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Abstract

In recent years, small-area-based ecological regression analyses have been published that
study the association between a health outcome and a covariate in several cities. These
analyses have usually been performed independently for each city and have therefore
yielded unrelated estimates for the cities considered, even though the same process has
been studied in all of them. In this study, we propose a joint ecological regression model for
multiple cities that accounts for spatial structure both within and between cities and explore
the advantages of this model. The proposed model merges both disease mapping and
geostatistical ideas. Our proposal is compared with two alternatives, one that models the
association for each city as fixed effects and another that treats them as independent and
identically distributed random effects. The proposed model allows us to estimate the as-
sociation (and assess its significance) at locations with no available data. Our proposal is
illustrated by an example of the association between unemployment (as a deprivation sur-
rogate) and lung cancer mortality among men in 31 Spanish cities. In this example, the
associations found were far more accurate for the proposed model than those from the fixed
effects model. Our main conclusion is that ecological regression analyses can be markedly
improved by performing joint analyses at several locations that share information among
them. This finding should be taken into consideration in the design of future epidemiological
studies.

Introduction

In the last decade, the use of ecological regression studies taking small areas as units of study
has become very popular. The objective of this type of study is to examine, from a geographi-
cal point of view, the relationship between a health-related outcome and exposure factors [1].
When small areas are used in this type of study, it is common to incorporate ideas and tools
from disease mapping models, which are specifically constructed to deal with these units of
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study. One of the most popular disease mapping proposals is the Bayesian hierarchical model
by Besag, York and Mollié [2], hereafter referred to as BYM. The main feature of this model
is the incorporation of two random effects to explain geographical variability among units,
one allowing for spatial dependence and another allowing for independence between them.
The BYM approach mixes these two components as a function of their weight in the observed
data.

Recently, a growing number of studies have been published on socioeconomic inequalities
in mortality at the small-area level in non-adjacent cities (or metropolitan areas) (for example,
see [3-9]). Briefly, by means of small-area ecological regression models, these studies assessed
the association between mortality and economic deprivation. However, separate regression
models were fitted for each city, so that city-specific association estimates were derived with no
further use beyond the cities in the study.

To our knowledge, only one study, by Martinez-Beneito et al., has conducted a joint analy-
sis of all cities considered [10]. That meta-analysis was carried out in a previous city-inde-
pendent analysis to obtain a general overview of socioeconomic inequalities across several
cities. In contrast to previous studies, the results of the latter (joint) analysis can be extrapo-
lated to other similar cities not included in the original study, since the available cities were
treated as a sample of large cities from the region/country of interest, and thus the results
could be generalised to the entire region/country. However, as previously mentioned, the rel-
ative risk (RR) estimates studied by Martinez-Beneito et al. [10] were derived from a previous
analysis, which considered them as completely independent quantities. That meta-analysis
performed a post-analysis of the previous independent estimates, whereas it seems much
more appropriate to estimate all of them in a single joint analysis. Such an analysis would
allow incorporation of the variability in risks both within and between cities and, if necessary,
would simultaneously allow incorporation of the dependence of these two sources of
variability.

Some of the previously-mentioned studies found a spatial pattern, at the inter-city level, of
socioeconomic inequalities in mortality, suggesting spatial dependence between cities [4,6,8].
This dependence is portrayed descriptively because it cannot be quantified objectively. For
example, Borrell et al. [4] analysed inequalities in total mortality in 16 European cities and
found that relative inequalities were greater in eastern and northern European cities and were
smaller in some western (in men) and southern (in women) European cities. This pattern had
been observed at the country-level and has both conceptual and methodological explanations
[11]. However, by analysing cities independently, spatial dependence between cities has been
ignored, even though, as already shown, the nature of the data makes it very likely that a spatial
structure can be found within them.

In this study, we propose a multilevel ecological regression model in which the first level of
the analysis consists of small areas nested within cities and the second level corresponds to the
cities themselves. This analysis allows the identification of possible spatial structures at both of
the levels considered. This proposal is illustrated by an example from real data exploring the
association between unemployment and lung cancer mortality among men in 31 Spanish cities
from 2002 to 2007.

Methods
Statistical modelling

We propose three different Bayesian hierarchical models for performing multilevel ecological
regression, all three corresponding to different assumptions. For all proposals, O;; denotes
the number of observed cases in census tract i (i = 1,. . .,n;) of city j, the administrative
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divisions used from now on to introduce the models below. Similarly, E;; denotes the
expected number of cases, 0;; the relative risk, and X;; the unemployment rate of the corre-
sponding census tract.

Model 1 (M1). As usual in disease mapping studies, we account for the spatial structure
of the relative risks 6;; within each city. To do this, we consider two random effects, as pro-
posed by Besag, York and Molli¢ (BYM). The spatial random effects for each city j (S;;) are
assumed to follow an intrinsic conditional auto-regressive distribution (ICAR) [2] with dif-
ferent variances for each city, ¢3;. Similarly, the heterogeneous (non-spatial) random effects
(H;j) are assumed for each city to follow independent normal distributions with mean zero
and variance, },;. Uniform prior distributions between 0 and a vague upper limit were
assigned to the standard deviations (o5 j and oy ;) of the random effects [12]. Note that inde-
pendent variances have been assumed for each of the cities instead of a common variance for
all of them. Thus, each city can show a distinct degree of spatial dependence in their relative
risks.

In addition to these census-tract-level random effects, each city also has a linear compo-
nent that depends on the covariate of interest, so that the relationship between this factor
and the risks can be explored. We assumed the effect of both the intercept and the covariate
to be completely different and independent for each city. Thus, M1 can be formulated as
follows:

O, ~ Poisson(E;0,), i=1,...,n, j=1,...,]

) j7
log(ng) = blj + b?j : Xij + Sij + Hij

by, by, ~ Uniform(—oo, +00)

S, ~ Intrinsic — CAR(a?,;)
H; ~ Normal(0, a},)

0y, 0y; ~ Uniform(0,1)

For [ being a suitable upper limit, making the corresponding uniform distributions vague.
This model is equivalent to performing separate ecological regressions (with BYM random
effects) for each city which, as mentioned in the Introduction, is the most common procedure
when analysing multiple cities in a single study. This model and those that follow will return
the RR per 1% increase in the unemployment rate for each city j (exp(b,;)) as the main out-
come that summarises the relationship between the covariate and the observed counts under
study.

Model 2 (M2). This model is based on M1, but now the intercepts b,; and the coefficients
associated with the covariate b,; are considered to be random effects rather than fixed effects
for each city (Model 1). Specifically, both b,; and b,; are assumed to follow normal distributions
with means and variances that are unknown but common to all the cities. In contrast to M1,
information on the values of by; and by; for j = 1,. . .,31 will now be shared between cities
through their standard deviations. The elements of these two vectors are not independent, as in
ML, but are conditionally independent, given o; and o} , respectively. Thus, they are sharing
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their information. Model 2 can be formulated as follows:

O, ~ Poisson(E;0,), i=1,...,n, j=1,...,31
log(eij) = blj + b2j X, +S; + H;

b,; ~ Normal,(, )
by, ~ Normal,(B, o} )

S; ~ Intrinsic — CAR(G;-)
Hj; ~ Normal(0, 67,,)

o, B ~ Uniform(—oo, +OO)

Gy,s Gy, Osjy Oy ~ Uniform(0,1)

In addition to the RR of death for each city (exp(b,;)), this model estimates an overall pooled
RR for all cities (exp()), or, more precisely, for the set of cities from which the available cities
are drawn. This common RR cannot be estimated in M1 because the RR in that model are con-
sidered as fully independent between cities and therefore it would make no sense to derive any
joint estimate in M1.

Model 3 (M3). Up to this point, M1 and M2 have only considered spatial dependence
within cities (at census tract level), now M3 also accounts for spatial dependence between cities
using a geostatistical approach [13]. Specifically, this new model is similar to M2 but considers
that the geographic arrangement of cities could induce spatial dependence between their RR.
M3 accounts for this spatial dependence by assuming multivariate normal prior distributions
for both b,; and b,; and modelling their covariance matrices. Specifically, these matrices are
modelled as an exponential function that depends inversely on the distance between cities, so
that the covariance is high for geographically close cities and tends to disappear with increasing
distance. Thus, M3 can be formulated as:

O, ~ Poisson(E;0,), i=1,...,n, j=1,...,31

b j?
log(01j> = blj + b2j 'Xz‘j + Sij + Hij

by; ~ Normal (2, %,

by, ~ Normal,(f, X,
5, = % exp(~d, - D)
X, = a; exp(—o,- D)

Sij ~ Intrinsic — CAR(U?]-)
H; ~ Normal(0, o7,,)

o, f ~ Uniform(—o0, +00)

)
)

Osjy Opjy 01,09 ™~ Uniform(oa l)

1, ¢, ~ Uniform(a, b)

where the extremes a and b of the uniform distribution of ¢, and ¢, are selected so that the
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covariance for any pair of cities does not take excessively low or high values that may induce
numerical problems, as suggested by Wang et al. [14].

The covariance matrix of b,; depends on 05, the standard deviation controlling the magni-
tude of these values and a correlation matrix (similarly for b;). This matrix depends on D, the
matrix of distances between cities and ¢,, which controls the decay of spatial dependence as a
function of the distance between cities. Within this model, we can also calculate R = —In(0.05)/
¢,, usually known in geostatistics as the effective range [15], which is interpreted as the dis-
tance at which the spatial dependence between cities becomes negligible. This is also an inter-
esting outcome of M3, in that it summarizes the spatial pattern observed. Finally, exp(f) can be
interpreted as an overall pooled RR for the whole study, as in M2.

All models were fitted using a fully Bayesian approach. Posterior distributions were
obtained by means of Monte Carlo methods based on Markov chains using the WinBUGS
program (version 1.4.3) [16] executed from R (version 3.1.2) [17] through the R library
R2WinBUGS (version 2.1-19) [18]. Seven Markov chains were run (in parallel) with 100,000
iterations, of which the first 10,000 were rejected as burn-in, in order to ensure the convergence
of the parameters in the model. Of these, only 1 out of every 126 iterations was retained, with
the aim of reducing the storage requirements of the simulation process. Convergence was
assessed using the Brooks-Gelman-Rubin statistic (R-hat) and the effective sample size of the
chains (n.eff). Specifically, we required the statistics R-hat<1.1 and n.eff >100 for each param-
eter in the model [19]. We also performed a visual check of the chains for a sample of the saved
variables but not a visual check of all the saved variables, which was precluded by the high
number of variables (around 2000 for each model). Posterior means were used as point esti-
mates of the parameters in the model. Some of these estimates are accompanied by their corre-
sponding 95% credible intervals (95%CI).

One of the main advantages of M3 is that, by integrating a geostatistical approach, it allows
us to predict the RRs in locations where there are no available city data. Thus, the RR can be
extrapolated to places where they cannot be directly observed, simply by the proximity of each
of these points to the cities for which information is available. Specifically, the RR can be esti-
mated for any location in the region of the study if there is a city of the same kind as those con-
sidered in the analysis. That is, if the available cities were, for example, a sample of the large
cities in a country, the predictions made would correspond to the RRs that could be expected at
any geographical location if a large city were located there. This will make these spatial predic-
tions comparable since they correspond to similar units instead of reproducing the demo-
graphic pattern of the region of study. To this end, we used Kriging Bayesian spatial prediction
as specified in part 4 of Diggle et al. [13]. Further details of this procedure are provided in S1
Appendix.

We used the deviance information criterion (DIC) [20] as a model selection criterion for
our analysis. Models with smaller DIC are preferred over models with larger DIC.

A lung cancer mortality study in Spain

The proposed models will be illustrated and assessed with a study conducted with real data.
This was a cross-sectional ecological study forming part of the MEDEA project (http://www.
proyectomedea.org/). The units of analysis were the census tracts of 31 Spanish cities (Fig 1), as
defined in the 2001 Spanish Population and Housing Census. The study population consisted
of men residing in the 31 cities during the period 2002-2007

These 31 cities accounted for 27.4% of the Spanish population in 2007 and are spread
throughout mainland Spain (Fig 1). They include the 10 most populated cities in Spain and all
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Fig 1. Geographic distribution of the Spanish cities studied.

doi:10.1371/journal.pone.0133649.g001

of them are within the 80 most populated Spanish cities. Therefore, they represent a sample of
the most populated Spanish cities.

In this study, we analysed male deaths due to malignant neoplasm of the trachea, bronchus
or lung (henceforth ‘Tung cancer’) during the period 2002-2007. Specifically, we selected deaths
classified in codes C33 and C34 of the International Classification of Diseases, 10™ revision
(ICD-10). Mortality data were obtained from the mortality registers of the corresponding
autonomous communities. Population data were obtained either from the register of inhabi-
tants for each city or from the National Institute of Statistics. Finally, as a covariate, we
included the 2001 unemployment rate, defined as the percentage of unemployed workers in
the total labour force. This socioeconomic indicator was obtained from the 2001 Spanish Popu-
lation and Housing Census. Unemployment was used as a surrogate of material deprivation,
which has been previously claimed to be associated with lung cancer mortality [7]. Although
more elaborate deprivation indexes could have been employed for our illustration, the use of
an optimal deprivation indicator is neither within the scope of this paper nor of this particular
example. All data were available at census tract level for each city.
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The expected numbers of cases per census tract to be used in the above-mentioned models
were calculated by indirect standardization, taking the age-specific (quinquennial groups) male
lung cancer mortality rates for the full set of cities as the reference.

For M3, we estimated the posterior mean of the RR, the posterior standard deviations of the
RR and the probability of the RRs being greater than 1 in each of the 5,221 locations on a grid
of points that we considered throughout mainland Spain. These estimates were calculated fol-
lowing the geostatistical approach mentioned above.

Results and Discussion

First, after running all three models for the lung cancer dataset, model selection was performed
using the DIC statistic, which indicated M3 as the model showing the best fit (DICy; =
36408.6, DICyp, = 36392.1, DICy3 = 36389.0). According to Spiegelhalter et al. [20], differences
between M2 and M3 (their DICs differ between 3 and 7 units) are moderate, although both
models are clearly better (their DICs are more than 7 units higher) to M1 in terms of DIC.

Comparison of the RRs for all cities (Fig 2) revealed that those for M2 and M3 are much
more stable than those for M1. First, the posterior means of the RRs for different cities were
more similar for M2 and M3 and, second, their 95% Cls were substantially narrower. For
example, for the city of Santiago, we obtained the following RRs (95% ClIs) for each model:
RRy1, 1.036 (0.982-1.091); RRypp, 1.024 (1.014-1.034); RRy3, 1.025 (1.016-1.035). The widths
of the CIs for M2 and M3 are reduced by >75% with respect to those of M1. Consequently, the
use of one model or another can lead to very different conclusions.

As previously mentioned, it is common to analyse each city separately and thus to report
the results of M1, which show more variability. In our opinion, the joint analysis of all cities
using M2 and M3 is more appropriate, since the use of random effects allows information to be
shared between cities, taking into account that they are not isolated entities. Although M2 and
M3 estimated similar RRs in our particular study, M3 may sometimes have particular advan-
tages. For example, for cities with few small areas, the uncertainty of the posterior distribution
of the RR will be very high (resulting in a wide 95% CI). In this case, both M2 and M3 will
markedly improve the RR estimate, although, if there is a spatial pattern in the RRs, M3 will
take advantage of it, returning more accurate estimates. Moreover, if the data show weak spatial
dependence, M3 will be able to reproduce that kind of pattern by yielding a short effective
range and therefore the use of a spatial model in that case should not be a problem.

As described in the previous section, M3 may use (Bayesian) Kriging to predict the RR at
locations where there is no available information. Fig 3 shows a map of the predicted RRs on a
grid of 5221 points throughout the whole mainland of Spain. Grid points are horizontally
spaced about 11.5 kilometres apart and are vertically spaced about 8.7 kilometres apart. This
figure shows a clear northeast-southwest spatial pattern for the RRs, decreasing toward the
southwest. This spatial pattern is confirmed by the value of the effective range, which has a pos-
terior mean of 426 kilometres. That is, at least 426 kilometers is the distance that must be cov-
ered to find two cities with virtually independent RR estimates (note that the longest straight-
line distance within peninsular Spain is 1079 kilometres). As mentioned in the introduction,
various European studies analysing data from different countries [11] or cities [4] have sug-
gested the existence of a spatial pattern in socioeconomic inequalities for certain causes of
death. However, none of these studies have quantified or shown this pattern and their conclu-
sions were based only on the visual interpretation of their results. M3 is able to estimate this
spatial pattern and even to quantify its ‘spatiality’ in terms of its effective range, allowing com-
parison of different patterns corresponding to different causes of mortality. Moreover, M3 also
estimates the spatial standard deviation, 0,, which quantifies the variability of RR between
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cities. Therefore, M3 provides two parameters (the effective range and the spatial standard
deviation), allowing objective comparison of any two geographical patterns.

Estimating the full posterior distributions of the predicted RRs allows visualization of other
estimates beyond their posterior means, as in Fig 3. Thus, for each RR, the posterior probability
of being greater than 1 could be plotted, in a similar manner to that shown Fig 3. In our study,
this plot is not shown since the association found is very strong for the whole region of the
study, making those probabilities higher than 0.9 all around, and thus producing a completely
flat map. Nevertheless, this is not always the case, especially in studies without a clear associa-
tion between the covariate and the cause of mortality. In these cases, it would be possible to dis-
tinguish between areas with significant association and those without and, thus, to identify
which of the risks shown in Fig 3 are ‘significantly higher than 1’ and which are not. Instead of
the map with the above-mentioned probabilities, we plotted a map with the posterior standard
deviation of the RRs at each point in the grid considered (Fig 4). In this map, darker regions
correspond to regions with larger posterior standard deviations (those with least accurate RRs
estimates). Therefore, dark values are mainly observed in the regions furthest away from any of
the cities in the study.

Finally, M2 and M3 also yield overall RRs (oRR) for the cities as a whole. The posterior
means of the oRR for these two models are oRRy, = 1.023 (95%CI = 1.019-1.028) and 0RRy3
=1.025 (95%CI = 1.019-1.031). Both models provided very similar posterior means for oRR,
although the posterior variability of M3 was greater, a result of considering correlation in the
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data (dependence makes estimates less accurate). Therefore, considering the data as spatially
independent, when they are not, would lead to erroneously optimistic estimates (in terms of
their variability). Moreover, if M3 estimated very little variability between cities (0, =~ 0), it
would make particular sense to estimate an overall RR for the cities as a whole, instead of inde-
pendent (and noisy) estimates of this quantity for each city.

Conclusions

In this study we propose a new ecological regression model for studies in small areas of non-
adjacent cities. This model merges a frequently used proposal in disease mapping, the BYM
model, with Bayesian geostatistical models [21], both of which are jointly integrated in a multi-
level approach.

For this kind of multicentre study, it is common to perform independent analyses for each
node, in our case cities, and to subsequently merge their results. In this paper, we show that
this procedure overestimates the uncertainty of RRs in comparison to models that jointly ana-
lyse all cities, sharing their information by means of random effects (M2 and M3). Further-
more, the fixed effects modelling of M1 makes their estimates only applicable to the set of cities
considered in the study, that is, their results cannot be extrapolated to any other city, which
limits the interest of the results. In this regard, the results from M2 and M3 are much more use-
ful and general.
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In our illustration, although the results for M2 and M3 were similar in terms of the esti-
mated RR for each city, in our opinion, M3 shows at least three clear advantages over M2. First,
it allows us to account for the spatial dependence both within and between cities. Second, it
allows us to objectively detect and quantify (using the effective range) the spatial structure in
the data. Finally, RRs (and even their significance) can also be predicted at locations with no
available data. In our opinion, because of these advantages and the ability of M3 to adapt to
patterns showing different degrees of spatiality (even spatial independence), it is the most
appropriate model for this kind of study.

Finally, when studying the association between a health outcome and an exposure factor, it
may be useful both to "map" at locations where information is available and to visually assess
the similarity of their spatial patterns. The proposed model provides a different approach,
allowing this association to be directly plotted in a continuous map. In our opinion, this
improves understanding of this association. For example, as an end result, this article describes
the spatial distribution of socioeconomic inequalities in mortality, allowing identification of
the areas with the greatest inequalities, which are therefore the most amenable to intervention.
Thus, the proposed models may be a valuable tool for policy makers to make a more appropri-
ate investment of resources.

Supporting Information

S1 Appendix. Spatial prediction using Model 3.
(DOC)
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