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Abstract

Control charts for the coefficient of variations (γ) are receiving increasing attention as it is

able to monitor the stability in the ratio of the standard deviation (σ) over the mean (μ), unlike

conventional charts that monitor the μ and/or σ separately. A side-sensitive synthetic (SS)

chart for monitoring γwas recently developed for univariate processes. The chart outper-

forms the non-side-sensitive synthetic (NSS) γ chart. However, the SS chart monitoring γ
for multivariate processes cannot be found. Thus, a SS chart for multivariate processes is

proposed in this paper. A SS chart for multivariate processes is important as multiple quality

characteristic that are correlated with each other are frequently encountered in practical sce-

narios. Based on numerical examples, the side-sensitivity feature that is included in the mul-

tivariate synthetic γ chart significantly improves the sensitivity of the chart based on the run

length performance, particularly in detecting small shifts (τ), and for small sample size (n),

as well as a large number of variables (p) and in-control γ (γ0). The multivariate SS chart

also significantly outperforms the Shewhart γ chart, and marginally outperforms the Multi-

variate Exponentially Weighted Moving Average (MEWMA) γ chart when shift sizes are

moderate and large. To show its implementation, the proposed multivariate SS chart is

adopted to monitor investment risks.

1. Introduction

Synthetic charts are among the charts proposed to increase the sensitivity for the detection of

changes in process parameters. The first synthetic chart was proposed by Wu and Spedding

[1] to monitor the process mean. Synthetic chart is different from the traditional Shewhart

chart, where, unlike the traditional Shewhart chart which immediately classifies a process as

out-of-control when a sample is not within the control limits, the synthetic chart only classifies

a process as out-of-control when there are less than L samples between two successive samples

that plot beyond the control limits. Note that the L samples must fall within the control limits.

Synthetic charts were shown to outperform the traditional Shewhart chart. A recent review of
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synthetic-type charts is available in Rakitzis et al. [2]. Some of the more recent studies on syn-

thetic charts are Lee et al. [3], Haq and Khoo [4], Hu et al. [5], Haq [6] and many others.

Synthetic charts are then proposed by Calzada and Scariano [7] to monitor γ, where shifts

in the ratio of the standard deviation (σ) to the mean (μ) are monitored. This enables processes

with an inconsistent μ and/or σ but a consistent ratio s

m
to be monitored, and allows the detec-

tion of special cause(s) that shifts the ratio s

m
. The chart outperforms the Shewhart γ chart by

Kang et al. [8], but not the EWMA γ chart by Castagliola et al. [9]. Numerous studies are

extended for synthetic γ charts. Recently, Tran et al. [10] developed one with measurement

errors, and Yeong et al. [11] designed synthetic γ charts to reduce cost.

For the synthetic charts discussed in the preceding paragraph, samples falling beyond the

control limits can fall on either side of the control limits. This has led Yeong et al. [12] to

develop a side-sensitive synthetic γ chart, where successive samples need to be on the same

side of the limits. In this paper, this chart is referred to as the SS chart, while the non-side-sen-

sitive synthetic γ chart is referred to as the NSS chart. The SS chart is shown to significantly

outperform the NSS chart [12]. Yeong et al. [12] evaluated the SS chart through the average

run length (ARL) and expected ARL (EARL) criteria. Subsequently, Yeong et al. [13] evaluated

the SS chart through the median run length (MRL) and expected MRL (EMRL) criteria. Run

lengths are commonly used to evaluate the performance of control charts, where run lengths

measure the number of samples until the chart gives an out-of-control signal. There are two

types of run lengths, the in-control run length which measures the number of samples col-

lected until the chart gives a false out-of-control signal (i.e. the chart gives an out-of-control

signal when the process is in-control) and the out-of-control run length which measures the

number of samples until an out-of-control condition is detected by the chart. A chart is said to

show good performance if it has a large in-control run length and a small out-of-control run

length. Common measures of run length include the ARL, MRL and SDRL, where these mea-

sures evaluate the average, median and standard deviation of the run lengths, respectively.

However, the ARL, MRL and SDRL requires the exact value of the shift size to be unknown,

which is not possible in certain scenarios [9]. In these cases, the performance of the chart will

be measured through the EARL and EMRL, which measures the expected value of the ARL and

MRL over a range of shift sizes.

A SS chart for multivariate processes is not available. To fill this gap, a multivariate SS chart

is proposed in this paper. Multivariate charts are more useful in practice as most processes usu-

ally involve several quality characteristics which are correlated to each other, hence, they have

to be jointly monitored. Dubious conclusions will be obtained if different univariate charts are

used to monitor these quality characteristics, as the correlation between these quality charac-

teristics are ignored. The first multivariate γ chart can be found in Yeong et al. [14]. Subse-

quently, Lim et al. [15] proposed the multivariate run sum γ chart; Abbasi and Adegoke [16]

studied the phase-I implementation of multivariate γ charts; Khaw et al. [17], Chew et al. [18],

Nguyen et al. [19] and Ayyoub et al. [20] varied the charting parameters of multivariate γ
charts; Khatun et al. [21] proposed multivariate γ charts for short production runs; Giner-

Bosch et al. [22], and Haq and Khoo [23] developed a multivariate EWMA (MEWMA) chart

to monitor γ; Chew et al. [24] and Chew et al. [25] proposed multivariate run rules γ charts;

finally, Ayyoub et al. [26], Ayyoub et al. [27] and Nguyen et al. [28] proposed multivariate γ
charts that consider measurement errors.

Although several multivariate charts are available in the literature to monitor γ, a multivari-

ate SS chart cannot be found. A multivariate SS chart will be proposed in this paper. Section 2

gives a list of notations and abbreviations that are used throughout the paper. Next, Section 3

gives a description of the properties of the sample γ ðĝÞ. Subsequently, a description of how the
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proposed multivariate SS chart operates is provided in Section 4, together with the formulae

for the ARL, standard deviation of the run length (SDRL) and EARL, and the algorithms to

optimize its performance. These algorithms are implemented on several numerical examples

in Section 5, while Section 6 compares the multivariate SS chart with the multivariate NSS,

MEWMA and Shewhart γ charts. Next, Section 7 shows the implementation of the proposed

chart through an illustrative example, followed by the conclusion in Section 8.

2. List of abbreviations and notations

Table 1 shows the list of abbreviations and notations that are used throughout the paper.

Table 1. List of abbreviations and notations.

Abbreviations / Notations Description

μ Mean

μ Mean vector

�X� Sample mean vector

σ Standard deviation

S Covariance matrix

S Sample covariance matrix

γ Coefficient of variation

ĝ^ Sample coefficient of variation

γ0 In-control coefficient of variation

γ1 Out-of-control coefficient of variation

τ Shift size

mðĝ 2̂Þ Mean of ĝ 2̂

m0ðĝ
2̂Þ In-control mean of ĝ 2̂

sðĝ 2̂Þ Standard deviation of ĝ 2̂

s0ðĝ
2̂Þ In-control standard deviation of ĝ 2̂

m
0

1
ðF0Þ First moment of F’

~m~
0

1
ðF0Þ Adjusted first moment of F’ for p = 2

m
0

2
ðF0Þ Second moment of F’

~m~
0

2
ðF0Þ Adjusted second moment of F’ for p2{2,3,4}

K Control limit coefficient

L Threshold for the CRL sub-chart

n Sample size

p Number of variables

ARL Average run length

ARL0 In-control average run length

ARL1 Out-of-control average run length

CRL Conforming run length

EARL Expected average run length

EMRL Expected median run length

EWMA Exponentially weighted moving average

LCL Lower control limit

MEWMA Multivariate exponentially weighted moving average

MRL Median run length

NSS Non-side-sensitive synthetic chart

SDRL Standard deviation of the run length

SDRL0 In-control standard deviation of the run length

(Continued)
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3. Properties of the sample multivariate coefficient of variation ðγ̂Þ
Let X = (X1,X2,. . .,Xp)T be p quality characteristics from a multivariate normal distribution

with mean vector μT = (μ1,μ2,. . .,μp) and covariance matrix Σ ¼

s11 s12 . . . s1p

s12 s22
. .

.
s2p

..

. . .
. . .

. ..
.

s1p s2p � � � spp

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

. The

multivariate γ is defined as [29]

g ¼ ðμTΣ� 1μÞ�
1
2: ð1Þ

To monitor γ, samples of size n are collected and measured at regular intervals. We denote

the measurement of the jth quality characteristic of the ith unit in the sample as Xij. The sample

mean vector can be obtained as

�X ¼
1

n

Xn

i¼1

Xi1;
1

n

Xn

i¼1

Xi2; . . .;
1

n

Xn

i¼1

Xip

 !T

; ð2Þ

while the sample covariance matrix is given as

S ¼
1

n � 1

Xn

i¼1

ðXi �
�XÞðXi �

�XÞT; ð3Þ

where Xi = (Xi1,. . .,Xip)
T. The sample γ ðĝÞ can then be computed as

ĝ ¼ ð�XTS� 1 �XÞ�
1
2; ð4Þ

where ĝ is the (biased) natural estimator of γ. From Yeong et al. [14],

nðn � pÞ
ðn � 1Þpĝ2

� F p; n � p;
n
g2

� �

; ð5Þ

i.e.
nðn� pÞ
ðn� 1Þpĝ2 follows a non-central F distribution with p and (n−p) degrees of freedom (df) and a

non-centrality parameter (ncp) of n
g2

, with n>p. From Eq (5), the cumulative distribution func-

tion (cdf) for ĝ is obtained as

Fĝ2 xjn; p; gð Þ ¼ 1 � FF
nðn � pÞ
ðn � 1Þpx

�
�
�
�p; n � p;

n
g2

� �

; ð6Þ

where FF :jp; n � p; n
g2

� �
is the cdf for the non-central F distribution in Eq (5).

Table 1. (Continued)

Abbreviations / Notations Description

SDRL1 Out-of-control standard deviation of the run length

SS Side-sensitive synthetic chart

UCL Upper control limit

0 Sample where LCL < ĝ^< UCL
1 Sample where ĝ^< LCL
1 Sample where ĝ^> UCL

https://doi.org/10.1371/journal.pone.0270151.t001
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By letting F0 ¼ ðn� 1Þpĝ2

nðn� pÞ , it follows that ĝ2 ¼
nðn� pÞ
ðn� 1Þp F

0. Thus, the mean and standard deviation

of ĝ2 can be obtained through the first and second moments of F’ as follows

m ĝ2ð Þ ¼
nðn � pÞ
ðn � 1Þp

m
0

1
F0ð Þ ð7Þ

and

s ĝ2ð Þ ¼
nðn � pÞ
ðn � 1Þp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m
0

2
ðF0Þ � ðm0

1
ðF0ÞÞ2

q

; ð8Þ

where m
0

1
ðF0Þ and m

0

2
ðF0Þ are the first and second moments of F’. Since F0 ¼ nðn� pÞ

ðn� 1Þpĝ2

� �� 1

; from

Eq (5) F’ is a non-central F variable with n−p and p df and ncp of 0 and n
g2

, i.e.,

F0 � F n � p; p; 0; n
g2

� �
. From Giner-Bosch et al. [22], the first and second moments of F’ can

be obtained as follows:

m
0

1
F0ð Þ ¼

p
2
C

p
2
� 1; �

n
2g2

� �

; ð9Þ

m
0

2
ðF0Þ ¼

p2

4ðp � 4Þ

2

n � p
þ 1

� �

2 �
n
g2
þ p � 4

� �

C
p
2
� 1; �

n
2g2

� �� �

; ð10Þ

where C(a,z) in Eqs (9) and (10) is obtained as

Cða; zÞ ¼
1

aþ � az
aþ1þ z

aþ2þ
� ðaþ1Þz

aþ3þ 2z

aþ4þ
� ðaþ2Þz

aþ5þ 3z
aþ6þ...

: ð11Þ

where C(a,z) will converge with sufficient accuracy with 300 nested fractions [22]. Thus, this

paper will adopt the same number of nested fractions.

Note that m
0

1
ðF0Þ is undefined for p�2 and m

0

2
ðF0Þ is undefined for p�4 [22]. For these cases,

Giner-Bosch et al. [22] suggested the following alternative versions of m
0

1
ðF0Þ and m

0

2
ðF0Þ:

~m
0

1
ðF0Þ ¼

1

1 � ε

Zu0

0

ufF0 ðuÞdu ð12Þ

and

~m
0

2
ðF0Þ ¼

1

1 � ε

Zu0

0

u2fF0 ðuÞdu; ð13Þ

where ε is a small value (for example 10−4), u0 ¼ F� 1
F0 ð1 � εÞ, F� 1

F0 ð:Þ is the inverse cdf for F’,

and fF’(.) is the probability density function (pdf) for F’. Eqs (12) and (13) can be numerically

integrated [30].

For p = 2, mðĝ2Þ and sðĝ2Þ can be computed from Eqs (7) and (8) by replacing m
0

1
ðF0Þ and

m
0

2
ðF0Þ with ~m

0

1
ðF0Þ and ~m

0

2
ðF0Þ, respectively, while for p2{3,4}, since m

0

1
ðF0Þ is finite, only m

0

2
ðF0Þ

needs to be replaced with ~m
0

2
ðF0Þ in Eq (8) to obtain sðĝ2Þ.
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4. A multivariate side-sensitive synthetic chart for monitoring γ̂2

This section describes the multivariate SS chart for ĝ2. The same approach as that in Yeong

et al. [12] is adopted, but by adapting it for ĝ2 of multivariate processes, since the SS chart pro-

posed by Yeong et al. [12] monitors ĝ for univariate processes.

The synthetic γ chart is made up of the Shewhart γ and conforming run length (CRL) sub-

charts. For the Shewhart sub-chart of the NSS chart, when ĝ > UCL or ĝ < LCL, where UCL
and LCL are the upper and lower control limits, then that sample is non-conforming; con-

versely, it is conforming. The CRL sub-chart then defines the CRL as the number of conform-

ing samples between two successive non-conforming samples, inclusive of the most recent

non-conforming sample. For example, if there are five conforming samples between two suc-

cessive non-conforming samples, then CRL = 6. If CRL�L, with L being a threshold set by the

user, the process is considered to have gone out-of-control. In other words, if there are less

than L conforming samples between two successive non-conforming samples, the chart will

produce an out-of-control signal. The SS chart includes an additional feature where successive

non-conforming samples must belong to the same side of the centreline (CL). Hence, if the

first non-conforming sample is above the UCL (below the LCL), then only samples that are

above the UCL (below the LCL) are non-conforming.

Figs 1 and 2 illustrate the difference between the NSS and SS charts. From Fig 1, Sample 3 is

the first non-conforming sample, and it falls above the UCL, while Sample 7 is the second non-

conforming sample, and it falls below the LCL. For the NSS chart, both samples are considered

to be non-conforming samples, although they fall on different sides of the CL. Thus the

CRL = 4. By comparison, for the SS chart in Fig 2, although Samples 2, 5 and 7 falls outside the

region between LCL and UCL, the CRL = 5. This is because the first sample to fall outside the

region between LCL and UCL, Sample 2, falls above the UCL. Although Sample 5 falls outside

the region between LCL and UCL, it is not considered to be a non-conforming sample as it

falls below the LCL, which is on the opposite side of the CL from Sample 2. Instead, the next

non-conforming sample is Sample 7, since similar with Sample 2, it also falls above the UCL.

As a result, CRL = 5. In short, successive non-conforming samples for the SS chart needs to fall

on the same side of the CL, whereas successive non-conforming samples for the NSS chart do

not have to fall on the same side of the CL.

Fig 1. The CRL sub–chart of the Non–side–sensitive Synthetic–γ (NSS) chart.

https://doi.org/10.1371/journal.pone.0270151.g001
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The proposed multivariate SS chart monitors ĝ2, instead of ĝ, due to the availability of the

mean and standard deviation of ĝ2 from Giner-Bosch et al. [22]. The following are the LCL
and UCL of the proposed multivariate SS chart

LCL ¼ m0ðĝ
2Þ � Ks0ðĝ

2Þ ð14Þ

and

UCL ¼ m0ðĝ
2Þ þ Ks0ðĝ

2Þ; ð15Þ

where m0ðĝ
2Þ and s0ðĝ

2Þ are the in-control mean and standard deviation of ĝ2 which is

obtained from Eqs (7) and (8), respectively, by evaluating the first and second moments of F’

by letting g2 ¼ g2

0
, with γ0 being the in-control value of γ, while K is the control limit coefficient

that controls the width of the region between LCL and UCL. The last two paragraphs of this

section describe the methodology in determining the value of K.

A Markov chain approach similar to that by Yeong et al. [12] is adopted to obtain the ARL,

SDRL and EARL values, but modified for the case of multivariate processes. The states of the

Markov chain are defined as in Yeong et al. [12] based on a string of L successive samples,

where each sample is defined as either 0, 1 or 1, which denote samples between the LCL and

UCL, samples below the LCL and samples above the UCL, respectively. The states of the Mar-

kov chain are defined as follows:

State 1: 100..0

State 2: 010..0

State 3: 001..0

..

.

State L: 000..1

State L + 1: 00..00

State L + 2: 0..001

State L + 3: 0..010

..

.

Fig 2. The CRL sub–chart of the Side–sensitive Synthetic–γ (SS) chart.

https://doi.org/10.1371/journal.pone.0270151.g002
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State 2L: 010..0

State 2L + 1: 100..0

State 2L + 2: Signaling state (i.e. the state where the chart signals an out-of-control condi-

tion when CRL�L)

A (2L+2)×(2L+2) transition probability matrix is then formed as follows:

1 2 � � � L � 1 L Lþ 1 Lþ 2 Lþ 3 Lþ 4 � � � 2Lþ 1 2Lþ 2

P ¼
Q r

0T 1

 !

¼

1

2

3

..

.

L

Lþ 1

Lþ 2

Lþ 3

..

.

2L

2Lþ 1

2Lþ 2

0 0 � � � 0 0 A Bþ 0 0 � � � 0 B�

A 0 � � � 0 0 0 Bþ 0 0 � � � 0 B�

0 A � � � 0 0 0 Bþ 0 0 � � � � � � B�

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

0 0 � � � A 0 0 Bþ 0 0 � � � 0 B�

0 0 � � � 0 B� A Bþ 0 0 � � � 0 0

0 0 � � � 0 B� 0 0 A 0 � � � 0 Bþ

0 0 � � � 0 B� 0 0 0 A � � � 0 Bþ

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

0 0 � � � 0 B� 0 0 0 0 � � � A Bþ

0 0 � � � 0 B� A 0 0 0 � � � 0 Bþ

0 0 � � � 0 0 0 0 0 0 � � � 0 1

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

;
ð16Þ

where

A ¼ PðLCL < ĝ2 < UCLÞ

¼ FF
nðn � pÞ

ðn � 1ÞðLCLÞp
jp; n � p;

n
g2

� �

� FF
nðn � pÞ

ðn � 1ÞðUCLÞp
jp; n � p;

n
g2

� �
ð17Þ

Bþ ¼ Pðĝ2 > UCLÞ

¼ FF
nðn � pÞ

ðn � 1ÞðUCLÞp

�
�
�
�p; n � p;

n
g2

� �
ð18Þ

B� ¼ Pðĝ < LCLÞ

¼ 1 � FF
nðn � pÞ

ðn � 1ÞðLCLÞp

�
�
�
�p; n � p;

n
g2

� �

:
ð19Þ

The ARL and SDRL can be obtained from the Markov chain in Eq (16) by evaluating the

expected and standard deviation for the number of transitions until the Markov chain reaches
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the out-of-control state (State 2L+2), as follows

ARL ¼ qTðI � QÞ� 1
1 ð20Þ

and

SDRL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2qTðI � QÞ� 2Q1 � ARL2 þ ARL
q

; ð21Þ

where q is a (2L+1)×1 vector of initial transient state probabilities, I is the identity matrix, and

1 is a vector of ones. The derivations for Eqs (20) and (21) are shown in Yeong et al. [12]. A

zero-state condition is considered, so the (L+2)th element of q is one, and all other elements

are zeros, in order to give the proposed chart a head-start. The out-of-control ARL (ARL1) and

SDRL (SDRL1) are obtained by substituting γ = γ1 = τγ0 into Eqs (20) and (21), where τ, γ1 and

γ0 denote the shift size, out-of-control γ and in-control γ, respectively, while the in-control

ARL (ARL0) and SDRL (SDRL0) are computed by substituting γ = γ0 into Eqs (20) and (21).

To evaluate the ARL and SDRL, the exact value of τ must be known. This is not possible in

some practical scenarios [9]. For such cases, the EARL is adopted to measure the performance

of the chart, as follows:

EARL ¼
Ztmax

tmin

ftðtÞARLðt; g0; n; p; L;KÞdt; ð22Þ

with fτ(τ) being the pdf of τ. In most scenarios, there is a lack of available data to estimate the

actual distribution of τ, hence, this paper assumes that τ follows a uniform distribution over

the interval (τmin,τmax) [9]. To evaluate the integral in Eq (22), the Gauss-Legendre quadrature

is adopted [31].

Two approaches will be adopted so that the optimal charting parameters (L�,K�) are

obtained. Firstly, (L�,K�) is obtained to minimize the ARL1 for pre-determined values of (τ,n,p,

γ0), subject to satisfying constraints in the ARL0, i.e.,

ðL�;K�Þ ¼ arg min
ðL;KÞ

ARL1ðt; g0; n; p; L;KÞ; ð23Þ

subject to

ARL0ðg0; n; p; L;KÞ ¼ x; ð24Þ

where ξ is the pre-determined ARL0 value. In this paper, we consider L2{1,2,. . .,100}, and for

each of these values of L, the value of K that satisfies Eq (24) will be obtained through numeri-

cal methods. Among all the combinations of (L,K), the combination with the smallest ARL1

will be the optimal (L�,K�). The optimal (LCL�,UCL�) is then obtained from Eqs (14) and (15).

Subsequently, the smallest ARL1 value is obtained by substituting (L�,LCL�,UCL�) into Eq (20).

In the second approach, (L�,K�) is obtained based on minimizing the EARL value for pre-

determined values of (τmin,τmax,n,p,γ0), subject to satisfying constraints in the ARL0. A similar

approach to that described in the preceding paragraph is adopted, with the exception that (L�,
K�) minimizes the EARL value, and the shift is the range (τmin,τmax), instead of an exact value τ.

5. Numerical examples

The optimal SS chart for several numerical examples will be obtained in this section. As

described in Section 3, two approaches will be adopted, where the first approach minimizes

ARL1, and the second minimizes EARL. In both of these approaches, the ARL0 constraint is set
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as 370.4. In this paper, we consider p2{2,3,5,8}, τ2{1.10,1.20,1.25,1.50,2.00} and

γ02{0.10,0.20,0.30,0.50}. For p2{2,3}, p = 5 and p = 8, we consider n2{5,10}, n2{6,10} and n2
{10,15}, respectively. Different n are considered for different p as n needs to be larger than p.

Tables 2 and 3 show the optimal charting parameters and their ARL1 and SDRL1 values for p2
{2,3} and p2{5,8}, respectively.

From Tables 2 and 3, the proposed chart shows a better performance for larger values of n,

with smaller values of L� and K�. For example, for (p,n,τ,γ0) = (2,5,1.10,0.10), (L�,K�,ARL1,

SDRL1) = (47,3.60,74.72,97.85), but for (p,n,τ,γ0) = (2,10,1.10,0.10), (L�,K�,ARL1,SDRL1) =

(31,3.04,44.09,57.46). Moreover, it is easier for larger values of τ to be detected, since larger val-

ues of τ show a larger shift from γ0. Thus, smaller ARL1 and SDRL1 values are associated with

larger τ. Larger τ also results in smaller values of L�, and a smaller conforming region through

smaller values of K�. For example, for (p,n,τ,γ0) = (2,5,1.10,0.10), (L�,K�,ARL1,SDRL1) =

(47,3.60,74.72,97.85), but for (p,n,τ,γ0) = (2,5,2.00,0.10), (L�,K�,ARL1,SDRL1) =

(5,2.64,2.10,1.75). Tables 2 and 3 also show that larger γ0 is associated with larger L�, K�, ARL1

and SDRL1, which shows a larger conforming region and weaker performance.

Table 4 illustrates the optimal (L�,K�) with its EARL for p2{2,3,5,8} and

γ02{0.10,0.20,0.30,0.50}, for scenarios in which the exact value of τ is unknown. Similar to

Tables 2 and 3, for p2{2,3}, p = 5 and p = 8, values of n2{5,10}, n2{6,10} and n2{10,15},

Table 2. Optimal charting parameters and the corresponding ARL1 and SDRL1 values of the multivariate SS Chart for p2{2,3}, n2{5,10}, τ2
{0.10,1.20,1.25,1.50,2.00} and γ02{0.10,0.20,0.30,0.50}.

τ γ0 = 0.10 γ0 = 0.20 γ0 = 0.30 γ0 = 0.50

L� K� ARL1 SDRL1 L� K� ARL1 SDRL1 L� K� ARL1 SDRL1 L� K� ARL1 SDRL1

p = 2

n = 5

1.10 47 3.60 74.72 97.85 48 3.70 76.78 100.55 49 3.85 80.43 105.35 49 3.95 94.08 123.16

1.20 27 3.37 26.36 33.71 28 3.46 27.47 35.17 29 3.58 29.48 37.85 31 3.62 37.39 48.49

1.25 22 3.29 17.90 22.41 22 3.35 18.73 23.56 23 3.46 20.25 25.59 25 3.48 26.33 33.80

1.50 10 2.95 5.36 5.92 10 2.99 5.66 6.36 11 3.09 6.23 7.05 13 3.04 8.55 10.14

2.00 5 2.64 2.10 1.75 5 2.67 2.22 1.92 6 2.78 2.45 2.16 7 2.65 3.38 3.39

τ n = 10

1.10 31 3.04 44.09 57.46 32 3.11 46.07 60.07 33 3.23 49.46 64.55 35 3.54 60.80 79.48

1.20 15 2.80 12.50 15.49 16 2.87 13.28 16.50 17 2.97 14.66 18.33 19 3.24 19.59 24.96

1.25 12 2.73 8.07 9.57 12 2.77 8.61 10.32 13 2.87 9.56 11.57 15 3.12 13.01 16.20

1.50 5 2.43 2.41 2.19 5 2.46 2.56 2.42 6 2.57 2.84 2.72 7 2.75 3.88 4.11

2.00 3 2.25 1.22 0.55 3 2.27 1.27 0.63 3 2.30 1.35 0.78 4 2.48 1.69 1.23

τ p = 3

n = 5

1.10 53 3.87 88.50 115.98 54 3.95 90.70 118.88 56 4.08 94.62 124.03 56 4.17 109.31 143.16

1.20 34 3.66 34.01 43.73 34 3.72 35.34 45.54 35 3.82 37.75 48.78 38 3.89 47.33 61.58

1.25 27 3.55 23.67 30.00 28 3.62 24.71 31.37 29 3.72 26.61 33.91 31 3.75 34.28 44.27

1.50 13 3.21 7.40 8.52 14 3.27 7.82 9.02 15 3.35 8.61 10.03 17 3.33 11.93 14.51

2.00 7 2.91 2.81 2.58 7 2.92 2.99 2.84 8 3.01 3.33 3.24 9 2.92 4.82 5.25

τ n = 10

1.10 33 3.10 47.95 62.55 33 3.16 50.04 65.32 34 3.27 53.63 70.05 37 3.57 65.65 85.84

1.20 16 2.86 14.01 17.50 17 2.93 14.88 18.62 18 3.02 16.40 20.65 21 3.29 21.89 27.98

1.25 13 2.79 9.09 10.91 13 2.83 9.70 11.75 14 2.92 10.76 13.16 16 3.15 14.67 18.41

1.50 6 2.52 2.68 2.49 6 2.55 2.86 2.75 6 2.59 3.18 3.21 8 2.81 4.41 4.77

2.00 3 2.27 1.29 0.67 3 2.29 1.35 0.77 3 2.31 1.45 0.94 4 2.48 1.87 1.50

https://doi.org/10.1371/journal.pone.0270151.t002

PLOS ONE Side-sensitive Synthetic Multivariate Coefficient of Variation Chart

PLOS ONE | https://doi.org/10.1371/journal.pone.0270151 July 5, 2022 10 / 18

https://doi.org/10.1371/journal.pone.0270151.t002
https://doi.org/10.1371/journal.pone.0270151


Table 3. Optimal charting parameters and the corresponding ARL1 and SDRL1 values of the multivariate SS chart for p2{5,8}, n2{6,10,15}, τ2
{0.10,1.20,1.25,1.50,2.00} and γ02{0.10,0.20,0.30,0.50}.

τ γ0 = 0.10 γ0 = 0.20 γ0 = 0.30 γ0 = 0.50

L� K� ARL1 SDRL1 L� K� ARL1 SDRL1 L� K� ARL1 SDRL1 L� K� ARL1 SDRL1

p = 5

n = 6

1.10 71 4.46 112.56 147.69 71 4.50 115.14 151.09 72 4.57 119.65 157.02 74 4.68 135.50 177.77

1.20 47 4.23 49.41 63.96 48 4.27 51.28 66.45 49 4.33 54.58 70.88 52 4.42 66.83 87.27

1.25 39 4.12 35.90 45.98 40 4.16 37.44 48.03 42 4.23 40.20 51.68 46 4.33 50.65 65.71

1.50 21 3.76 12.39 14.78 22 3.80 13.13 15.73 23 3.85 14.49 17.54 27 3.94 19.97 24.86

2.00 11 3.37 4.73 4.93 12 3.43 5.09 5.35 13 3.48 5.77 6.21 16 3.56 8.64 9.97

τ n = 10

1.10 37 3.26 58.24 76.13 39 3.33 60.57 79.20 41 3.44 64.60 84.51 42 3.67 78.11 102.20

1.20 20 3.04 18.36 23.21 21 3.10 19.45 24.64 22 3.18 21.37 27.21 25 3.41 28.31 36.49

1.25 16 2.96 12.11 14.86 17 3.02 12.90 15.87 17 3.08 14.28 17.80 20 3.30 19.41 24.66

1.50 7 2.65 3.53 3.62 7 2.67 3.79 3.99 8 2.77 4.25 4.54 10 2.96 6.03 6.87

2.00 4 2.44 1.53 0.99 4 2.45 1.62 1.12 4 2.47 1.79 1.37 5 2.62 2.46 2.27

τ p = 8

n = 10

1.10 57 3.89 88.72 116.28 56 3.92 91.57 120.04 56 3.97 96.43 126.41 59 4.13 112.44 147.33

1.20 33 3.64 34.14 43.98 36 3.71 35.88 46.17 36 3.75 38.91 50.29 39 3.90 49.62 64.62

1.25 27 3.55 23.78 30.17 28 3.59 25.14 31.96 29 3.64 27.53 35.18 34 3.82 36.19 46.71

1.50 13 3.20 7.45 8.58 14 3.25 8.00 9.27 15 3.31 9.00 10.58 19 3.49 12.88 15.66

2.00 7 2.90 2.83 2.61 7 2.91 3.07 2.95 8 2.99 3.51 3.49 10 3.13 5.29 5.83

τ n = 15

1.10 31 3.08 48.01 62.65 34 3.14 50.24 65.57 37 3.23 54.07 70.61 38 3.41 66.71 87.25

1.20 17 2.88 14.03 17.45 17 2.91 14.97 18.75 18 2.97 16.61 20.94 20 3.14 22.48 28.84

1.25 13 2.78 9.11 10.93 14 2.84 9.76 11.75 14 2.88 10.92 13.37 16 3.05 15.12 19.04

1.50 6 2.52 2.69 2.50 6 2.53 2.88 2.78 6 2.56 3.24 3.29 8 2.75 4.59 5.03

2.00 3 2.27 1.29 0.67 3 2.28 1.35 0.78 3 2.30 1.47 0.98 4 2.46 1.96 1.63

https://doi.org/10.1371/journal.pone.0270151.t003

Table 4. Optimal charting parameters and the corresponding EARL values of the multivariate SS chart for p2{2,3,5,8}, n2{5,6,10,15} and γ02{0.10,0.20,0.30,0.50}.

γ0 L� K� EARL L� K� EARL L� K� EARL L� K� EARL
p = 2 p = 3

n = 5 n = 10 n = 5 n = 10

0.10 26 3.36 19.63 21 2.91 11.75 30 3.60 23.68 22 2.97 12.68

0.20 27 3.44 20.24 21 2.97 12.24 30 3.66 24.41 22 3.02 13.20

0.30 26 3.53 21.33 21 3.05 13.08 30 3.73 25.71 22 3.10 14.11

0.50 25 3.48 25.55 20 3.26 15.96 29 3.70 30.88 21 3.29 17.25

γ0 p = 5 p = 8

n = 6 n = 10 n = 10 n = 15

0.10 38 4.10 31.82 23 3.09 15.23 30 3.59 23.76 20 2.93 12.69

0.20 37 4.12 32.85 24 3.15 15.85 31 3.64 24.70 21 2.98 13.26

0.30 38 4.17 34.70 23 3.20 16.94 29 3.64 26.35 20 3.01 14.24

0.50 38 4.19 41.69 23 3.37 20.75 31 3.77 32.16 20 3.14 17.58

https://doi.org/10.1371/journal.pone.0270151.t004
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respectively, are considered. To account for the uncertainty in the value of τ, we consider

(τmin,τmax) = (1,2].

From Table 4, larger values of p result in larger L�, K� and EARL. This is consistent with the

results in Tables 2 and 3. Similar to Tables 2 and 3, larger values of n result in smaller L�, K�

and EARL, while larger γ0 results in larger EARL. In most cases, larger γ0 shows larger K�, how-

ever similar values of L� are observed for different values of γ0.

6. Comparisons

This section compares the proposed multivariate SS chart with the multivariate NSS,

MEWMA and Shewhart γ charts. Similar numerical examples in Section 4 are adopted, but

due to space constraint, we only consider γ02{0.10,0.50} in the comparison with the multivari-

ate NSS chart, while γ0 = 0.10 is considered in the comparison with the MEWMA and She-

whart γ charts. Table 5 shows the ARL1 and SDRL1 comparisons with the multivariate NSS

Table 5. A comparison of the ARL1 and SDRL1 of the multivariate SS and NSS charts for p2{2,3,5,8}, n2{5,6,10,15}, τ2{1.10,1.20,1.25,1.50,2.00} and

γ02{0.10,0.50}.

τ p = 2 p = 3

γ0 = 0.10 γ0 = 0.50 γ0 = 0.10 γ0 = 0.50

SS NSS SS NSS SS NSS SS NSS

ARL1 SDRL1 ARL1 SDRL1 ARL1 SDRL1 ARL1 SDRL1 ARL1 SDRL1 ARL1 SDRL1 ARL1 SDRL1 ARL1 SDRL1

n = 5

1.10 74.72 97.85 127.23 167.02 94.08 123.16 157.61 206.57 88.50 115.98 143.19 188.00 109.31 143.16 172.06 225.50

1.20 26.36 33.71 45.77 58.98 37.39 48.49 67.79 88.52 34.01 43.73 57.65 74.72 47.33 61.58 82.26 107.65

1.25 17.90 22.41 30.11 38.21 26.33 33.80 47.18 61.15 23.67 30.00 39.40 50.36 34.28 44.27 59.65 77.65

1.50 5.36 5.92 7.57 8.56 8.55 10.14 13.47 16.40 7.40 8.52 10.66 12.54 11.93 14.51 19.02 23.63

2.00 2.10 1.75 2.49 2.21 3.38 3.39 4.51 4.82 2.81 2.58 3.42 3.28 4.82 5.25 6.68 7.50

τ n = 10

1.10 44.09 57.46 82.94 108.44 60.80 79.48 117.18 153.76 47.95 62.55 89.09 116.59 65.65 85.84 124.11 162.88

1.20 12.50 15.49 21.66 27.23 19.59 24.96 36.87 47.51 14.01 17.50 24.42 30.88 21.89 27.98 41.21 53.31

1.25 8.07 9.57 13.10 15.97 13.01 16.20 23.27 29.45 9.09 10.91 14.91 18.33 14.67 18.41 26.40 33.62

1.50 2.41 2.19 3.08 2.97 3.88 4.11 5.59 6.25 2.68 2.49 3.49 3.55 4.41 4.77 6.47 7.40

2.00 1.22 0.55 1.31 0.70 1.69 1.23 2.01 1.61 1.29 0.67 1.40 0.86 1.87 1.50 2.27 1.99

τ p = 5 p = 8

γ0 = 0.10 γ0 = 0.50 γ0 = 0.10 γ0 = 0.50

SS NSS SS NSS SS NSS SS NSS

ARL1 SDRL1 ARL1 SDRL1 ARL1 SDRL1 ARL1 SDRL1 ARL1 SDRL1 ARL1 SDRL1 ARL1 SDRL1 ARL1 SDRL1

n = 6 n = 10

1.10 112.56 147.69 167.13 219.54 135.50 177.77 195.18 256.02 88.72 116.28 141.81 186.24 112.44 147.33 175.16 229.82

1.20 49.41 63.96 79.65 103.79 66.83 87.27 107.38 140.77 34.14 43.98 57.73 74.83 49.62 64.62 85.19 111.45

1.25 35.90 45.98 57.32 74.02 50.65 65.71 82.28 107.43 23.78 30.17 39.47 50.46 36.19 46.71 62.19 80.89

1.50 12.39 14.78 18.05 21.90 19.97 24.86 31.30 39.53 7.45 8.58 10.73 12.64 12.88 15.66 20.39 25.28

2.00 4.73 4.93 5.97 6.40 8.64 9.97 12.24 14.47 2.83 2.61 3.45 3.32 5.29 5.83 7.33 8.32

τ n = 15 n = 15

1.10 58.24 76.13 104.27 136.71 78.11 102.20 140.18 183.96 48.01 62.65 89.02 116.48 66.71 87.25 125.32 164.50

1.20 18.36 23.21 32.19 41.08 28.31 36.49 52.72 68.46 14.03 17.45 24.39 30.85 22.48 28.84 42.21 54.56

1.25 12.11 14.86 20.21 25.21 19.41 24.66 35.08 45.07 9.11 10.93 14.90 18.31 15.12 19.04 27.21 34.66

1.50 3.53 3.62 4.78 5.10 6.03 6.87 9.19 10.86 2.69 2.50 3.49 3.47 4.59 5.03 6.77 7.72

2.00 1.53 0.99 1.72 1.27 2.46 2.27 3.14 3.05 1.29 0.67 1.40 0.86 1.96 1.63 2.40 2.18

https://doi.org/10.1371/journal.pone.0270151.t005
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chart, while Table 6 compares with the MEWMA and Shewhart γ charts. Finally, Tables 7 and

8 show the EARL comparisons.

Table 5 shows that the multivariate SS chart has a smaller ARL1 and SDRL1 values than the

multivariate NSS chart, particularly when τ is small. This results in quicker detection of the

Table 6. A comparison of the ARL1 and SDRL1 of the multivariate SS chart with the MEWMA and Shewhart γ charts for γ0 = 0.10, p2{2,3,5,8}, n2{5,6,10,15} and

τ2{1.10,1.20,1.25,1.50,2.00}.

τ p = 2 p = 3

SS MEWMA Shewhart SS MEWMA Shewhart

ARL1 SDRL1 ARL1 SDRL1 ARL1 SDRL1 ARL1 SDRL1 ARL1 SDRL1 ARL1 SDRL1

n = 5

1.10 74.72 97.85 56.54 47.47 171.28 170.78 88.50 115.98 70.37 61.35 187.38 186.88

1.20 26.36 33.71 220 16.94 75.36 74.86 34.01 43.73 29.57 23.03 90.65 90.15

1.25 17.90 22.41 16.90 12.09 52.50 52.00 23.67 30.00 22.08 16.56 65.53 65.03

1.50 5.36 5.92 6.74 4.62 13.79 13.29 7.40 8.52 8.96 6.35 19.02 18.52

2.00 2.10 1.75 2.86 1.92 3.79 3.25 2.81 2.58 3.80 2.70 5.36 4.84

τ n = 10

1.10 44.09 57.46 31.68 23.75 122.37 121.87 47.95 62.55 34.48 26.30 129.25 128.75

1.20 12.50 15.49 11.86 7.94 40.66 40.16 14.01 17.50 13.01 8.84 44.94 44.44

1.25 8.07 9.57 8.66 5.61 25.68 25.18 9.09 10.91 9.51 6.25 28.78 28.28

1.50 2.41 2.19 3.37 2.09 5.51 4.99 2.68 2.49 3.70 2.34 6.32 5.80

2.00 1.22 0.55 1.52 0.81 1.69 1.08 1.29 0.67 1.65 0.92 1.87 1.27

τ p = 5 p = 8

SS MEWMA Shewhart SS MEWMA Shewhart

ARL1 SDRL1 ARL1 SDRL1 ARL1 SDRL1 ARL1 SDRL1 ARL1 SDRL1 ARL1 SDRL1

n = 6 n = 10

1.10 112.56 147.69 94.06 83.90 209.40 208.90 88.72 116.28 70.52 61.14 184.80 184.30

1.20 49.41 63.96 43.80 35.31 116.90 116.40 34.14 43.98 29.69 23.13 90.59 90.09

1.25 35.90 45.98 33.57 26.25 88.35 87.85 23.78 30.17 22.17 16.65 65.52 65.02

1.50 12.39 14.78 14.38 10.53 30.53 30.03 7.45 8.58 9.01 6.38 19.14 18.63

2.00 4.73 4.93 6.48 4.53 9.42 8.91 2.83 2.61 3.82 2.72 5.41 4.89

τ n = 10 n = 15

1.10 58.24 76.13 42.40 33.70 145.84 145.34 48.01 62.65 34.58 26.44 128.92 128.42

1.20 18.36 23.21 16.37 11.52 56.46 55.95 14.03 17.45 13.04 8.87 44.78 44.28

1.25 12.11 14.86 12.02 8.16 37.44 36.94 9.11 10.93 9.53 6.27 28.69 28.19

1.50 3.53 3.62 4.71 3.08 8.79 8.27 2.69 2.50 3.71 2.34 6.33 5.81

2.00 1.53 0.99 2.04 1.24 2.46 1.89 1.29 0.67 1.65 0.92 1.28 1.28

https://doi.org/10.1371/journal.pone.0270151.t006

Table 7. A comparison of the EARL of the multivariate SS and NSS charts for p2{2,3,5,8}, n2{5,6,10,15} and γ02{0.10,0.50}, where (τmin,τmax) = (1,2].

γ0 p = 2 p = 3

n = 5 n = 10 n = 5 n = 10

SS NSS SS NSS SS NSS SS NSS

0.10 19.63 30.64 11.75 19.61 23.68 35.86 12.68 20.95

0.50 25.55 40.76 15.96 27.46 30.88 47.65 17.25 29.35

γ0 p = 5 p = 8

n = 6 n = 10 n = 10 n = 15

SS NSS SS NSS SS NSS SS NSS

0.10 31.82 45.93 15.23 24.53 23.76 35.75 12.69 20.99

0.50 41.69 61.06 20.75 34.30 32.16 49.25 17.58 29.80

https://doi.org/10.1371/journal.pone.0270151.t007
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assignable cause(s) and less variability in the run lengths. For example, for (p,n,τ,γ0) =

(2,5,1.10,0.10), the (ARL1,SDRL1) = (74.72,97.85) for the multivariate SS chart, while the

(ARL1,SDRL1) = (127.23,167.02) for the multivariate NSS chart. A smaller improvement is

shown for larger τ. For example, for (p,n,τ,γ0) = (2,5,2.00,0.10), the (ARL1,SDRL1) = (2.10,1.75)

for the multivariate SS chart, while (ARL1,SDRL1) = (2.49,2.21) for the multivariate NSS chart.

Thus, the improvement is not as large as that for τ = 1.10. The multivariate SS chart also shows

a larger improvement for smaller values of n, and larger values of p and γ0.

Tables 7 and 8 show the EARL comparisons, where (τmin,τmax) = (1,2]. Table 7 shows the

multivariate SS chart has a smaller EARL than the multivariate NSS chart. For example, for (p,

n,γ0) = (2,5,0.10), the EARL = 19.63 for the multivariate SS chart, while EARL = 30.64 for the

multivariate NSS chart. Similar to Table 5, smaller n, and larger p and γ0 shows larger improve-

ment. Compared to the MEWMA and Shewhart γ charts, as shown in Table 8, the multivariate

SS chart significantly outperforms the Shewhart γ chart, whereas the MEWMA γ chart slightly

outperforms the multivariate SS chart.

7. An illustrative example

The implementation of the multivariate SS chart on an illustrative example that was also

adopted by Giner-Bosch et al. [22] is shown in this section. In this example, the γ for the

investment returns from p = 3 industrial sectors S1 (automotive), S2 (aeronautic) and S3 (elec-

tronic) for n = 5 regions R1 (Africa), R2 (North America), R3 (South America), R4 (Asia) and

R5 (Europe) are monitored. Table 9 shows the rates of return from years 2000 to 2016, and for

each of these years, the �X, S and ĝ2 are shown.

The coefficient of variation measures the volatility (standard deviation) of investment

returns compared to its expected return. Hence, monitoring γ allows investors to monitor the

relative risk of investments, in order to make a fair comparison between different investments.

Suppose the company feels that the rates of return and relative risk for years 2000 to 2009 are

satisfactory. Thus, the rates of return from years 2000 to 2009 are considered as the Phase I

samples, and g2
0

are estimated from the average of the ĝ2 from years 2000 to 2009, i.e.,

ĝ2

0
¼

0:004082þ 0:001739þ . . .þ 0:001305

10
¼ 0:00163769: ð25Þ

The company would like to monitor whether there is any shift in the relative risks of the

investments from years 2010 to 2016. Suppose the company is not sure what is the size of shift

that needs to be detected. In this case, the optimal (L�,K�) for the multivariate SS chart will be

determined from the second approach as described in Section 3, i.e., the (L�,K�) in minimizing

the EARL, subject to constraints in the ARL0, will be adopted to monitor the relative risks of

the investment returns from years 2010 to 2016.

Table 8. A comparison of the EARL of the multivariate SS chart with the MEWMA and Shewhart γ charts for γ0 = 0.10, p2{2,3,5,8} and n2{5,6,10,15}, where (τmin,

τmax) = (1,2].

n SS MEWMA Shewhart n SS MEWMA Shewhart

p = 2 p = 3

5 19.63 17.20 42.54 5 23.68 21.28 49.47

10 11.75 10.13 27.48 10 12.68 10.92 29.30

n p = 5 n p = 8

6 31.82 29.59 62.36 10 23.76 21.36 49.19

10 15.23 13.16 34.14 15 12.69 10.95 29.34

https://doi.org/10.1371/journal.pone.0270151.t008
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Table 9. Rates of return (in %) from 2000 to 2016 for p = 3 industrial sectors {S1,S2,S3} and n = 5 regions {R1,R2,R3,R4,R5}.

R1 R2 R3 R4 R5
�X� S ĝ 2̂

2000 S1 17.8 25.2 18.1 19.0 19.0 19.82 9.3320 1.3540 0.1205 0.004082

S2 42.0 40.7 35.5 42.0 40.5 40.14 1.3540 7.2230 1.1710

S3 8.3 9.4 8.6 10.5 12.1 9.78 0.1205 1.1710 2.4070

2001 S1 21.5 22.5 22.0 18.1 19.1 20.64 3.7180 3.6455 0.0435 0.001739

S2 40.5 36.9 42.0 36.2 35.1 38.14 3.6455 8.7530 4.1410

S3 11.9 8.5 12.8 11.4 9.3 10.78 0.0435 4.1410 3.2770

2002 S1 17.5 18.9 19.1 21.8 22.7 20.00 4.7000 -0.5675 0.3900 0.000539

S2 39.9 38.2 38.0 39.8 37.8 38.74 -0.5675 1.0480 -0.0355

S3 8.9 11.0 7.8 9.6 9.5 9.36 0.3900 -0.0355 1.3530

2003 S1 19.1 18.7 21.4 20.8 18.9 19.78 1.5170 0.5765 0.4550 0.001422

S2 38.8 42.4 42.5 39.6 39.5 40.56 0.5765 3.0730 0.6325

S3 9.7 10.3 11.0 10.4 10.1 10.3 0.4550 0.6325 0.2250

2004 S1 19.0 21.6 19.5 19.0 19.2 19.66 1.2180 1.2920 -0.1385 0.002000

S2 39.4 40.8 35.9 35.0 41.6 38.54 1.2920 8.6780 -2.0265

S3 8.2 9.7 12.6 10.5 10.9 10.38 -0.1385 -2.0265 2.6070

2005 S1 18.9 19.1 21.3 17.0 20.2 19.30 2.5750 3.3900 -0.6550 0.001470

S2 41.1 38.1 42.8 36.2 39.2 39.48 3.3900 6.5970 -0.1985

S3 10.8 9.5 8.7 9.6 9.2 9.56 -0.6550 -0.1985 0.6030

2006 S1 17.9 20.0 20.5 18.5 19.4 19.26 1.1330 -1.6770 -0.5400 0.000603

S2 43.0 41.2 36.5 39.1 41.0 40.16 -1.6770 6.0930 2.0675

S3 8.2 9.6 6.3 9.6 9.8 8.70 -0.5400 2.0675 2.2100

2007 S1 20.6 18.7 18.5 23.6 19.7 20.22 4.2770 3.6525 3.8680 0.001834

S2 40.3 36.9 35.4 40.8 41.6 39.00 3.6525 7.2650 3.9925

S3 9.0 8.7 6.8 12.4 9.5 9.28 3.8680 3.9925 4.0870

2008 S1 19.0 20.4 21.6 20.3 18.4 19.94 1.5880 1.0640 1.3085 0.001383

S2 37.3 44.8 40.5 38.9 40.6 40.42 1.0640 7.8170 4.2605

S3 8.3 11.7 10.7 7.0 8.2 9.18 1.3085 4.2605 3.7870

2009 S1 21.2 16.5 18.2 21.2 21.2 19.66 4.8080 1.9075 0.2025 0.001305

S2 38.9 39.6 36.8 40.6 41.6 39.50 1.9075 3.3200 -0.9650

S3 10.9 8.6 9.1 7.0 8.9 8.90 0.2025 -0.9650 1.9350

2010 S1 9.6 8.8 8.4 6.9 7.4 8.22 1.1720 -2.0755 -2.4445 0.000499

S2 19.5 17.9 18.9 23.7 21.6 20.32 -2.0755 5.4020 4.0830

S3 2.2 5.0 5.3 8.9 6.0 5.48 -2.4445 4.0830 5.7470

2011 S1 11.0 11.8 15.6 11.2 10.3 11.98 4.3820 -1.7770 -0.5615 0.002599

S2 18.9 21.6 19.0 20.1 22.5 20.42 -1.7770 2.5370 0.7490

S3 4.6 6.2 4.8 6.1 5.5 5.44 -0.5615 0.7490 0.5330

2012 S1 9.5 10.0 8.3 8.8 12.3 9.78 2.4070 2.2845 -0.6710 0.007852

S2 22.1 17.1 19.6 23.4 25.2 21.48 2.2845 10.1570 1.0565

S3 4.5 3.8 6.2 5.8 5.0 5.06 -0.6710 1.0565 0.9380

2013 S1 10.0 8.0 8.2 11.5 7.1 8.96 3.1230 -1.5155 -1.8780 0.001588

S2 21.1 21.0 21.2 17.9 20.0 20.24 -1.5155 1.9430 2.0330

S3 4.4 7.0 7.3 3.0 4.0 5.14 -1.8780 2.0330 3.6380

2014 S1 12.2 9.6 7.7 11.3 13.2 10.80 4.7550 -1.3900 -0.4325 0.004144

S2 20.0 18.2 18.4 19.6 14.8 18.20 -1.3900 4.2000 0.2850

S3 4.6 4.5 4.4 3.5 3.8 4.16 -0.4325 0.2850 0.2330

(Continued)
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By adopting the second approach for ðp; n; tmin; tmax; ĝ0Þ ¼ ð3; 5; 1; 2; 0:0404684Þ, (L�,K�) =

(30,3.59) is obtained, with an EARL of 23.49. Fig 3 shows the γ2 sub-chart of the multivariate

SS chart that monitors the ĝ2 of the investment returns from years 2010 to 2016.

From Fig 3, the ĝ2 for years 2012, 2014 and 2016 is larger than the UCL. Hence, they are

non-conforming samples. The CRL for each of these samples are: CRL1 = 3, CRL2 = 2 and

CRL3 = 2, all of which are less than L�. Thus, the samples for years 2012, 2014 and 2016 are

out-of-control samples. The multivariate SS chart shows an increase in the relative risk for the

companies’ investments in years 2012, 2014 and 2016. This agrees with the results from Giner-

Bosch et al. [22] who showed that there is a change in the rates of returns from years 2012

onwards. Note that Giner-Bosch et al. [22] monitored the investment returns through the

MEWMA chart.

8. Conclusion

A multivariate SS chart to monitor γ is proposed in this paper. Formulae for the ARL, SDRL
and EARL criteria are derived, and algorithms are proposed for the optimization of the pro-

posed multivariate SS chart. Tables of optimal charting parameters and performance are

shown for numerical examples with different p, n, τ and γ0 values, and also for unknown τ.

The multivariate SS chart is shown to outperform the multivariate NSS chart. A larger

improvement is shown for smaller τ and n, and larger p and γ0. The multivariate SS chart sig-

nificantly outperforms the Shewhart γ chart, and shows marginally better performance than

the MEWMA chart for moderate and large τ. The proposed multivariate SS chart provides a

good alternative for practitioners.

Table 9. (Continued)

R1 R2 R3 R4 R5
�X� S ĝ 2̂

2015 S1 11.6 9.8 12.4 11.0 9.4 10.84 1.5480 0.6550 0.7060 0.003456

S2 17.2 20.1 21.5 18.6 18.1 19.10 0.6550 2.9050 1.8425

S3 4.6 6.4 6.4 4.7 3.3 5.08 0.7060 1.8425 1.7570

2016 S1 11.2 5.4 9.4 8.4 6.9 8.26 4.9980 -0.5210 1.9820 0.006183

S2 20.0 22.1 24.5 17.2 20.6 20.88 -0.5210 7.2470 1.8835

S3 5.8 4.0 7.3 4.7 4.9 5.34 1.9820 1.8835 1.6130

https://doi.org/10.1371/journal.pone.0270151.t009

Fig 3. γ2 Sub–chart of the SS chart for monitoring the investment returns from years 2010 to 2016.

https://doi.org/10.1371/journal.pone.0270151.g003
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The proposed multivariate SS chart adopts fixed charting parameters. In the future, a multi-

variate SS chart with adaptive charting parameters can be developed. Another possible area of

research is to evaluate the multivariate SS chart through its MRL and run length percentiles, to

account for skewed run length distributions.
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