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Abstract
Many distributions have been used in flood frequency analysis (FFA) for fitting the flood

extremes data. However, as shown in the paper, the scatter of Polish data plotted on the

moment ratio diagram shows that there is still room for a new model. In the paper, we study

the usefulness of the generalized exponential (GE) distribution in flood frequency analysis

for Polish Rivers. We investigate the fit of GE distribution to the Polish data of the maximum

flows in comparison with the inverse Gaussian (IG) distribution, which in our previous stud-

ies showed the best fitting among several models commonly used in FFA. Since the use of

a discrimination procedure without the knowledge of its performance for the considered

probability density functions may lead to erroneous conclusions, we compare the probability

of correct selection for the GE and IG distributions along with the analysis of the asymptotic

model error in respect to the upper quantile values. As an application, both GE and IG distri-

butions are alternatively assumed for describing the annual peak flows for several gauging

stations of Polish Rivers. To find the best fitting model, four discrimination procedures are

used. In turn, they are based on the maximized logarithm of the likelihood function (K proce-

dure), on the density function of the scale transformation maximal invariant (QK procedure),

on the Kolmogorov-Smirnov statistics (KS procedure) and the fourth procedure based on

the differences between the ML estimate of 1% quantile and its value assessed by the

method of moments and linear moments, in sequence (R procedure). Due to the uncertainty

of choosing the best model, the method of aggregation is applied to estimate of the maxi-

mum flow quantiles.

Introduction
Flood frequency analysis (FFA) provides information about the probable size of flood flows
and has been used for the design of civil engineering works over the century. The assessment of
the flood (upper) quantiles is required for dimensioning hydraulic structures affected by high
waters, such as culverts, dams, bridges, overflow channels, spillways, levees, and others. FFA
plays an important role in reducing the flood risk, since the flood quantile estimates are essen-
tial in determining the limits of flood zones with varying degree of flood risk as well in estimat-
ing the risk of exploitation of floodplains.
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The quantile of the order of F 2 (0,1) is defined as the value xF satisfying the equation:Z xF

�1
f ðxÞdx ¼ F ð1Þ

where f is the probability density function (PDF) of the continuous random variable. The flood
(upper) quantile means the probable maximum flow of the return period of T years and the
relation between the probability of non-exceedance F and return period T has the form:

T ¼ 1

1� F
ð2Þ

Since the return period T equal to 100, 500, 1000 is usually used, then the probability F is close
to 1, i.e. close to its highest value. Equivalently, the probabilities of exceedance p can be applied,
where:

p ¼ 1� F ð3Þ

The at-site frequency analysis is the most commonly used approach. Then the estimation of
flood quantiles refers to the choice of the form of probability density function describing the
annual peak flows for the investigated gauging station. The distribution function assumed (also
called the model) has a character of statistical hypothesis. Simultaneously, the method of esti-
mation of parameters and, thus, upper quantiles of the assumed distribution is selected. This
step is denoted D/E for “distribution and estimation procedure”. To find the best fitting model
to the empirical data, the chosen discrimination procedure is applied.

The choice of distribution for fitting the annual maximum flows has attracted considerable
interest, e.g. [1–7] and many others. According to the hydrological report of the World Meteo-
rological Organization from 1989 [8], the Gumbel and log-normal distributions were the most
commonly used for the description of the peak flow data. In Poland, the Pearson III type distri-
bution has been recommended by Central Office of Water Management for national use [9].
These regulations are still in force, although other models are also applied in practice. Nowa-
days in many countries around the world, the heavy-tailed distributions are recommend for
modelling of extreme flow series, e.g. [10–15]. The heavy-tailed distributions have conventional
moments only in a certain range, which decreases with growing moment order. However, the
heavy-tailed form of hydrological variables is not sufficiently supported, e.g. [16], [17]. More-
over, the analysis of Polish datasets of annual peak flows in [18] shows that they should be
modeled using soft-tailed rather than heavy-tailed distributions.

The characteristics describing properties of the distribution are the summary statistics. Sev-
eral systems of summary statistics have been developed. Based on different principles they pro-
vide, in particular, the measures of location, dispersion, skewness and kurtosis. The summary
statistics calculated for a random sample consecutively serve for identifying and fitting PDFs.
Among the systems of summary statistics, the most popular are the system of conventional
moments (μr) and that of linear moments, called L-moments (λr), presented in Table 1 along
with the dimensionless versions of the summary statistic sets in the form of summary statistic

Table 1. Summary statistics according to the system of conventional and linear moments.

System of summary statistics Location measure Dispersion measure [Dimensionless] Skewness measure [Dimensionless]

Conventional moments
m ¼

Zþ1

�1

xdF xð Þ m2 ¼
Zþ1

�1

ðx � mÞ2dFðxÞ CV ¼ m1=2
2 =m

h i
m3 ¼

Zþ1

�1

ðx � mÞ3dFðxÞ CS ¼ m3=m
3=2
2

h i

Linear moments
λ1 = β0 � μ br ¼

Zþ1

�1

xFrðxÞdFðxÞ l2 ¼ 2b1 � b0 ¼
Zþ1

�1

2ðx � mÞFðxÞdFðxÞ [LCV = λ2 / λ1]
λ3 = 6β2 − 6β1 + β0 [LCS = λ3 / λ2]

doi:10.1371/journal.pone.0143965.t001
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ratios (in square brackets). It is convenient to use the dimensionless versions of the summary
statistics, since they measure the shape of a distribution independently of its scale of
measurement.

As seen from Table 1, the L-moments can be defined by the probability weighted moments
of a random variable βr for r = 0,1,2,. . . [19]. The L-moments create an attractive system
because their estimators, in contrast to the classical moments estimators, are not biased and the
sampling L-moment ratios have very small biases for moderate and large samples.

For the convenience of the reader, the abbreviations and symbols commonly used in the
paper are gathered in Table in S1 Table.

For two-parameter distributions lower bounded at zero, a basic illustration that provides an
intuition to a practitioner to distinguish various distributions is the graph of the relationship
between the conventional variation coefficient CV and the conventional skewness coefficient CS

or between their linear counterparts, i.e. between the linear variation coefficient LCV and the
linear skewness coefficient LCS. These relationships show in what range of CV − CS various dis-
tributions can be used, e.g. the log-logistic and log-Gumbel distributions are not proper for
modelling the data series of small skewness CS < 1 and average variation CV > 0.5. Both rela-
tions, CV − CS and LCV − LCS, are shown in Figs 1 and 2, respectively, for two-parameter distri-
butions commonly used in FFA (lines) plotted with the Polish data of annual peak flows for 38
gauging stations (triangular points). To find the data availability, see the Acknowledgment.

Fig 1. The relation of conventional skewness coefficient CS versus conventional variation coefficientCV for some two-parameter distributions
commonly used if FFA plotted with the Polish data of 90-year annual peak flow series. Distributions: Ga–gamma,We–Weibull, LN–log-normal, LL–log-
logistic, LG–log-Gumbel, Exp–exponential.

doi:10.1371/journal.pone.0143965.g001
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In Figs 1 and 2, if some point lies on the line corresponding to certain distribution or around
it, it may indicate that this distribution will be the best fitting to the data series. However, the
perfect fit would hold for the asymptotic sample from a given distribution. Due to a limited
length of the data series, such graphical analysis is only preliminary and the distribution best
fitted to the data is indicated by the discrimination procedures, which will be discussed later in
this paper.

The respective measuring sections are listed in Table 2 and illustrated in Fig 3. Most of ana-
lyzed data series cover the period 1921–2010.

As seen in Figs 1 and 2, for both conventional and linear moments ratios, there is a range of
values taken by the Polish data series and not covered by any distribution. Clearly, there is still
room for a new model. The inverse Gaussian (IG) and the generalized exponential (GE) distri-
butions with the scale and shape parameters seem to be a suitable complement (see Figs 4 and
5), i.e. there are many points CV-CS corresponding to the Polish data series, which are on or
around the lines of IG and GE distributions.

The GE distribution is used quite effectively to analyze lifetime data in the reliability analy-
sis, being an alternative to the two-parameter gamma, Weibull, Pareto and log-normal distri-
butions [20]. The aim of the study is to assess the usefulness of the generalized exponential
distribution in flood frequency analysis for Polish Rivers, as a complementary to the inverse
Gaussian distribution, which has proved to be suitable for many Polish data series [21], [22],

Fig 2. The relation of linear skewness coefficient LCS versus linear variation coefficient LCV for some two-parameter distributions commonly used
if FFA plotted with the Polish data of 90-year annual peak flow series.Distributions: Ga–gamma, We–Weibull, LN–log-normal, LL–log-logistic, LG–log-
Gumbel, Exp–exponential.

doi:10.1371/journal.pone.0143965.g002
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[18]. In the paper, two-parameter distributions, instead of their three-parameter counterparts,
are used for the modelling of relatively large-size samples (i.e. 90 elements), since our studies
are intended to be applicable for most of the available observation series, which are much
shorter than those investigated here. The short length of the data series hinders the proper

Table 2. Origin and basic characteristics of 38 Polish gauging stations.

Basin/River Gauging station Drainage area
(103 km2)

Average peak flow
(m3/s)

Variation coefficient
(Cv)

Skewness coefficient
(CS)

No. Name

Vistula 1 Jawiszowice 0.971 157.6 0.770 2.3388

2 Tyniec 7.520 709.0 0.620 1.5344

3 Jagodniki 12.06 1159. 0.633 1.9630

4 Szczucin 23.90 1941. 0.612 1.3989

5 Sandomierz 31.85 2334. 0.541 1.0175

6 Zawichost 50.73 3328. 0.471 0.8530

7 Puławy 57.26 3064. 0.455 0.7697

8 Warsaw 84.54 3023. 0.409 0.6450

9 Kępa 169.0 3803. 0.371 0.8461

10 Toruń 181.0 3817. 0.374 1.0407

11 Tczew 194.4 3635. 0.407 1.4483

Vistula/Sola 12 Żywiec 0.785 322.8 0.715 1.5249

Vistula/Skawa 13 Sucha 0.468 171.0 0.814 1.8293

14 Wadowice 0.835 271.3 0.7446 1.4980

Vistula/Skawa/Wieprzówka 15 Rudze 0.154 57.28 0.7359 0.7649

Vistula/Raba 16 Stróża 0.644 222.9 0.7463 1.4184

17 Proszówki 1.470 451.0 0.7330 1.3251

Vistula/Dunajec 18 Kowaniec 0.681 254.7 0.7311 2.3639

19 Krościenko 1.580 448.4 0.7474 2.3732

20 Nowy Sącz 4.340 956.6 0.7239 1.3761

21 Żabno 6.740 1165. 0.7138 1.5067

Vistula/Dunajec/ Czarny
Dunajec

22 Nowy Targ 0.432 166.3 0.802 2.2641

Vistula/Dunajec/Biały
Dunajec

23 Zakopane 0.058 39.09 0.8245 2.1484

Vistula/Dunajec/Poprad 24 Muszyna 1.510 234.8 0.7602 2.3053

25 Stary Sącz 2.070 323.2 0.6611 1.8310

Vistula/Dunajec/Biała 26 Koszyce
Wlk.

0.957 280.6 0.7543 1.1083

Vistula/San 27 Jarosław 7.040 749.6 0.5782 1.1508

28 Radomyśl 16.80 956.5 0.4800 2.0993

Vistula/San/Wisłok 29 Tryńcza 3.520 246.3 0.6723 3.4536

Vistula/Wisłoka 30 Żółków 0.581 175.6 0.7582 1.7529

31 Mielec 3.690 546.2 0.5669 1.9336

Vistula/Wisłoka/Ropa 32 Klęczany 0.482 125.8 0.7882 1.6732

Vistula/Bug 33 Wyszków 39.10 601.2 0.6030 1.8896

Oder 34 Miedonia 6.740 616.7 0.6784 3.0644

Oder/Warta 35 Konin 13.40 252.8 0.6384 2.4472

36 Poznań 25.90 420.5 0.7626 2.0603

37 Skwierzyna 32.10 384.6 0.6090 1.8565

38 Gorzów 52.40 512.8 0.4793 1.5588

doi:10.1371/journal.pone.0143965.t002
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selection of the distribution and two-parameter PDFs are usually used for their modelling. To
reduce the uncertainty in the estimation of the extreme value distribution quantiles, the multi-
model approach proposed by Bogdanowicz [23] is applied.

The paper is organized as follows. After providing some introduction to the topic, the prob-
ability distributions analyzed in the paper are shortly presented in second section. Next, the
four discrimination procedures used to select the best fitting model are shown. Sequent two
sections provide the results of the simulation studies on the probability of correct selection
(PCS) among the GE and IG distributions along with the analysis of the asymptotic model
error in respect to the upper quantile. In the case study section, fitting the GE and IG distribu-
tions to the 90-year series of annual maximum flows is compared for four selected gauging sta-
tions of Polish Rivers. Then, the method of aggregated quantiles is proposed for evaluation of
upper quantile values. The paper is concluded in the final section.

Fig 3. Map of 38 Polish gauging stations.

doi:10.1371/journal.pone.0143965.g003
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GE and IG Probability Distributions
The inverse Gaussian (known also under the name of Wald) distribution has several properties
analogous to the Gaussian distribution. In fact, the name is misleading, since it is “inverse”
only in that, while the Gaussian describes the distribution of distance at a fixed time in

Fig 4. The relation of conventional skewness coefficient CS versus conventional variation coefficientCV for two-parameter inverse Gaussian, IG,
and generalized exponential, GE, distributions plotted with the Polish data of 90-year annual peak flow series.

doi:10.1371/journal.pone.0143965.g004

Fig 5. The relation of linear skewness coefficient LCS versus linear variation coefficient LCV for two-parameter inverse Gaussian, IG, and
generalized exponential, GE, distributions plotted with the Polish data of 90-year annual peak flow series.

doi:10.1371/journal.pone.0143965.g005
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Brownian motion, the inverse Gaussian describes PDF of the first passage time for a Brownian
motion starting at zero to reach the absorbing barrier at the fixed point [24]. The same function
appears in linear flood routing modelling as the impulse response of the semi-infinite channel
at a fixed distance for the Froude number equal to zero [25], [26], and the name “linear convec-
tive diffusion model” for IG has been used in FFA [27–29]. In the last paper, the similarity
between IG and LN distributions was shown by comparison of their first five moment esti-
mates. Moreover, fitting of the two distributions to Polish data was compared there by the like-
lihood ratio. It indicates the preference of the IG model over the LN model for 27 out of 39
annual peak flow series. The simulation studies on the probability of correct selection among
IG and LN have been carried out [21], adopting several discrimination statistics. The discrimi-
nation procedures based on the likelihood ratio and the R statistics [22] favor IG over LN,
while the discrimination procedure based on the QK statistics [30] favors LN over IG. Investi-
gation of Polish annual maxima datasets by the L-moment ratio diagrams and the test of linear-
ity on log–log plots shows that the inverse Gaussian distribution represents flood frequency
characteristics of Polish Rivers quite well, in particular of lowland rivers [18].

The generalized exponential distribution has been developed by Gupta and Kundu [31] and
used quite effectively in many situations where a positive skewed distribution is needed. The
closeness of GE distribution with gamma, Weibull, and log-normal distributions has been
demonstrated [32–35]. The generalized exponential distribution has been applied to analyze
lifetime data in the reliability analysis [20]. However, to the best of our knowledge it has not
been used in FFA so far but in Poland where the GE model has been introduced for describing
random properties of seasonal maximum annual flows [36].

Table 3. Basic characteristics of two-parameter IG and GE distributions.

Generalized exponential Inverse Gaussian

PDF f(x) = αλ(1 − e−λx)(α−1)e−λx; λ,α,x > 0 fðxÞ ¼ affiffiffiffiffiffi
p x3

p exp � a� b
a x

� �2
=x

h i
; α,β,x > 0

CDF F(x) = (1 − e−λx)α FðxÞ ¼ 1
2
2� erfc �aþxb=affiffi

x
p

� �
þ expð4bÞerfc aþxb=affiffi

x
p

� �h i
Quantile F xF ¼ � lnð1�F1=aÞ

l xF ¼ a
tF ðbÞ

� �2

a

Mean m ¼ 1
l ½cðaþ 1Þ � cð1Þ� b m ¼ a2

b

Variation coefficent
CV ¼

ffiffiffiffi
m2

p
m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c0 ð1Þ�c0 ðaþ1Þ

p
cðaþ1Þ�cð1Þ

b CV ¼ 1ffiffiffiffi
2b

p

Skewness coefficent CS ¼ m3
m3=2
2

¼ c@ðaþ1Þ�c@ð1Þ
½c0 ð1Þ�c0 ðaþ1Þ�3=2

b CS ¼ m3
m3=2
2

¼ 3ffiffiffiffi
2b

p ¼ 3CV

Kurtosis Ck ¼ m4
m2
2

¼ c
000 ð1Þ�c

000 ðaþ1Þ
½c0 ð1Þ�c0 ðaþ1Þ�2 þ 3 b Ck ¼ m4

m2
2

¼ 3 5
2b þ 1

� �
¼ 2ð5C2

V
þ 1Þ

Linear variation coefficient LCV ¼ l2
l1
¼ cð2aþ1Þ�cðaþ1Þ

cðaþ1Þ�cð1Þ
LCV ¼ l2

l1
¼ m�1

Zþ1

�1

2FðxÞðx � mÞdFðxÞ

Linear skewness coefficient LCS ¼ l3
l2
¼ cðaþ1Þ�3�cð2aþ1Þþ2�cð3aþ1Þ

cð2aþ1Þ�cðaþ1Þ

LC
S
¼ l3

l2
¼

Zþ1

�1

FðxÞð3xFðxÞ � 3x þ mÞdFðxÞ

Zþ1

�1

FðxÞðx � mÞdFðxÞ

atF(β) is the upper limit of the integral F given below, where Φ(�) is the cumulative probability of the normal distribution N(0,1):

F ¼ 1� 2ffiffi
p

p
ZtF
0

exp � z � b
z

� �2
" #

dz ¼ F
ffiffiffi
2

p
b
tF
� tF

� �� �
þ e4b 1� F

ffiffiffi
2

p
b
tF
þ tF

� �� �n o
bψ, ψ0, ψ@ and ψ‴ are digamma, trigamma, tetragamma and pentagamma functions, respectively.

doi:10.1371/journal.pone.0143965.t003

Generalized Exponential Distribution in Flood Frequency Analysis

PLOS ONE | DOI:10.1371/journal.pone.0143965 December 10, 2015 8 / 26



The basic statistical characteristics of both IG and GE distributions are presented in Table 3.
The polygamma functions are defined as the logarithmic derivative of the gamma function

[37]:

cðnÞðzÞ ¼ dn

dzn
cðzÞ ¼ dnþ1

dznþ1
ln½GðzÞ� for n ¼ 1; 2; 3; . . . ð4Þ

For real positive arguments z, digamma function ψ(z) is a concave increasing function of z
which satisfies the following relation [37], [38]:

cðzÞ ¼ lnðzÞ � 1

2z
� 1

12z2
þ 1

120z4
� 1

252z6
þ 1

240z8
� 1

132z10
þ O

1

z12

� �
ð5Þ

Differentiating Eq 5 appropriate number of times, one gets the evaluations of polygamma func-
tions that can be used for numerical calculations instead of analytical formulas.

Only the first two linear moments of GE distribution have been derived so far [20]. The for-
mula for its third linear moment (λ3) and thus for the linear skewness coefficient (LCS) has
been derived by the authors (see Appendix) and presented in Table 3. Since the linear moments
of IG distribution have no analytical form, their integral formulas are applied for computa-
tional calculations and the trapezoidal rule is used for approximation of the definite integral
[39]. The details concerning the derivation of the formula for the quantile corresponding to
probabilities of non-exceedance F (xF) for IG distribution are shown in [27].

As shown in Fig 4, for the variation coefficient CV equal to 0.41, the skewness coefficients CS

of both GE and IG distributions are the same and amount to 1.23. As the two basic characteris-
tics for the two-parameter distributions are equal, the shapes of distribution density functions
are almost identical; see solid lines in Fig 6. However, the PDFs are not identical, since the val-
ues of kurtosis CK = μ4 / μ2 vary and equal to 5.67 and 3.68 for GE and IG distributions, respec-
tively. As you move away from CV = 0.41, the differences in the values of CS of both
distributions increase (Fig 4); therefore, the shapes of their density functions differ from each

Fig 6. Probability density functions of GE and IG distributions for μ = 1.0 and selected values of CV and thusCS.

doi:10.1371/journal.pone.0143965.g006
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other. This is exemplified by CV = 0.8 and corresponds to the values CS = 1.69 and CS = 2.4 for
GE and IG distributions, respectively; see solid lines in Fig 6.

Discrimination Procedures
The main disadvantage of using the wrong form of distribution for a flood series is that it over-
or under-designs the hydraulic structures. Even if the sample size is not sufficiently large for
making a proper choice among alternative distribution functions, a selection method is still
needed and moreover all available information should be utilized for it. To find the best fitting
model to empirical data from the set of competing models, a discrimination procedure is
required. It must define a test statistics as well as a decision rule indicating the action to be
taken for the sample under consideration. One can also prioritize all competing models accord-
ing to the values of the selection criterion. However, the use of a discrimination procedure
without the knowledge of its performance for the considered set of PDFs may be “a foolhardy
gamble” [40] and may lead to erroneous conclusions [21]. To increase the efficiency of the
model selection techniques in FFA, the use of several discrimination procedures along with the
knowledge of their efficiency for a particular case is advisable.

K procedure

The K procedure [41], [42] of model selection is based on the likelihood functions Li ¼ �
N

j¼1
fiðxjÞ

for i = 1,. . .,k and k is the number of considered distributions expressed by their density functions
fi. In fact, the K procedure is equivalent to the Akaike information criterion (AIC) [43] for distri-
butions with the same number of parameters. The procedure points out the model with the high-
est value of the logarithm of the likelihood function as the true or the closest to the true model
among all competing models, i.e.:

max
i¼1;...;k

max
ŷ

lnLiðŷÞg( #
ð6Þ

2
4

where ŷ is a set of distribution parameters evaluated by any estimation method. In this study,
three methods of the assessment of parameters and, thus, of flood quantiles are applied, i.e. the
method of moments (MOM) (e.g. [44]), the method of linear moments (LMM) (e.g. [19]), and
the maximum likelihood method (MLM) (e.g. [45]). These methods were applied for the IG and
GE distributions in [27] and [46], respectively. The accuracy of the estimates of large quantiles
obtained from these three methods for the two- and three-parameter log-normal and GEV distri-
butions have been analyzed in [47] both in the case of true and false hypothetical models, while
the asymptotic bias of a quantile caused by the wrong distributional assumption has been analyti-
cally derived for a wide set of two-parameter distributions in [48], [49] and [17].

QK procedure
The QK discrimination procedure bases on the statistics that is invariant under scale transfor-
mation of the data [30]:

Si ¼
Z 1

0

fiðlx1; . . . ; lxNÞlN�1dl ð7Þ

where N is the sample size and fi is the probability density function with scale parameter equal
to one for k alternative models, i = 1,. . .,k. The unknown shape parameter of each of the
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considered distributions is estimated by the MLMmethod and substituted into Eq 7. As the selec-
tion rule, Quesenberry and Kent [50] proposed to choose the model which corresponds to the
highest value of the Si statistics among competing PDFs. They showed that theQK discrimination
procedure minimizes the sum of the probabilities of selecting the incorrect families of distribution.
In practice the logarithm of the selection statistics Si instead of the statistics itself is usually applied:

max
i¼1;...;k

½ln Si� ð8Þ

The analytical formula for the logarithms of the Si statistics of the inverse Gaussian distribu-
tion has been derived and published with small editorial error in [21]. Therefore, its corrected
form is given below:

ln SIG ¼ lnð2Þ þ N
2
ln

b
p

� �
þ 2Nb� 3

2
N lnðxÞ þ N

4
ðlnðxÞ � lnðx�1ÞÞþ

þ ln

(
KN
2

2Nb
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x � x�1

ph ig ð9Þ

where Kν is the modified Bessel function of the second kind (e.g. [37]). Since we failed to get
the analytical QK formula for the generalized exponential distribution, the selection statistics
ln SGE has been calculated numerically from the definition Eq 7 using the trapezoidal rule for
approximation of the definite integral (e.g. [39]).

KS procedure
The KS procedure employs the Kolmogorov-Smirnov statistics Dmax

i proposed by Kolmogorov
[51]. The statistics is oriented to measure the goodness of fit between the hypothetical and
empirical distributions and, in terms of probability of exceedance, it has the form (e.g. [52]):

Dmax
i ¼ max

j¼1;...;N
jpiðxj:NÞ � p̂j:N j ð10Þ

where pi(xj:N) expresses the theoretical probability of the j-th element of the non-ascending
ordered random sample x1:N �. . .� xN:N from the i-th distribution (in the set of k alternative
distributions) and p̂j:N is its empirical probability given here by the Weibull formula:

p̂j:N ¼ j=ðN þ 1Þ ð11Þ

The model selected is the one which corresponds to the lowest value of Dmax
i function among

all considered models, i.e.:

min
i¼1;...;k

½Dmax
i � ð12Þ

Statistics Dmax is typically used as the test statistics in the Kolmogorov-Smirnov test of good-
ness of fit a distribution to the data. An attractive feature of Dmax is that its distribution does
not depend on the underlying CDF being tested [53].

R procedure
Since no simple statistical model can reproduce the dataset in its entire range of variability, it
seems to be a right idea that the shape of the distribution tail should be a leading statistics when
choosing a hypothetical distribution. Some guidelines and procedures for selecting the class of
distributions that provides the best fit to the sample extremes are presented, for example, in [54–
55]. However, there is a problem with a small number of data from the scope of the tail.
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The R procedure follows the thought of fitting the model to the data in the range of the distri-
bution tail. The parametric methods of the estimation of a model density function are asymptoti-
cally unbiased, which means that the assessment of any model parameter tends to its exact value
for the sample withdrawn from the population of known distribution function. Then, in particular,
the estimate of any quantile converges to its true value. Basing on this rule, the differences between
the estimates obtained from various methods have been used to assess model fitting to the sample.
The procedure of model discrimination has been explicitly proposed in [22] and based on the dif-
ference between 1% quantile assessment ðx̂1%Þ provided by the method of moments and the maxi-
mum likelihood method. The 1% quantile assessment is the most commonly used design value
and corresponds to a probability of exceedance p = 0.01 (i.e. F = 0.99), expressed as a percentage.
According to the relation between the probability and return period (Eqs 2 and 3), the x̂1% deter-
mines the probable maximum flow which appears, on average, once in 100 years.

Here, two discrimination statistics, R1
i and R

2
i , are proposed, for i = 1,. . .,k and k being the

number of competing PDFs:

R1
i ¼ jx̂MLM

1%ðiÞ � x̂MOM
1%ðiÞ j ð13Þ

R2
i ¼ jx̂MLM

1%ðiÞ � x̂LMM
1%ðiÞj ð14Þ

where x̂MOM
1%ðiÞ ; x̂

LMM
1%ðiÞ; x̂

MLM
1%ðiÞ are the 1% quantiles estimated by the moment method, the linear

moments method and the maximum likelihood method, respectively. For both discrimination
statistics (Eqs 13 and 14), the best model is the one with their lowest value:

min
i¼1;...;k

½R1
i � ð15Þ

min
i¼1;...;k

½R2
i � ð16Þ

Note that for normal distribution the MOM and MLMmethods are equivalent. Therefore,
if the normal distribution is among the alternative distributions, it would be chosen by the R pro-
cedure. What's more, all three estimation methods also give the same estimate of the mean for
gamma and the two-parameter inverse Gaussian distributions. This gives for these distributions
the similarity of the estimates of quantiles for these three methods in the range of the main prob-
ability mass and, to a certain extent, for higher quantiles as well. Therefore, to use the R proce-
dure properly, the knowledge of its performance for the considered set of PDFs is required.

Evaluation of Efficiency of Discrimination Procedures
Each discrimination procedure is considered to be of universal use, i.e. can be applied for
model selection among any set of alternative PDFs, regardless of the sample size. However, the
real drawback appears when for a small or medium sample size the discrimination procedures
tend to favour some alternative distributions.

Discrimination between the generalized exponential and other two-parameter distributions
has been already investigated in respect to the gamma [34], Weilbull [32] and log-normal [35]
distributions. The ratio of the maximized likelihood functions has been used there to determine
the probability of correct selection. Additionally, the selection among the We, LN and GE dis-
tributions has been studied in [56]. Here, the discrimination between the generalized exponen-
tial and the inverse Gaussian and vice versa is the subject of investigation. The efficiency of
four procedures of discrimination has been evaluated using simulated data with GE as true (T)
model and IG as a false (F) one and vice versa. S = 10,000 pseudo-random samples have been
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generated from the GE and IG distributions, respectively, for sample sizes N = 20, 50 and 100.
To unify the distributions with respect to parameters, the original parameters were replaced by
the mean μ and the variation coefficient CV. Without a loss of generality, the mean equal to one
is assumed. The variation coefficient varies from 0.3 to 1.0; this covers the range of CV values
for Polish data (see Fig 1). The results available in the literature [21], [22] indicate significant
differences in the values of the PCS obtained by the K and QK discrimination procedures for
different pairs of distributions and small sample sizes generated. A similar result was expected
for the pair of distributions IG and GE. However, to our surprise, the values of PCS according
to the K discrimination procedure (Fig 7) are almost identical to the values from the QK proce-
dure (Fig 8). The differences between these two procedures are shown in Fig 9.

The values of the probability of inconsistent selection (PIS) in Fig 9 mean that for a single
sample generated from the assumed PDF, one of the procedures, K or QK, points out the right
PDF (correct selection), while, at the same time, the latter procedure points out the wrong PDF
(incorrect selection). In other words, the values of PIS are the percentages of inconsistency of
the two procedures.

We have detected the identity of the K and QK procedures for the pairs of the inverse Gauss-
ian with log-normal or gamma distributions. This issue will be further investigated. However,
it seems that the K and QK procedures of discrimination are equivalent when IG is one of the
alternative distributions, which is a unique feature of this distribution.

Finally, the results obtained from the KS and both variants of R discrimination procedures,
i.e. R1 and R2, are presented in Figs 10–12, respectively.

PCS for the pair of GE and IG distributions
It is quite clear from the above figures that the PCS increases with increasing sample size, i.e.
the probability of correct selection is the smallest for 20-element samples and the highest for

Fig 7. Probability of correct selection [%] for competing GE and IG distributions by the K discrimination procedures.

doi:10.1371/journal.pone.0143965.g007
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100-element samples. The exception is the R2 procedure applied for the true GE distribution
with IG as an alternative within the range of variation coefficient CV from 0.3 to 0.45 (Fig 12).
It is also clear that as CV moves away from the value around 0.4, the PCS increases. For all

Fig 9. Probability of inconsistent selection [%] for competing GE and IG distributions by the K orQK discrimination procedures.

doi:10.1371/journal.pone.0143965.g009

Fig 8. Probability of correct selection [%] for competing GE and IG distributions by theQK discrimination procedures.

doi:10.1371/journal.pone.0143965.g008
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considered discrimination procedures, if the variation coefficient is about 0.4, a sharp decline
of the PCS value is visible. Only for the KS procedure the decrease of PCS value is more evident
when IG is the true sample distribution (Fig 10), while for the other procedures this effect is
stronger when GE is the true sample distribution (Figs 7, 8, 11 and 12). For example, for the K
and QK procedures, when the data are drawn from the IG distribution, the PCS is about 63% at
the minimum point for all the considered sizes of the sample, while if the data are drawn from
the GE distribution, the PCS decreases up to about 34% for the sample size N = 20, i.e. then
66% of samples generated from GE distribution will be wrongly recognized as originated from
IG parent distribution. The lowest value of the PCS among the GE and IG models for CV * 0.4
is related with the fact that for the variation coefficient equal to 0.41, the skewness coefficients
CS of both distributions are the same and amount to 1.23. Hence, for the range of CV around
0.4, the investigated distributions have a similar shape, as shown in Fig 6.

Similar results as for the procedures K and QK are obtained for the procedure R (Figs 11
and 12). However, note that for the variant R2 (Fig 12), the minimum of the PCS obtained for
the case of T = GE and F = IG decreases below 30%. In general, if GE is the true sample distri-
bution and CV is lower than 0.5, it does not make sense to use any variant of R discrimination
procedure, since the probability of the correct selection of the distribution is lower than 50%.
Then the decision based on “head and tail” rule is more efficient and easier to use. The same
applies to the procedures K and QK and CV about 0.4, depending on the sample size N.

Fig 10. Probability of correct selection [%] for competing GE and IG distributions by the KS discrimination procedure.

doi:10.1371/journal.pone.0143965.g010
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For all four discrimination procedures, the generalized exponential model is better recogniz-
able than the inverse Gaussian, for moderate and large CV values, i.e. CV > 0.5, while for small
CV values, i.e. CV < 0.5, the GE model is favoured only by KS procedure (Fig 10) and IG model
is favoured by K, QK and R procedures (Figs 7, 8, 11 and 12).

For the range of CV from 0.6 to 0.8, which covers most data of Polish Rivers, the probability
of correct selection among GE and IG distributions is quite large. Except of some cases of
20-element series drawn both from the IG and GE distributions, the PCS is higher than 70%.
However, it should be remembered that the above experiment relates to a special theoretical
case when one of the two competing distributions is the true one. If there are more alternative
models, the probability of the selection of the true distribution significantly decreases. Simi-
larly, the PCS is smaller if a set of alternative distributions consists of the PDFs which are simi-
lar in type to the true distribution. Note, the exponential distribution is a special case of the
gamma, Weibull and generalized exponential models, if the shape parameter is equal to one,
being a special case of Pareto, if the shape parameter is equal to zero. Then the PCS among any
pair of the distributions from the set above would be lower than the PCS among GE and IG
distributions.

Fig 11. Probability of correct selection [%] for competing GE and IG distributions by the R1 discrimination procedures.

doi:10.1371/journal.pone.0143965.g011
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Asymptotic Model Error in Respect to the Upper Quantile
In flood frequency analysis, the assumed (hypothetical) model is treated as the correct (true)
model and any assessment of the accuracy of the estimation of its parameters and quantiles is
usually made assuming that the considered random sample is derived from that probability
distribution. In this way, the error of the choice of false distribution, i.e. the model error, is
omitted, although this error can have a significant impact on the accuracy of the quantiles esti-
mation. For a given estimation method, the total bias of quantile estimate consists of a sam-
pling bias which asymptotically converges to zero and a model bias caused by wrong
distributional selection. Those biases can be of opposite signs. The theoretical background for
the asymptotic bias caused by false distributional assumption for various estimation methods
has been presented in [48] followed by derivations for various pairs of (True, False) distribu-
tions in [49], [17].

Here, the set of competing PDFs involves the generalized exponential and inverse Gaussian
distributions and the interest is in the derivation of the asymptotic model bias of the 1% quan-
tile estimate; when the GE is the true (T) population model, then the IG is falsely (F) adopted
for the hypothetical PDF, and vice versa. Three estimation methods presented in section 3.1
are used as approximation method of T distribution by F distribution. The relative model bias

Fig 12. Probability of correct selection [%] for competing GE and IG distributions by the R2 discrimination procedures.

doi:10.1371/journal.pone.0143965.g012
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is defined for each approximation method as:

RBðx̂1%Þ ¼
x̂1%ðF=TÞ � x̂1%ðTÞ

x̂1%T
ð17Þ

To present a unified treatment for both distributions and three estimation methods, the
mean of the T distribution equal to 1.0 and the variation coefficient CV varying from 0.3 to 1.0
are considered in the experiment. The relative asymptotic bias of x̂1% is determined analytically
by the methods of MOM and LMM, while to use MLM, the samples of size N = 9000 have been
generated from the GE and IG distributions, in turn. The results are presented in Figs 13 and 14.

One can see that the incorrect choice of distribution for describing the chosen data series
may lead to large errors of the 1% quantile estimate, especially if the maximum likelihood
method is applied. For example, if the large sample from the GE distribution of the variation
coefficient CV = 0.8 is falsely modelled by the IG distribution, then the relative asymptotic bias
of x̂1% equals 7% and 16.2% for the MOM and LMM estimation methods, respectively, while it
is nearly 66% for the MLM (Fig 13). In the opposite case, i.e. when the sample is derived from
the IG distribution and the GE model is mistakenly assumed, the rank of estimation methods
is similar, except that the bias sign is negative. For CV = 0.8 and MLM estimation method, the
RBðx̂1%Þ is equal to -18.8%, while for LMM and MOMmethods, the RBðx̂1%Þ is equal to -12.2%
and -6.59%, respectively (Fig 14). The differences in the value of RBðx̂1%Þ obtained from the
MLM and two other estimation methods are significant, especially in the case of T = GE,

Fig 13. Relative asymptotic bias [%] of x^1% from T = GE distribution, assuming F = IGmodel.

doi:10.1371/journal.pone.0143965.g013
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F = IG (Fig 13), being lower in the case of T = IG, F = GE (Fig 14). This finding essentially
diminishes the practical usefulness of MLM in hydrological extremes analysis, because its effi-
ciency may not compensate for the (frequently) large bias produced by the model misspecifica-
tion, which is highly probable in hydrological reality.

Case Study
In order to analyze the GE and IG distributions fitting to the Polish data, four gauging stations
have been selected as examples. These are Rudze, Stróża, Koszyce Wielkie and Wadowice sec-
tions on the Wieprzówka, Raba, Biała and Skawa Rivers, respectively. Their basic characteris-
tics are presented in Table 2 under the numbers 15, 16, 26 and 14, in turn. All four stations are
located in the mountain area in the south part of Poland (Fig 3) and are characterized by a high
dynamics of flows. For each gauge, the 90-year series of annual maximum flows from the
period 1921–2010 has been investigated. Both two-parameter models, namely GE and IG, have
been used to reproduce the data series. The 1% quantile has been estimated by three estimation
methods, MOM, LMM and MLM. To find the best fitted distribution among the two compet-
ing PDFs, four discrimination procedures have been applied, namely K, QK, KS and R. Since
the alternative distributions contain the same number of parameters, any procedure of model
selection can be used for the assessment of the best fitting model. However, for a group of
PDFs containing both two- and three-parameter functions, a discrimination procedure which
takes into account the number of model parameters should be used, such as, for example, the

Fig 14. Relative asymptotic bias [%] of x^1% from T = IG distribution, assuming F = GEmodel.

doi:10.1371/journal.pone.0143965.g014
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Akaike information criterion (e.g. [43], [57]). Otherwise, the three-parameter distribution
would always be better than their counterpart two-parameter models.

Accuracy of the fit of models
The values of 1% quantile estimates for selected gauging stations are presented in Table 4.

For each section, the values of x̂1% differ significantly between the distributions, when the
MLMmethod is used for their estimation, while the differences are the smallest when the
MOMmethod is applied. Generally, while estimating the upper quantiles, the MLM is the
most sensitive in respect to model choice and the MOM is the most stable estimation method.
To find which of the distributions is the best fitting for each annual maximum flow series and,
in particular, to find which of the estimates of 1% quantile is the most reliable, the four proce-
dures of discrimination are applied and their results are shown in Table 5. The bold font on a
gray background means that for particular gauging stations the model is the best fitted among
two alternative PDFs.

For the Rudze gauging station, all four procedures of discrimination point out the general-
ized exponential distributions as better fitted than the inverse Gaussian. The same is true for
the Stróża station, with the exception of the KS discrimination procedure and the MLM estima-
tion method when the IG distribution fits to the data series better. For the Koszyce and

Table 5. Distribution choice by the four discrimination procedures for annual maximum records of selected gauging stations.

Discrimination procedure Estimation method Rudze Rudze Stróża Stróża Koszyce Koszyce Wadowice Wadowice

GE IG GE IG GE IG GE IG

K procedure MOM -451.54 -482.78 -565.82 -568.16 -587.89 -589.08 -582.13 -580.29

LMM -450.00 -466.66 -565.95 -566.18 -588.30 -586.47 -582.17 -579.51

MLM -449.86 -457.33 -565.60 -565.73 -587.80 -586.27 -581.53 -579.49

QK procedure MLM -451.39 -458.78 -567.27 -567.36 -589.44 -587.89 -583.23 -581.17

KS procedure MOM 0.1052 0.1500 0.0670 0.0733 0.1097 0.1219 0.0656 0.0850

LMM 0.0933 0.1282 0.0640 0.0712 0.0958 0.0776 0.0647 0.0651

MLM 0.0918 0.1656 0.0762 0.0704 0.1181 0.0755 0.0913 0.0652

R procedure R1 20.298 117.29 30.989 132.82 26.929 183.13 61.871 91.181

R2 6.8190 82.382 38.889 61.935 60.540 54.553 63.859 16.917

doi:10.1371/journal.pone.0143965.t005

Table 4. The 1% quantile estimates for selected gauging stations in Poland, assuming GE and IG dis-
tributions, respectively.

Gauging station Estimation method x̂1% (GE) x̂1% (IG)

Rudze MOM 200.08 212.81

LMM 213.56 247.71

MLM 220.38 330.09

Stróża MOM 787.69 838.02

LMM 795.59 908.90

MLM 756.70 970.84

Koszyce MOM 1000.7 1065.0

LMM 1034.3 1193.5

MLM 973.80 1248.1

Wadowice MOM 956.85 1017.1

LMM 958.83 1091.4

MLM 894.97 1108.3

doi:10.1371/journal.pone.0143965.t004
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Wadowice sections, the choice of the best fitting model varies greatly, depending on the dis-
crimination procedure and the estimation methods. In the case of the Koszyce station, in most
variants of procedure and method (6 out of 9 cases), the IG distribution is pointed out as the
better fitted than the GE. The superiority of the IG distribution over the GE is indicated only
by the K and KS procedures along with the MOMmethod and by the variant R1 of the R proce-
dure. Similarly, the data series from the Wadowice gauging station should be modelled using
IG distribution rather than GE, according to the K, QK, KS procedures with the MLMmethod
and the variant R2 of the R procedure. In the other three cases, the GE distribution over the IG
distribution is favoured.

Despite the similar hydrological regime and the same observation period, for each gauging
station, the best fitted model depends on the discrimination procedure and the estimation
method. However, as shown above, the superiority of GE distribution over the previously dom-
inant IG distribution, detected in many cases, proves that GE occupies one of the leading posi-
tions among distributions commonly used in flood frequency modelling of Polish data.

Aggregation of models
The results of PCS studies and discrimination procedures confirm our belief as to the uncer-
tainty of the identification of the true distribution type among alternative distributions.
Besides, the general considerations lead to the conclusion that the true distribution type is
beyond the cognitive capabilities. Even if the true distribution exists, it would probably have
countless parameters, unidentifiable from the available observation series. In summary, we are
inclined to believe that, for a set of alternative models, the quantile estimate obtained from
each model contains a piece of information about the true quantile value. This piece of result
should be provided with a proper weight, depending on the quality of the fit of a particular
model to the data series. Such a multi-model approach (called “aggregation”) in the estimation
of the extreme value distribution quantiles has been presented by Bogdanowicz [23]. The
aggregated quantile ðxp%Þ is defined as a sum of quantiles estimated by MLMmethod for each

of alternative distributions multiplied by their weights wi. The weights are defined using the
likelihood function:

wi ¼
LiXk

m¼1

Lm

for i ¼ 1; . . . ; k ð18Þ

Eq 18 is valid for the case when all distribution candidates have the same number of parame-
ters; otherwise, the Akaike information criterion is applied for the definition of the distribution
weights. The weights can be interpreted as the conditional probability of the adequacy of i-th
model, so the aggregated quantile is a conditional expected value.

The aggregation data for four investigated gauging stations are presented in Table 6.
The estimates of upper quantiles obtained from the aggregation method seem to be more

reliable and stable than from the classical approach, since the aggregation allows to partly over-
come the problem of the arbitrary choice of the best fitted model. Moreover, the aggregation of
models mitigates the problem of fluctuations of the upper quantile estimates, used as the
hydrological design value along the river.

Summary and Conclusions
Flood frequency analysis has been used for designing hydrological structures for over the cen-
tury. Despite many distributions proposed for fitting the flood extremes data, the analysis of
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the annual maximum flow series for Polish Rivers reveals that the inverse Gaussian and gener-
alized exponential distributions seem to be a desirable complement.

Applying a discrimination procedure without the knowledge of its performance for the con-
sidered PDFs may lead to erroneous conclusion and finally to erroneous quantile estimates.
The experiment on the probability of correct selection (PCS) reveals that the values of PCS are
fairly high for K, QK, KS and R procedures of discrimination. However, they sharply decrease
in the vicinity of the variation coefficient 0.4. Applying the K, QK and R procedures, the PCS is
even lower than 50% if the GE is the true sample distribution, being higher than 60% if the IG
is the true sample distribution. If the probability of selection of the right PDF is mostly much
lower than 50%, which is observed here for the range of CV between 0.3 and 0.5, it does not
make sense to employ the sophisticated procedures of discrimination, since a simple “head and
tail” rule is more efficient and easier to use. However, for the range of CV from 0.6 to 0.8, which
covers most data of Polish Rivers, the probability of correct selection among GE and IG distri-
butions is quite large for all four discrimination procedures, being higher than 70% for moder-
ate and large sample sizes.

The analysis of fitting the generalized exponential and inverse Gaussian distributions to the
90-year series of annual maximum flows for four selected gauging stations in Poland, reveals
that the assessment of 1% quantile differs considerably for various models and estimation
methods. The choice of the best fitting model (distribution type and its parameter values) is
not unique. It depends on the discrimination procedure used (criterion for the selection of the
distribution) and the method of estimation. It is characteristic for hydrological size of samples.
The results from four procedures of discrimination applied to modelling of annual peak flow
series for four Polish gauging stations show in many cases the superiority of GE distribution
over IG distribution, which has been dominant in FFA in Poland so far. This shows that GE
occupies one of the leading positions among distributions commonly used in flood frequency
modelling of Polish data and can be included into the group of the alternative distributions.
The solution to the problem of the choice of the best fitting model can be the aggregation of
quantiles obtained from all candidate distributions.

Despite the use of multiple distributions for flood frequency analysis, there is still a room
for new models. However, one should remember that the choice of the distribution is just one
aspect of the modelling of flood frequency, besides the choice of the estimation method and
discrimination procedures. As shown in the paper, the selection of each of the above elements
does have a significant impact on the estimate of desirable quantile. Moreover, note that the
proliferation of statistical techniques causes the heterogeneity of results and finally leads to an
increase the uncertainty of flood quantile estimates, instead of leading to clear solution. This
stands in contrast with the expectation of engineers and hydrologists as they want to have a
unique value, not accepting the uncertainty.

Table 6. The aggregation of 1% quantile of annual maximum flow series for selected gauging stations in Poland.

Gauging station weight weight x̂1% (GE) x̂1% (IG) x1%

GE IG

Rudze 0.9994 0.0006 220.38 330.09 220.44

Stróża 0.5325 0.4675 756.70 970.84 856.81

Koszyce 0.1784 0.8216 973.80 1248.1 1199.2

Wadowice 0.1150 0.8850 894.97 1108.3 1083.8

doi:10.1371/journal.pone.0143965.t006
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Appendix

Derivation of the third linear moment λ3 for GE distribution
The cumulative distribution function of the three-parameter generalized exponential distribu-
tion has the form:

FðxÞ ¼ ð1� e�lðx�εÞÞa ðA:1Þ
where ε, λ, α> 0 are the location, scale and shape parameters, respectively. Hence we get the
following quantile:

x ¼ ε� lnð1� F1=aÞ
l

ðA:2Þ

The third linear moment can be defined using the formula [19]:

l3 ¼ 6b2 � 6b1 þ b0 ðA:3Þ

where βr, for r = 0,1,2,. . ., are the probability weighted moments of a random variable:

br ¼
Zþ1

�1

xFrðxÞdFðxÞ ðA:4Þ

Substituting Eqs A.1 and A.2 to Eq A.4 for r = 0,1,2, we get the probability weighted moments
of forms:

b0 ¼ m ¼ εþ cðaþ 1Þ � cð1Þ
l

ðA:5Þ

b1 ¼
1

2
εþ cð2aþ 1Þ � cð1Þ

l

� �
ðA:6Þ

b2 ¼
1

3
εþ cð3aþ 1Þ � cð1Þ

l

� �
ðA:7Þ

where ψ is the digamma function [37], [38].
Finally, after substituting Eqs A.5–A.7 into Eq A.3 and after some simplifications, the for-

mula of the third linear moment for GE distribution has a form:

l3 ¼
cðaþ 1Þ � 3 � cð2aþ 1Þ þ 2 � cð3aþ 1Þ

l
ðA:8Þ
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