encountered sea turtles in nearshore, reef and nesting beach habitats, and had flights that
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ranged from 5—30 m altitude. They observed one hawksbill sea turtle (Eretmocheys imbricata)

that responded to the UAV by increasing flipper strokes, as the UAV flew at 9 m altitude,

while other turtles with UAVs flying at lower altitudes displayed no behavioral responses.

Anecdotally, we have noticed that if sea turtles are swimming below the surface, they do not

display behavioral responses to UAVs, regardless of the UAV altitude, but they have mixed

responses when they surface to breathe and can hear the UAV. In addition, while there have

been limited studies to assess the impacts of UAV noise on sharks, it appears that they are

unlikely to be negatively impacted based on how noise travels through water [49, 60]. Future

work to identify the ideal altitude to fly the UAV to balance the trade-offs in measurement

accuracy, minimize behavioral responses, and reduce surface water disturbance would help to

resolve this issue.

Based on both the results and lessons-learned from our current SVC-UAV design, we plan

to explore several concurrent paths for future work. First, the existing SVC system weighs 1.4

kg, which limits commercial UAV adaptability due to payload capacity and flight time con-

straints. New SVC designs will consider reducing weight with composite tubing, carbon fiber

embedded 3D printing, and polymer fasteners. Second, the focal length of the GoPro cameras,

and lack of a zoom function require the UAV to fly relatively close to the animal (e.g., 2–8 m

altitude). Exploring alternative camera options could allow filming from greater altitudes, and

minimize disturbance to the animals and the water surface. Finally, the existing camera cali-

bration process using the rigid cube is not practical when traveling to remote field locations,

especially if the UAV experiences any mechanical damage during field deployment, which

would then require re-calibration. Creating a more portable and automated camera calibration

process could greatly improve the SVC-UAV’s usability.

Supporting information

S1 Table. Pool testing stereo-video camera—UAV by depth data.

(CSV)

S2 Table. Air testing stereo-video camera—UAV data.

(CSV)

S3 Table. Model selection tables for pool testing—Absolute error by depth GLM and field

testing absolute error and SCL and depth GLMM.

(CSV)

S4 Table. Body length stereo-video camera—UAV data.

(XLSX)
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