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Abstract

The omnibus test is commonly applied to evaluate the overall disparity between group

means in ANOVA. Alternatively, linear contrasts are more informative in detecting specific

pattern of mean differences that cannot be obtained via the omnibus test. This article con-

cerns power and sample size calculations for contrast analysis with heterogeneous vari-

ances and budget concerns. Optimal allocation procedures for the Welch-Satterthwaite

tests of standardized and unstandardized contrasts are presented to minimize the total sam-

ple size with the designated ratios, to meet a desirable power level for the least cost, and to

attain the maximum power performance under a fixed cost. Currently available methods rely

exclusively on simple allocation formula and direct rounding rule. The proposed allocation

strategies combine the computing techniques of nonlinear optimization search and iterative

screening process. Numerical assessments of a randomized control trial for the overcoming

depression on the Internet are conducted to demonstrate and confirm that the approximate

procedures do not guarantee optimal solution. The suggested approaches extend and out-

perform the existing findings in methodological soundness and overall performance. The

corresponding computer algorithms are developed to implement the recommended power

and sample size calculations for optimal contrast analysis.

Introduction

Within the context of analysis of variance (ANOVA), the omnibus F test is widely used for

detecting the overall mean differences. Alternatively, many important research questions may

be formulated as a linear combination of the population group means. Hence, a t test of indi-

vidual contrast provides much more information than an omnibus hypothesis in assessing par-

ticular relation between the mean effects. Comprehensive exposition and further information

can be found in Kutner et al. [1] and Maxwell and Delaney [2]. However, it has been noted in

many actual applications that the homogeneous variances assumption of ANOVA is frequently

violated. For example, Grissom [3], Rosopa, Schaffer, and Schroeder [4], and Ruscio and

Roche [5] stressed that variances can be extremely different across treatment groups in clinical

and psychological study. To account for the impact of variance heterogeneity, the Welch–Sat-

terthwaite procedure of Satterthwaite [6] and Welch [7] is commonly recommended as an
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alternative to the usual t test for detecting the substantive significance of a linear contrast.

Accordingly, the contrast analysis under heterogeneity of variance is a generalization of the

well-known Behrens–Fisher problem of testing the difference between two population means

with unequal variances.

The general guidelines of experimental design and statistical analysis suggest that even the

renowned test procedures do not warrant correct detection of treatment differences that are

strongly expected or theoretically supported (Ioannidis [8], Moher, Dulberg, & Wells [9]). To

prevent mistakenly dismissing an important contrast effect and to provide profound implica-

tions for ANOVA research, the underlying issues of power and sample size calculations must

also be considered. It is prudent to emphasize that the traditional power and sample size proce-

dures do not consider the cost implications. Notably, Allison et al. [10] advocated designing

statistically powerful studies while minimizing costs. On the other hand, Marcoulides [11]

emphasized the notion of maximizing power in designing studies under budget constraints.

Although power and sample size procedures are available for Welch’s test [12] of the difference

between two means, Luh and Guo [13] noted that cost issues have not been incorporated in

the Welch–Satterthwaite test for contrast analysis. Accordingly, Luh and Guo [13] described a

formula for efficient sample size allocation in two scenarios. The first scenario is attaining a

designated power with the minimum total cost, and the second scenario is maximizing the sta-

tistical power for a designated total cost. The suggested optimal sample sizes have a ratio that is

proportional to the product of the ratio of contrast coefficients and the ratio of standard devia-

tions divided by the square root of the ratio of unit sampling costs. The particular method is a

direct extension of the optimal sample size formula in Dette and Munk [14] and Pentico [15]

for detecting the difference between two means under the normality assumption.

A standard normal distribution can be viewed as a t distribution with an infinite number of

degrees of freedom. Despite this large-sample argument, the importance of a Student’s t distri-

bution is well recognized in statistical applications, especially when the sample size is small.

Note that the underlying notion of incorporating the cost concerns is because the time,

money, and other resources are limited in all practical studies. The power and sample proce-

dures [16–20] stress the theoretical principles of the approximate degree of freedom tests using

estimated degrees of freedom. Specifically, power and sample size calculations for the Welch’s

[21] omnibus test have been presented in Jan and Shieh [16] and Shieh and Jan [17, 18]. On

the other hand, Shieh and Jan [19] considered the problem of power and sample size for the

Welch–Satterthwaite test of linear contrasts, but they did not consider budget issues. The

related results in Jan and Shieh [20] are restricted for designing 2 × 2 factorial studies while

minimizing financial costs. Therefore, these optimal sample size methods did not cover all the

cost schemes for contrast analysis. To our knowledge, there has been no other optimal cost

and allocation investigations for the Welch–Satterthwaite test of contrast analysis except for

Luh and Guo [13]. As a generalization of the results in [16–20], the present study focuses on

optimal contrast analysis by implementing the distributional properties of the Welch–Sat-

terthwaite t statistic in cost and allocation evaluations. Accordingly, in addition to being able

to contribute to the methodological development and understanding of the approximate

degrees of freedom test procedure, it also facilitates the pedagogical and numerical compari-

sons of the suggested approaches and the methods of Luh and Guo [13] for optimal sample

size determinations.

In addition to the unstandardized contrasts, the effect size reporting and interpretation

practices suggest that the standardized effect sizes are useful when comparing results from

multiple studies using measurement instruments whose raw units are not directly comparable,

such as Fritz, Morris, and Richler [22], Lakens [23], and Takeshima et al. [24]. Notably, stan-

dardized contrasts of treatment effects and corresponding effect sizes in ANOVA have been
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investigated by, among others, Olejnik and Algina [25], Rosenthal, Rosnow, and Rubin [26],

and Steiger [27]. The prescribed sample size studies of linear contrasts did not include the

more involved situations of standardized contrasts. Hence, it is of theoretical importance to

extend the power and sample size calculations for conducting hypothesis testing of standard-

ized contrasts.

In view of the importance of methodological justification and computational support, this

article aims to present a systematic and thorough discussion for the Welch-Satterthwaite tests

of standardized and unstandardized contrasts. Optimal allocation approaches are presented to

minimize the total sample size with the designated ratios, to meet a desirable power level for

the least cost, and to attain the maximum power performance under a fixed cost. An Internet

depression intervention example is employed to demonstrate the features of the suggested

approaches. To facilitate the recommended procedures in planning research designs, com-

puter algorithms are offered for optimal power and sample size calculations with the desig-

nated allocation and cost schemes.

Methods

Linear contrasts

Consider the one-way ANOVA model in which Yij denotes the jth value of the response vari-

able from the ith treatment group and the observations are assumed to be independent and

normally distributed:

Yij � Nðmi; s
2

i Þ; ð1Þ

where μi and s2
i are unknown parameters, i = 1, . . ., G (� 2) and j = 1, . . ., Ni. In addition to or

instead of the omnibus test, questions regarding a particular pattern of group differences can

be tested with a contrast of mean values.

A contrast is defined as a linear combination of mean parameters

c ¼
XG

i¼1
limi; ð2Þ

where li are the linear coefficients with
PG

i¼1
li ¼ 0. With the model assumption defined in Eq

1, an unbiased estimator ĉ for the contrast ψ is of the form

ĉ ¼
XG

i¼1
li �Y i ð3Þ

where �Y i ¼
PNi

j¼1
Yij=Ni is the ith group sample mean and is an unbiased estimator of μi for

i = 1, . . ., G. Moreover, the contrast estimator ĉ given in Eq 3 has the distribution

ĉ � Nðc; o2Þ; ð4Þ

where o2 ¼ VarðĉÞ ¼
PG

i¼1
l2i s

2
i =Ni. An unbiased estimator ô2 of ω2 can be readily obtained

by replacing the variance s2
i in ω2 with its unbiased estimator S2

i :

ô2 ¼
XG

i¼1

l2i S
2
i

Ni
; ð5Þ

where S2
i ¼

PNi
j¼1
ðYij �

�Y iÞ
2
=ðNi � 1Þ is the sample variance for i = 1,. . ., G.

Optimal contrast analysis with heterogeneous variances and budget concerns

PLOS ONE | https://doi.org/10.1371/journal.pone.0214391 March 26, 2019 3 / 12

https://doi.org/10.1371/journal.pone.0214391


Test for difference. To appraise a linear contrast of the mean effects in terms of the

hypothesis

H0 : c ¼ c0 versus H1 : c 6¼ c0; ð6Þ

the test statistic is of the form

T ¼
ĉ � c0

ô
; ð7Þ

where ψ0 is a constant. The Welch–Satterthwaite procedure suggests that under the null

hypothesis H0: ψ = ψ0, the quantity T has a convenient approximate distribution

T _� tðnÞ; ð8Þ

where n ¼ f
PG

i¼1
l2i s

2
i =Nig

2

=f
PG

i¼1
l4i s

4
i =½N

2
i ðNi � 1Þ�g and t(v) is a t distribution with degrees

of freedom v. For inferential purposes, the degrees of freedom v is replaced by its counterpart

n̂ with direct substitution of fS2
1
; . . . ; S2

Gg for fs2
1
; . . . ; s2

Gg in v, where

n̂ ¼
f
PG

i¼1
l2i S

2
i =Nig

2

PG
i¼1

l4i S4
i =½N2

i ðNi � 1Þ�
ð9Þ

The test rejects H0 at the significance level α if jTj > t1� a=2ðn̂Þ where t1� a=2ðn̂Þ is the upper

100(α/2) percentile of the t distribution tðn̂Þ.
Moreover, with the same theoretical arguments and analytic derivations, it can be shown

that the statistic T has the general approximate distribution

T _� tðn;DÞ; ð10Þ

where t(ν, Δ) is a noncentral t distribution with degrees of freedom v and noncentrality param-

eter

D ¼
c � c0

o
: ð11Þ

Also, the power function of the Welch–Satterthwaite test can be approximated by

pðDÞ ¼ Pfjtðn;DÞj > t1� a=2ðnÞg: ð12Þ

Test for noninferiority and superiority. In addition to the two-sided test of difference

for a contrast, it is of clinical importance to test the hypotheses for noninferiority and superior-

ity between mean effects (Laster & Johnson [28], Mulla et al. [29], Piaggio et al. [30], Scott

[31]). The problem of testing noninferiority and superiority can be unified by the following

hypotheses when larger values of ψ are better:

H0 : c � c0 versus H1 : c > c0 ð13Þ

where ψ0 is the non-inferiority or superiority threshold (Fleming et al. [32], Gayet-Ageron

et al. [33], Gayet-Ageron et al. [34], Gladstone & Vach [35], Wien [36]). When ψ0 < 0, the

rejection of the null hypothesis implies noninferiority against the reference margin. Whereas

the rejection of the null hypothesis indicates superiority over the reference bound for ψ0 > 0.

The upper one-sided test procedure rejects the null hypothesis at the significance level α if
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T > t1� aðn̂Þ and the associated power function is expressed as

pðDÞ ¼ Pfjtðn;DÞj > t1� aðnÞg: ð14Þ

Related points to consider on switching between superiority and non-inferiority can be

found in the report of the Committee for Proprietary Medicinal Products [37], Ganju and

Rom [38], Lewis [39], and Murray [40].

Standardized contrasts

The usual linear contrast has advantages in understanding the meaning of effect size because

the scale is the same as the original units of analysis. Alternatively, the standardized contrasts

provide a natural interpretation of net effect that is critical to transform the magnitude of a

treatment combination with respect to the metric of a response variable. A standardized con-

trast effect ψ� is defined as

c
�
¼
c

o�
; ð15Þ

where o�2 ¼
PG

i¼1
l2i s

2
i =qi and qi = Ni/NT for i = 1, . . ., G, and NT ¼

PG
i¼1

Ni. To detect a stan-

dardized contrast effect, a slightly different statistic than T is considered:

T� ¼
ĉ

ô
: ð16Þ

Also, T� has the general distribution

T� _� tðn;D�Þ; ð17Þ

where D
�
¼ N1=2

T c
�
.

Test for difference. For assessing the standardized contrast effects in terms of the hypoth-

esis

H0 : c
�
¼ c

�

0
versus H1 : c

�
6¼ c

�

0;
ð18Þ

the test statistic T� has the distribution

T� _� tðn;D�
0
Þ; ð19Þ

where D
�

0
¼ N1=2

T c
�

0
and c

�

0
is a constant. The null hypothesis is rejected at the significance

level α if T� < ta=2ðn̂;D
�

0
Þ or T� > t1� a=2ðn̂;D

�

0
Þ where ta=2ðn̂;D

�

0
Þ and t1� a=2ðn̂;D

�

0
Þ are the lower

and upper 100(α/2) percentiles of the noncentral t distribution tðn̂;D�
0
Þ, respectively. The cor-

responding power function is

p�ðD
�
Þ ¼ Pftðn;D�Þ < ta=2ðn;D

�

0
Þg þ Pftðn;D�Þ > t1� a=2ðn;D

�

0
Þg: ð20Þ

Test for noninferiority and superiority. To perform the upper one-sided test for nonin-

feriority and superiority in terms of

H0 : c
�
� c

�

0
versus H1 : c

�
> c

�

0
; ð21Þ

the test procedure rejects H0 at the significance level α if T� > t1� aðn̂;D
�

0
Þ. Accordingly, the
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power function is defined as

p�ðD
�
Þ ¼ Pftðn;D�Þ > t1� aðn;D

�

0
Þg: ð22Þ

The reference values c
�

0
need to be prudently selected to reflect the planned tests of nonin-

feriority or superiority with appropriate magnitude and sign.

Sample size calculations

During the planning stage of a research study, a question of essential interest is how many sub-

jects are needed in order to have the desired power for conducting a scientifically meaningful

analysis. To extend the applicability of contrast analysis, optimal sample size procedures are

presented with respect to distinct allocation and cost concerns.

Sample size ratios are fixed. For advance planning of unstandardized and standardized

contrast analysis, the prescribed power functions π(Δ) and π�(Δ�) can be employed to calculate

the sample sizes {Ni, i = 1, . . ., G} needed to attain the specified power 1 − β for the chosen sig-

nificance level α, null values ψ0 and c
�

0
, contrast coefficients {li, i = 1, . . ., G}, and parameter

values fðmi; s
2
i Þ; i ¼ 1; . . . ;Gg. However, it is prudent to consider the design structure with a

priori chosen sample size ratios {r1, . . ., rG} where rj = Nj/Ng� 1, j = 1, . . ., G, with the gth

group has the smallest sample size Ng. Note that the sample size calculations in Shieh and Jan

[19] are only applicable to the tests of difference for conventional linear contrasts. Hence, they

did not consider the tests for the standardized contrasts.

The cost and effort to treat a subject often vary with treatment groups and it is sensible for

researchers to take into account budget and resource constraints in research design. The total

cost of an ANOVA study can be represented by the overhead cost and sampling costs through

the following simple cost function

CT ¼ c0 þ
XG

i¼1
ciNi; ð23Þ

where cO is the fixed overhead cost associated with the study, and ci reflects unit sampling cost

of each subject in group i for i = 1, . . . G. Apparently, the cost assessment reduces to the evalua-

tion of total number of subjects CT ¼ NT ¼
PG

i¼1
Ni when cO = 0 and ci = 1 for i = 1, . . ., G.

Under cost and power considerations, the following two scenarios arise naturally in choosing

the optimal sample sizes.

Target power is fixed and total cost needs to be minimized. Despite the simple linear

form of the objective cost function, the optimization process involves the designated power

function as a nonlinear constraint. Thus, a closed form solution rarely exists for most situa-

tions. With the specifications of the significance level α, the desired power level 1 − β, the null

effect size, contrast coefficients, and the model parameters of group means and variance com-

ponents, the suggested approach is composed of two key steps.

First, the preliminary set of sample sizes {NPi, i = 1, . . ., G} for attaining the desired power

performance while minimizing the total cost can be obtained with the NLPQN subroutine of

the SAS/IML [41] package. However, the sample sizes are treated as continuous variables in

the optimization process. The resulting sample sizes are most likely non-integer values. In

view of the discrete nature of sample sizes, a systematic evaluation is conducted to find the

proper result in the second step. The screening process of Shieh and Jan [18] is extended for a

wider range of sample size combinations. Specifically, power calculations and cost assessments

are performed for a total of 4G sample size sets {Ni, i = 1, . . ., G} with Ni = [NP1]– 1, [NP1],

[NP1] + 1, or [NP1] + 2 for i = 1, . . . G, and [M] denotes the integer part of M. Then, the optimal

allocation fN�i ; i ¼ 1; . . . ;Gg is found through an inspection of the sample size combinations
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that attain the desired power while giving the least cost. If more than one set yields the same

amount of least cost, the one giving the largest power is reported.

In contrast to the proposed thorough search, Luh and Guo [13] showed that the potential

optimal sample size ratio for contrast analysis of unstandardized means is proportional to the

product of the ratio of contrast coefficients and the ratio of standard deviations divided by the

square root of the ratio of unit sampling costs:

gi ¼
Ni

N1

¼
jlijsic

1=2

1

jl1js1c
1=2

i

; i ¼ 1; . . . ; G: ð24Þ

Note that the allocation ratios are derived with the standard normal Z statistic for known

variances, rather than the t statistic under the assumption of unknown variances.

Total cost is fixed and actual power needs to be maximized. In addition to the pre-

scribed design scheme, a problem of practical interest is to decide the best design in power per-

formance when the total cost is fixed. Similar to the previous approach for optimal design, a

two-step search procedure is performed. In this case, the specialized SAS/IML [41] NLPNRA

subroutine is used to find the initial sample sizes {NP1, . . ., NPG} for the maximization of a non-

linear power function with the linear inequality cost constraint. The optimization algorithm

assumes the sample sizes are continuous measurements and the computed outcomes {NP1, . . .,

NPG} are extremely probable not integer values. To give the correct optimal solution, power

and cost appraisals are performed in the second step for a total of 4G sample size combinations

{N1, . . ., NG} with Ni = [NP1]– 1, [NP1], [NP1] + 1, or [NP1] + 2 for i = 1, . . . G. Accordingly, the

optimal allocation fN�
1
; . . . ;N�Gg is obtained through a detailed comparison of the sample size

configurations that yields the greatest power while maintaining the restricted budget.

In this case, Luh and Guo [13] suggested the optimal sample size combination still has

the allocation ratios given in Eq 24. The sample size of the first group is determined by

N1 ¼ ðCT � c0Þ=ð
PG

i¼1
cigiÞ and the other sample sizes are then computed with Ni = N1γi for

i = 2, . . ., G. It is unlikely that the sample sizes computed from the allocation ratios are whole

numbers. The computed sample sizes need to be rounded up or down to the nearest integer

and the outcomes are reported as the optimal sample sizes.

Results

To explicate the usefulness of the recommended exact approaches and associated computer

programs, the overcoming depression on the Internet (ODIN) study of Clarke et al. [42] is

exemplified for power and sample size calculations. This research was a three-arm randomized

control trial with a usual treatment control group and two ODIN intervention groups receiv-

ing reminders through postcards or brief telephone calls.

For demonstration, Luh and Guo [13] suggested a specific comparison of the two interven-

tion programs to the usual treatment without access to ODIN with respect to the mental com-

ponent summary scores at 16-week. The hypothesis testing is formulated as H0: ψ� –4.2

versus H1: ψ> –4.2 with the linear coefficients {l1, l2, l3} = {0.5, 0.5, –1}. For the three study

conditions of mail reminder, telephone reminder, and control group, {N1, N2, N3} = {75, 80,

100}, f�Y 1;
�Y 2;

�Y 3g ¼ f34:7; 32:3; 35:5g, and fS2
1
; S2

2
; S2

3
g ¼ f79:21; 57:76; 77:44g. It is

shown that the contrast effect, estimated variance, and approximate degrees of freedom are

ĉ ¼ � 2, ô2 ¼ 1:2189, and n̂ ¼ 200:4582, respectively. Moreover, the observed test statistic

T = 1.9927 and the p-value = 0.0238. Hence, the test concludes that the contrast effect is signifi-

cantly larger than –4.2 at a ¼ 0:05.
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For the purposes of power analysis and sample size determination, the abovementioned

findings are employed to provide planning values of the model parameters and design charac-

teristics for upcoming Internet depression intervention study. With these parameter settings,

contrast coefficients {0.5, 0.5, –1}, sample sizes {75, 80, 100}, and ψ0 = –4.2, the accompanying

program shows that attained powers for the two-sided test and one-side test given in Eqs 6 and

13 are 0.5093 and 0.6335, respectively. The resulting powers are far less than the fairly common

level of 0.80. Numerical computations reveal that the balanced group sample sizes of 183 and

144 are required to achieve the target power of 0.8 for the two-sided and one-side tests,

respectively.

According to the cost-effectiveness study of Hollinghurst et al. [43], Luh and Guo [13]

assumed that the fixed overhead cost cO = 0 and the average operation costs {c1, c2, c3} = {20,

50, 100} as the unit sampling costs of the three treatment groups for future depression study.

For the prescribed test for noninferiority, the approximate method of Luh and Guo [13]

reported that the sample sizes {173, 93, 153} are required to attain the power performance of

0.80 with the least cost. Therefore, the total sample size and total cost are NT = 419 and CT =

23,410, respectively. It is also of fundamental interest to consider the optimal design problem

in which the total number of subjects needs to be minimized. Luh and Guo [13] showed that

the minimum sample sizes to assure the same power level of 0.80 are {98, 84, 193} with NT =

375 and CT = 25,460. Alternatively, the proposed approach suggests that the optimal sample

sizes {173, 93, 152} and {97, 83, 193} are required to attain the designated power 0.80 with the

least total cost and the smallest total sample size, respectively. The total sample size and total

cost are NT = 418 and CT = 23,310 under the cost minimization consideration, whereas the

corresponding results are NT = 373 and CT = 25,390 when minimum total sample size is desir-

able. The attained powers for the two sample size settings are 0.8000 and 0.8003, respectively,

and they are nearly identical to the nominal level 0.80. For these two cases, Luh and Guo’s [13]

method consistently gave greater total costs and larger total sample sizes than the suggested

algorithm.

For the scenario of finding the optimal allocation to maximize power performance when

the total cost is fixed as 22,000, the sample sizes computed by Luh and Guo [13] are {162.43,

87.73, 143.65}. They suggested finding the appropriate sample sizes by rounding up or down

to the nearest integer. Accordingly, their chosen sample sizes are {162, 87, 144} with the total

cost CT = 21,990. When a computer is not available, the checking procedure entails laborious

and tedious calculations especially for four or more groups. Instead, the optimal sample size

allocation computed by the proposed approach is {160, 88, 144} which perfectly meets the

planned budget. Moreover, exact computation shows that the resulting power 0.7795 of the

optimal structure is larger than the power 0.7793 attained by the prescribed sample sizes {162,

87, 144}. Hence, the proposed algorithm is superior to the approximate procedure of Luh and

Guo [13]. Generally, the computations of optimal solutions can be simplified by the approxi-

mate methods without much loss in accuracy, especially when the sample sizes are large. How-

ever, the proposed approaches will produce more accurate results across all sample sizes.

To demonstrate the hypothesis testing, power computation, and sample size determination

for the standardized contrasts, the comparison of mental component summary scores

between the depression interventions is analyzed next. It follows from the definitions of the

unstandardized contrast ψ and the standardized contrast ψ� that a working value of c
�

0
is

c0=ðNTô
2Þ

1=2
¼ � 0:2382¼

:
� 0:25. For simplicity’s sake, the null standardized effect is set as

c
�

0
¼ � 0:25. Then, the hypothesis testing in terms of the standardized measure is formulated

by H0: ψ� � −0.25 versus H1: ψ� > –0.25. With the given data, the computations show that the

standardized test statistic T� = –1.8115, the critical value t0.95(200.4582, –3.9922) = –2.3390,
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and the p-value = 0.0149. It is concluded that the standardized effect is significantly larger than

–0.25 at α = 0.05.

With the parameter settings {μ1, μ2, μ3} = {34.7, 32.3, 35.5} and fs2
1
; s2

2
; s2

3
g ¼

f79:21; 57:76; 77:44g, the statistical power associated with the previous sample size combi-

nation {75, 80, 100} is 0.6988. For a balanced structure, it can be shown that the minimum

sample size set {94, 94, 94} is necessary to attain the designated power of 0.8. In this case, the

total sample size is NT = 282 and the total cost is CT = 15,980 for the fixed overhead cost cO =

0 and the average operation costs {c1, c2, c3} = {20, 50, 100}. To attain the designated power

0.80 with the minimum total cost, the suggested procedure yields the optimal sample size

scheme {305, 7, 15} with the total sample size NT = 327 and total cost CT = 7,950. On the

other hand, the suggested allocation {73, 62, 143} incurs the least total sample size NT = 278

with CT = 18,860. In this case, the balanced design is not the optimal solution for either con-

sideration of minimum total sample size or minimum total cost. When the maximum total

cost is 22,000, the proposed optimal sample size structure is {815, 22, 46} with NT = 883 and

CT = 22,000.

Note that all the numerical results of the optimal power and sample size procedures were

computed with the supplemental SAS/IML algorithms. For ease of application, two different

sets of computer programs are presented for the standardized and unstandardized contrast

analysis.

Conclusions and discussion

The Welch–Satterthwaite statistic and the associated approximate t distribution have an

important utility in accommodating the impact of heterogeneity of variance in statistical infer-

ence. The technical account of diverse hypothesis-testing frameworks enhances the theoretical

implication and practical usefulness of the Welch–Satterthwaite test for contrast analysis in the

detection of difference or inferiority/superiority. Moreover, the integrated document of differ-

ent contrast effect sizes facilitates the reporting and interpretation of important finding in

standardized measure scaled by the associated variabilities and design characteristics or in sim-

ple magnitude expressed in the same metric as the original units of analysis. One important

implication of this research is that the essence of the Welch–Satterthwaite procedure is prop-

erly recognized in related power and sample size calculations without a normal simplification.

Nonlinear optimization routines and systematic numerical evaluations are synthesized to give

optimal sample size allocations for contrast analysis. According to the analytic examination

and numerical assessment, the suggested procedures ultimately outperform the existing sam-

ple size methods based on the normal approximation and integer rounding. Essentially, the

collection of computer programs covers both the two-sided and one-sided hypothesis testing

for the two distinct formulations of standardized and unstandardized contrasts. The presented

appraisals of statistical power, sample size, and financial budget should be useful for research-

ers to justify their allocation strategy and project support in planning research design.

The general formulation of a linear contrast of group means permits a wide range of

research hypotheses to be tested in ANOVA. To enhance the usefulness of contrast analysis

under heterogeneity of variance, this article addresses the problem of optimal sample size cal-

culations for the Welch–Satterthwaite test with cost constraints. The present study has three

essential features. First, the two-sided and one-sided test procedures are presented for both the

standardized and unstandardized contrasts in ANOVA under the heterogeneous variances

assumption. Second, optimal sample size approaches are proposed for the two essential prob-

lems that when the target power is fixed and total cost needs to be minimized and when the

total cost is fixed and actual power needs to be maximized. Third, computer codes are
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presented to implement the power and sample size computations of the Welch–Satterthwaite

procedures. In sum, this study contributes to the current literature for optimal research

designs by alleviating the limitations of existing investigations and extending the usefulness of

contrast analysis in ANOVA under variance heterogeneity.
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