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Abstract
Animals sometimes develop conspicuous projections on or near their heads as, e.g., weap-

onry, burrowing or digging tools, and probes to search for resources. The frontal projections

that insects generally use to locate and assess resources are segmented appendages,

including antennae, maxillary palps, and labial palps. There is no evidence to date that

arthropods, including insects, use projections other than true segmental appendages to

locate food. In this regard, it is noteworthy that some butterfly larvae possess a pair of long

antenna-like projections on or near their heads. To date, the function of these projections

has not been established. Larvae of pipevine swallowtail butterflies Battus philenor (Papilio-
nidae) have a pair of long frontal fleshy projections that, like insect antennae generally, can

be actively moved. In this study, we evaluated the possible function of this pair of long

moveable frontal projections. In laboratory assays, both frontal projections and lateral ocelli

were shown to increase the frequency with which search larvae found plants. The frontal

projections increased finding of host and non-host plants equally, suggesting that frontal

projections do not detect host-specific chemical cues. Detailed SEM study showed that

putative mechanosensillae are distributed all around the frontal as well as other projections.

Taken together, our findings suggest that the frontal projections and associated mechano-

sensillae act as vertical object detectors to obtain tactile information that, together with

visual information from lateral ocelli and presumably chemical information from antennae

and mouthparts, help larvae to find host plants. Field observations indicate that host plants

are small and scattered in southern Arizona locations. Larvae must therefore find multiple

host plants to complete development and face significant challenges in doing so. The frontal

projections may thus be an adaptation for finding a scarce resource before starving to

death. This is the first evidence that arthropods use projections other than true segmental

appendages such as antennae, mouthparts and legs, to locate food resources.
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Introduction
Animals sometimes bear conspicuous projections on or near their heads, such as horns, antlers,
tusks, enlarged mandibles, barbels, antennae, or spines. These projections can be divided into
four groups according to their function. First, adult males with such structures may be favoured
by conspecific females or may use them in intra-sexual contests for mates. Examples include
horns and antlers of ungulates, and tusks of elephants and walruses in mammals [1–4], horns
and enlarged mandibles of some beetles [5–8], and eye stalks of flies in insects [9,10]. Second,
these structures may be used as anti-predator weaponry. Examples include horns of horned liz-
ards, and female bovids, and spines on the pronotum of the pygmy grasshopper Criotettix japo-
nicus [11–13]. Third, protruding tusk-like teeth or horns may be used to burrow or dig by
animals such as naked mole rats and the sand-living anthicid beetleMecynotarsus tenuipes
[14,15]. Fourth, some projections have many mechanical and chemical sensors on their surface
[16–19] and may be used to locate resources such as foods, host plants, and mates [20–22].
Examples include barbels in fish and antennae in insects and other arthropods such as centi-
pedes, millipedes, macrurans, hermit crabs, and pill bugs. In addition to antennae, insects also
use maxillary palps and labial palps to detect and assess foods. However, to date, there is no evi-
dence that arthropods, including insects, use projections except antennae and other segmental
appendages to locate and assess food.

In this respect, it is interesting to note that some butterfly larvae such as Sasakia charonda,
Cyrestis thyodamas, Parantica sita, Sericinus montela, Dichorragia nesimachus, Idea leuconoe,
Araschnia burejana,Melanitis phedima, and Ariadne ariadne possess a pair of long frontal pro-
jections on or near their heads. The projections look like antennae but are not; their actual
antennae are small, short, three-segmented structures found close to their mouthparts [23,24].
The function of the frontal projections is not known. Larvae of pipevine swallowtail butterfies
Battus philenor L. (Papilionidae) also have a pair of the long frontal projections. These larvae
have many elastic, fleshy and non-segmented projections on their dorsal surface. The most for-
ward pair of projections adjacent to the head capsule (hereafter we say “frontal projections”)
are particularly long. Furthermore, unlike the more posterior projections, the larva can actively
move each frontal projection (S1 Movie). It has yet to be established why these paired frontal
projections are so long and why the larva actively moves only this pair of projections. Here we
propose a hypothesis that larvae use the frontal projections to locate host plants. We predict
that frontal projections of the larvae may enhance detectability or searching efficiency of host
plants, when they search for the next host plant.

In this study, we specifically addressed four questions to confirm this prediction: (1) Do
frontal projections enhance finding of host plants? (2) Do frontal projections allow the larva to
distinguish between host and non-host plants? (3) What type(s) of sensillae are borne on the
frontal projections? (4) What properties of the host plants of pipevine swallowtail larvae favour
use of frontal projections to find food? To our knowledge, we provide the first evidence that
arthropods use conspicuous projections, other than true segmental appendages such as anten-
nae, mouthparts and legs, to gather information about their food resources.

Materials and Methods

(a) Study species
Battus philenor is distributed throughout much of the U.S., all of Mexico and much of Central
America [25]. The butterfly is an extreme specialist. Larval host plants for members of the
genus Battus belong exclusively to the genus Aristolochia (Family Aristolochiaceae). In south-
ern Arizona, B. philenor adults are common between late March and early September. The
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local host species, Aristolochia watsonii, is a small perennial, deciduous, recumbent vine with
multiple stems which is abundant in washes and bordering areas. Larvae occur in a black form
and a red form [26,27]; in southern Arizona, the red form is more common. B. philenor larvae
of both color forms have many projections located medio-laterally along each side. The paired
frontal projections, adjacent to the head capsule, are distinctively long, especially in the fourth
and the last (fifth) instar (S1 Fig). The larva can actively move this pair of projections but not
the other ones (S1 Movie).

In our study, eggs and larvae were obtained from 25 hectares of mesquite grassland on the
Santa Rita Experimental Range (SRER) in Pima County, Arizona, USA (318 47.0490 N; 1108
49.5240 W), which is managed by the University of Arizona. Eggs were also obtained from gar-
dens on the university campus where wild females oviposited on cultivated A. fimbriata. Larvae
were raised in the laboratory at room temperature (ca 26°C) under natural photoperiod (ca 14:
10 h light: dark). Field measurements were also made at the SRER field site, under the auspices
of a permit granted by the University of Arizona to one of the co-authors (Papaj).

(b) The success of finding host plants by searching larvae
To address the first question of whether frontal projections facilitate location of host plants, we
performed 2 treatments for each fifth-instar larva. The first treatment involved removing fron-
tal projections. We found that, when we bound the base of frontal projections with a fine
thread during the inactive period in the late fourth before molting to the fifth instar, larvae suc-
cessfully molted and lost frontal projections without any obvious loss of hemolymph (S2 Fig).
Measurements revealed no significant difference in walking speed between the larvae with ver-
sus without frontal projections (see Results). We therefore assumed that removing projections
by this method did not decrease larval movement in a way that might reduce host plant search-
ing efficiency. The second treatment involved blinding the caterpillars. This treatment was
included because pre-test observations suggested that visual input to the lateral ocelli was used
when larvae search for host plants. Larvae were blinded by painting the entire head capsule,
including the lateral ocelli, excluding antennae and mouthparts, with white water-soluble paint
followed by green paint. We painted twice for each larva to ensure that vision was abolished.
We changed colors to ensure that the second coat covered the first coat. There was no signifi-
cant difference in walking speed between vison-capable versus blind larvae (see Results).

Summarizing, we produced four types of larvae with different combinations of two treat-
ments, i.e., (a) vison-capable larvae with frontal projections intact (normal larvae), (b) vision-
capable larvae lacking frontal projections, (c) blind larvae with frontal projections intact, and
(d) blind larvae lacking frontal projections (Fig 1).

To quantify the finding of host plants by searching larvae, we first constructed a wooden
stick walkway for the larva. This walkway was 20cm long and 0.4cm in diameter. Each end of
the walkway was mounted on and fixed with a short wooden stick (4.5cm long and 0.6cm in
diameter) which was set at right angles to the stick walkway. This walkway setup was placed on
a table in the laboratory. Next we placed a fresh 3cm-stem of host plant (A. fimbriata) on each
side of the walkway, 1.5 or 2cm apart from the walkway.

We made test larvae hungry by maintaining them without host plant for one day. Then we
allowed each hungry larva to walk along the stick walkway and to search for host plant (Fig 2).
Larva readily walked along the top of the stick, approximately 1 cm above the table, and never
walked on the underside of the stick. They seldom moved from the walkway to the table (those
few instances when such movement occurred during the experiment were not counted as tri-
als). As larvae walked along the walkway, they frequently moved their heads from side to side
to search for host plant. When they successfully found the host plant stem, they invariably
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touched it with their antennae and mouthparts and began to chew. We recorded the larva as
‘finding a stem’ if it touched a stem with antennae and mouthparts. We recorded the larva as
‘failing to find a stem’ if it reached the opposite end of the walkway without touching either
stem with antennae and mouthparts. If the larvae had frontal projections, they actively moved
frontal projections during walking and they often touched the stem with frontal projections
before touching it with antennae and mouthparts. We tested each larva 10 times (10 trials) con-
tinuously without interval between trials. Usually, the duration of one trail was less than 15 sec-
onds (see Results). We calculated each larva’s success in finding hosts as the proportion of the
10 trials in which they found a host plant stem. In this experiment we used fifth-instar larvae,
specifically larvae that were three to five days after the fourth molt. The experiment was con-
ducted in the laboratory at room temperature under natural sunlight on June 9 –August 11,
2010.

To confirm that there was no difference in walking (searching) speeds that might affect host
plant searching efficiency among the four types of larvae, an additional experiment was con-
ducted using the same experimental protocol as above except that the host plant stem was
removed from the middle of the walkway. A hungry larva was allowed to walk from one end to
the opposite end of the walkway and the time required to traverse the walkway was recorded.

Statistical analysis. We used a fixed effects analysis of variance [ANOVA; general linear
model (GLM) with type III sums of squares] to test for effects on the arcsine square-root
transformed proportion of instances in which host plants were found by larvae, in which inde-
pendent factors were distance (whether host plant stems were 1.5 or 2.0 cm apart from the

Fig 1. Four types of larvae used in the experiment investigating the success of finding host plants. (a) vision-capable larva with frontal projections
intact (normal larvae), (b) vision-capable larva lacking frontal projections, (c) blind larva with frontal projections intact, (d) and blind larva lacking frontal
projections.

doi:10.1371/journal.pone.0131596.g001
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walkway), eye treatment (whether larva were vision-capable or blind), projection treatment
(whether larva had a pair of frontal projections or not) and their interactions. We also used a
fixed effects ANOVA (GLM) to test for effects on walking speed (log+1 transformed) of search-
ing larvae, in which independent factors were eye treatment, projection treatment and their
interactions. IBM SPSS statistics 22 [28] was used for all statistical analysis.

(c) Discovery of host and non-host plants by vision-capable searching
larvae
To address the second question of whether frontal projections allow the larva to distinguish
between host and non-host plants, we conducted a behavioural assay similar to the above
assay, using the same walkway. Here we used only vision-capable larvae with frontal projec-
tions either intact or lacking. The plant stems were set 2cm away from the walkway. In this
assay, we used either of 2 types of plant stems, i.e., those of host plants (A. fimbriata) or non-
host plants (Eragrostis lehmanniana). We selected E. lehmanniana as a representative non-
host plant because it is the dominant non-host plant species at the SRER field site. We allowed

Fig 2. Photos of the experiment to investigate the success of finding host plants by searching larvae. (a) A larva walking along the walkway before
reaching the nearest point to the host plant stems. (b) A larva that successfully found the host plant stem. (c) A larva that failed to find the stems, approaching
the opposite end of the walkway.

doi:10.1371/journal.pone.0131596.g002
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each hungry larva to traverse the walkway and search for plant stems. We tested each larva 10
times using the same type of plant stems, i.e., the plant stem type of the right and the left side of
the walkway was the same and one larva was tested for only one type of plant stems during 10
trials. That is, half of the larvae with frontal projections either intact or lacking were assayed for
only host plant stems and the other half were assayed for only non-host plant stems. We then
calculated the proportion of the 10 trials in which they found a plant stem. Other experimental
conditions such as hunger level and age of larvae and plant stem size were the same as in the
previous assay. The experiment was conducted in the laboratory at room temperature under
natural sunlight on August 17–24, 2010.

Statistical analysis. We used a fixed effects ANOVA (GLM) with type I sums of squares to
test for effects on the arcsine square-root transformed proportion of instances in which plant
stems were found by larvae, in which independent factors were projection treatment (whether
larva had a pair of frontal projections or not), plant (whether plant stems were those of host or
non-host), and their interactions.

(d) Observation of sensilla on the projections by SEM
To address the third question of what type(s) of sensillae caterpillars have on frontal projec-
tions, a scanning electron microscope (SEM) study was conducted on frontal projections as
well as the other projections on the larval body surface. Fifth-instar larvae of B. philenor were
collected from a garden on the university campus. Twenty caterpillars were checked under a
stereomicroscope. The whole bodies of caterpillars were fixed in 2.5% glutaraldehyde buffered
in phosphate, pH 7.2, for 12 h, repeatedly rinsed in the same buffer. The specimens were dehy-
drated by using ethanol gradients, followed by critical-point drying in a CO2 (JCPD-3, JOEL,
Tokyo, Japan). The specimens were mounted on aluminum stubs, sputter-coated with plati-
num (JFC-1100, JOEL, Tokyo, Japan), observed and photographed in a Hitachi S-4800 of the
Field Emission-Scanning Electron Microscope (FE-SEM).

(e) The distance between individual A.watsonii plants
To address the fourth question of what host properties might favour use of frontal projections
in host finding, we conducted a field study of their local host plant, A. watsonii. We first mea-
sured the straight-line distance to the nearest conspecific for 51 individual A. watsonii plants.
We measured the distance between the nearest edges of two individual plants, which is equiva-
lent to the minimum distance that B. philenor larvae must walk between the two plants. Mea-
surements were conducted on July 3 and 4, 2010.

(f) The mass of A.watsonii foliage that B. philenor larvae eat to complete
their development relative to the mass of foliage of individual A.watsonii
plants
To further address the fourth question of what host properties might favour use of frontal pro-
jections, we estimated the mass of A. watsonii foliage eaten by B. philenor larva throughout
their development and compared this estimate to an average of the mass of individual plants in
the field. Estimates of mass eaten was done in two steps. In the first step, a fourth- or fifth-
instar larva was kept in a transparent plastic cup without food for one day such that guts would
be evacuated. The fourth- or fifth-instar larva was then allowed to eat 0.5 or 1.0 g of fresh A.
watsonii completely, respectively, and its excrement, or frass, was collected. The frass was dried
in a drying oven at ca 55°C for one day and weighed with an analytical balance. This step made
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it possible to estimate the weight conversion rate from fresh host plant eaten to dry frass. This
value was assumed to be a constant across different instars and for different individuals.

In the second step, we reared B. philenor larvae of different instars individually on fresh A.
watsonii in a transparent plastic cup, and collected their frass during each larval instar, which
was then dried and weighed with the same methods mentioned above. These data, in combina-
tion with the weight conversion rate estimated above, allowed us to estimate how much fresh
host material B. philenor larva ate during each instar. Then we summed these estimates for all
instars to calculate total amount of host materials consumed throughout its larval develop-
ment. We used 11, 14, 12, 13 and 12 individual larvae for the first, second, third, fourth and
fifth (last) instar, respectively. The experiment was conducted on July 5–29, 2010.

We also weighed the above-ground foliage of 51 A. watsonii plants collected in the field. To
do this, we first cut all of a given A. watsonii plant above the ground at the SRER field site. The
foliage for each plant was placed in its own zippered plastic bag and the bag placed in a portable
ice chest. The foliage was weighed using an electronic balance in the laboratory at the University
of Arizona within 3 hours after cutting. The experiment was conducted on July 3 and 4, 2010.

Results

The success of finding host plants by searching larvae
Success in finding host plant stems by searching larvae was generally higher when the host
plants were closer, when the larvae were vision-capable, and when frontal projections were
present (Fig 3). Frontal projections increased success in finding host plants by 10–15% when
they were compared between the larvae with versus without frontal projections at the same dis-
tance to the stem and within the same eye treatment. The ANOVA for discovery rate of the
host plant stem indicated that there was a significant effect of distance, eye treatment and pro-
jection treatment and a nonsignificant effect of their interaction (Table 1). These results suggest
that B. philenor larvae use both eyes (lateral ocelli) and frontal projections to enhance finding
of host plants.

Mean ±S.E. of walking speeds (seconds/20cm-walkway) of searching larva were 12.4±1.4
(n = 14), 11.9±1.2 (n = 14), 14.2±2.0 (n = 14), and 12.6±1.7 (n = 14), for vison-capable larvae
with frontal projections intact, vision-capable larvae lacking frontal projections, blind larvae
with frontal projections intact, and blind larvae lacking frontal projections, respectively. The
ANOVA on walking speed indicated that there was no significant effect of eye treatment
(F = 0.258, P = 0.613), projection treatment (F = 0.408, P = 0.526) or their interaction
(F = 0.060, P = 0.807) on walking speed of searching larvae. The above results suggest that
there was no difference in the walking speeds or larval activities that might affect searching effi-
ciency of host plant among the four types of larvae.

Discovery of host and non-host plants by vision-capable searching
larvae
Vision-capable larvae discovered plant stems more often when frontal projections were present
than when they were absent regardless whether plant stems were host or non-host (Fig 4). Lar-
vae with frontal projections intact found the host and non-host plant stems at the same fre-
quency, as did larvae lacking frontal projections. The ANOVA on discovery rate of a plant
stem indicated that there was a significant effect of projection treatment, a nonsignificant effect
of plant stem type and a nonsignificant interaction (Table 2). Taken together, these results sug-
gest that frontal projections facilitate the discovery of a plant, but do not bias discovery towards
host plants.
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Observation of sensillae on the projections by SEM
We observed numerous hairs on the long frontal projections by the scanning electron micro-
scope (SEM). Hairs on the projections could be classified into two groups based on their length:
short type [length: 41.65±1.59 (mean±S.E.) μm, n = 6] and long type (length: 114.65±3.70μm,

Fig 3. Success (mean + S.E.) of finding host plant stems by searching larvae. Host plant stems were set (a) 2cm and (b) 1.5cm away from the walk way.
Larvae were assigned to a combination of 2 treatments. The first treatment related to the pair of frontal projections (intact versus removed). The second
treatment related to the eyes (vision-capable versus blind). N = 18 (numbers of larvae used) for each bar.

doi:10.1371/journal.pone.0131596.g003
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n = 6; width: 11.74±0.54μm, n = 6; socket width: 45.60±1.47μm, n = 6). The short type are
more numerous, and appear to be setae. In contrast, the long type appear to be sensillae. Since
the long type of hairs has neither lateral nor terminal pores, they are putative mechanosensillae
rather than chemosensillae. There was no obvious difference in the density of mechanosensillae
between frontal projections and more distal projections on the larval body (Fig 5). There were
504.33±34.55 (n = 6) mechanosensillae on a single frontal projection. We could not find any
putative chemosensillae in the frontal and other projections. These observations are in consis-
tent with the results of the above behavioural assay that frontal projections do not bias discov-
ery towards host plants.

Table 1. ANOVA of the discovery rate of the host plant stems by B. philenor larvae. ‘Distance’ refers to the effect of distance between the walkway and
host plant stems (1.5 or 2 cm). ‘Eye’ refers to the effect of blinding larvae. ‘Projection’ refers to the effect of creating larvae lacking frontal projections. Signifi-
cant p-values are in bold.

Source df MS F P

Distance 1 4.697 70.082 0.000

Eye 1 17.037 254.221 0.000

Projection 1 1.353 20.186 0.000

Distance×Eye 1 0.061 0.912 0.341

Distance×Projection 1 0.005 0.069 0.794

Eye×Projection 1 0.014 0.214 0.645

Distance×Eye×Projection 1 0.014 0.203 0.653

Error 136 0.067

doi:10.1371/journal.pone.0131596.t001

Fig 4. Proportion encounters (mean + S.E.) of host and non-host plant stems by vision-capable searching larvae. Either host (Aristolochia fimbriata)
or non-host (Eragrostis lehmanniana) plant stems were set 2cm away from the walk way. Frontal projections of the larvae were either intact or removed.
N = 12 (numbers of larvae used) for each bar.

doi:10.1371/journal.pone.0131596.g004
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The distance between individual A.watsonii plants
In the field, the mean distance between the nearest conspecific of A. watsonii was 3.00±0.29m
(mean±S.E. n = 51) (Fig 6).

The mass of A.watsonii foliage that B. philenor larvae eat to complete
their development relative to the mass of foliage of individual A.watsonii
plants
In the first step, we got the weight conversion rate of 0.159 ±0.005 (n = 29) from fresh host
plant eaten to dry frass. By using this value in the second step, a single larva of first, second,
third, fourth, and fifth instar was estimated to eat 0.007 ±0.001 (n = 11), 0.034 ±0.006 (n = 14),
0.148 ±0.021 (n = 12), 0.645 ±0.042 (n = 13), and 3.458±0.185g (n = 12), respectively. As a
total, 4.292g of host foliage in fresh weight was needed to complete its development (Fig 7). A
fifth-instar larva ate 80.2% of the total weight eaten throughout larval development.

In the field, the mean fresh weight of foliage for an A. watsonii plant was 2.125±0.226g
(n = 51) (Fig 8), which was significantly smaller than the fresh weight of A. watsonii that B. phi-
lenor larvae eat during the fifth instar (Mann–Whitney U test; P = 0.008). More than 85%
(44/51) of A. watsonii plants at the field site weighed less than the amount of food that a single
B. philenor larva is estimated to eat to complete its development.

Our results, taken together, indicate that, in the field, A. watsonii plants are so small and
scattered that B. philenor larvae must 1) use more than one host plant to complete development
and 2) travel meters to find the next plant.

Discussion
In previous studies, insects have been shown to use the extraordinary projections on their body
surface as weaponry for intra-sexual contests [6–8,29], inducements for inter-sexual attraction
[9,10], weaponry for anti-predator defence [11,30], and burrowing or digging tools [15]. Our
study provides the first evidence that arthropods use projections other than true segmental
appendages such as antennae, mouthparts and legs, to search for food.

Our findings demonstrate that, although frontal projections do not allow the B. philenor lar-
vae to distinguish between host and non-host plants, this pair of projections enhances finding
host plants. Because the actual antennae are very short, these projections should allow a larva
to increase the width of its search path as it wanders in search of a host plant. The larva broad-
ens the search path still further by moving its head region (and, along with it, the projections)
from side to side, as it walks. Additionally, the larvae actively move the projections themselves,
which probably facilitates sampling within the widened search path. It is noteworthy that the
other shorter but presumptively serially homologous projections along the caterpillar’s body
do not move in this way (S1 Movie).

Table 2. ANOVA of the discovery rate of the host and non-host plant stems by vision-capable search-
ing larvae. ‘Projection’ refers to the effect of larvae with frontal projections intact and larvae lacking frontal
projections. ‘Plant’ refers to the effect of plant stem type, host plant (Aristolochia fimbriata) versus non-host
plant (Eragrostis lehmanniana). Significant p-values are in bold.

Source df MS F P

Projection 1 0.569 5.823 0.020

Plant 1 0.018 0.188 0.667

Projection×Plant 1 0.021 0.213 0.647

Error 44 0.098

doi:10.1371/journal.pone.0131596.t002
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Our results suggest that the improvement in searching area afforded by frontal projections
could be especially beneficial in locations, such as southern Arizona, where host plants are
meters away from each other and where individual host plants are too small to allow a larva to
complete development. Consistent with this explanation is the observation that frontal projec-
tions become disproportionately long relative to larval body length in the fourth and the last
(fifth) instar (S1 Fig). It is in these later instars that large amounts of host foliage are consumed,
forcing larvae to leave their natal plant and find at least one other host plant on which to com-
plete development. In the field, we sometimes found multiple larvae in one host plant (I. Kan-
dori, unpubl. obs.). This phenomenon would accelerate food deprivation and migration of the
larvae.

Our findings also indicated that frontal projections facilitate finding of host plants by both
vision-capable and blind larvae (Fig 3, Table 1). Thus, frontal projections would be useful in
finding host plants both during the day and the night. Indeed, 24-hour observation recorded

Fig 5. Scanning electronmicrographs of the projections, and two types of hairs on the projections. a) Fifth instar larvae. Arrows indicate the view
point by SEM. b) The tip of frontal projection. c) The bottom of frontal projection. d) A long type of hair which is longitudinally sectioned. e) Close-up of the tip
of a long type of hair which is longitudinally sectioned. f) The tip of the middle projection. g) The tip of the terminal projections. h) Short type of hairs.

doi:10.1371/journal.pone.0131596.g005
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Fig 6. Distance between the nearest conspecifics of A.watsonii in the field.

doi:10.1371/journal.pone.0131596.g006

Fig 7. Estimated mass of host plant foliage in fresh weight consumed by B. philenor larvae. Blank bars indicate consumption during each instar (mean
+ S.D.) and a filled bar during the total larval period (sum of means for 1–5 instars).

doi:10.1371/journal.pone.0131596.g007
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by infrared video camera in the experimental room showed that B. philenor larvae eat and walk
at night even though their activities become lower during the night than during the day (I. Kan-
dori, unpubl. obs.). However visual information from lateral ocelli may be more important
than tactile information from frontal projection in searching host plants. This is because lateral
ocelli increased success in finding host plant by 46–58% whereas frontal projections increased
by 10–15% when they were compared between the larvae with the same condition except eye
or projection treatment (Fig 3).

Results of our latter behavioural assay indicate that frontal projections do not allow a larva
to distinguish between host and non-host plants (Fig 4, Table 2), suggesting that frontal projec-
tions seem neither to detect host plant olfactory cues from a short distance nor gustatory cues
by touching the plant with the projections. The results support the inference that the sensillae
that we found on frontal projections are not chemosensillae but mechanosensillae. These
results also suggest that, like frontal projections, lateral ocelli and antennae do not allow the
larva to distinguish between host and non-host plants even from a short distance, and that the
larvae can identify host plants as such only after touching the plant with antennae and
mouthparts.

In our behavioural assays, we used the normal larvae with frontal projections intact as a
control against the larvae lacking frontal projections. We supposed that vitality of the two
types of larvae was not different, because removing projections by the methods that we adopted
in this study did not lead to any obvious loss of hemolymph, and because the walking speed of
the two types of larvae were not significantly different (see Results). It remains possible that
removing projections might affect some feature of searching behavior other than walking

Fig 8. Mass of A.watsonii foliage collected from the field.Mean±S.E. = 2.13±0.23 (g), n = 51. Arrow indicates estimated mass of host plants eaten by B.
philenor throughout larval development (see Fig 7).

doi:10.1371/journal.pone.0131596.g008
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speed that might reduce host plant searching efficiency. In the future, we plan to test the suc-
cess of finding host plants for the larvae in which two projections soon behind frontal projec-
tions were tied off as a control against the larvae lacking frontal projections. Similarly, our
hypothesis on the role of long frontal projections in host plant seeking was only tested in the
specific context of the laboratory experiment. In the future, we hope to test this hypothesis in
the field.

Long frontal projections are not restricted to B. philenor. All species in the genus Battus for
which we have evidence, including B. polydamas, B. belus, and B. ingenuus, have them in their
last instar [31]. In contrast, members of all Troidine genera related to Battus have short projec-
tions distributed along the body but none, to our knowledge, have elongated frontal projec-
tions. Taken together, these observations lead us to propose that long frontal projections
evolved in the ancestor of the genus Battus and are derived from short frontal projections
homologous to those found in Troidine relatives. It would be meaningful to know if the long
frontal projections in other members of the genus Battus are used in location of host plants. If
so, it would be interesting to know in turn if members of the genus consistently face host-find-
ing challenges that are more severe than those of other Troidine genera.

The literature on lepidopteran larval adaptations for finding host plants is scant in contrast
to the literature on strategies used by the adult female in finding oviposition sites [26,32–38].
Yet caterpillars commonly have cause to locate host plants. For example, some caterpillars,
including Battus philenor [39], engage in thermoregulatory behavior in which they move off
the host and seek a cooler thermal refuge. The caterpillars must then locate the same or new
host plant when extreme temperatures abate. Similarly, some butterflies and moths diapause as
caterpillars to overwinter or to live through hot dry summer; in some cases [40–42], the cater-
pillars leave their host plants, which may be senescing, seek refuge in rock crevices, under plant
debris, or on other non-host plants, and seek host foliage anew after they break diapause. It has
also been shown that certain caterpillars, notably arctiid species, compulsively mix their diet so
as to self-medicate themselves against parasitoids [43–45] such caterpillars necessarily must
move from one host plant to another in order to consume foliage of multiple plant species. Cat-
erpillars have been reported to respond to attacks by natural enemies by moving off the host
plant [46–49] and must return to the host or find new hosts in order to complete development.
Finally, as reported here, caterpillars may defoliate their plants prior to completing develop-
ment and need to find new plants.

Given a variety of situations in which lepidopteran larvae must locate host foliage, one
might expect to find evidence of adaptations for finding host plants. If such adaptations occur,
they do not appear to include the antennae. In all lepidopteran larvae, the antennae are very
small and, in no species of which we are aware, has pressure to find host plants more efficiently
led to the evolution of long antennae. With such small antennae, caterpillars are not thought to
be able to detect olfactory stimuli from more than 1 cm away ([50–56] and our study). Like-
wise, caterpillar vision is crude relative to that of adults [55] and once again, there is no evi-
dence that selective pressure to find hosts has resulted in the evolution of more sophisticated
vision. Nevertheless, lepidopteran larvae may possess strategies that improve their chances of
finding the next host plant. For instance, arctiid larvae walk especially rapidly for caterpillars
[57]. B. philenor caterpillars too walk rapidly when searching for host plants. Additionally, B.
philenor caterpillars appear able to withstand long periods of starvation, which effectively
extends the maximum searching period (D. Papaj, unpubl. obs.). Here, we propose that the
elaboration of frontal projections in B. philenor constitutes an additional adaptation for locat-
ing host plants more effectively.

Finally, frontal projections of B. philenor larvae could possibly have another function not
investigated in this study. Also, the function of frontal projections of other lepidopteran larvae
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may be different from their function in B. philenor. In particular, the hard and motionless fron-
tal projections of some butterfly larvae may act as weaponry for defence against predators.
These possibilities must be investigated in the future.

Supporting Information
S1 Fig. The length of frontal projections relative to their body length in each larval instar.
The body length was equalized by changing magnification for all instars. (a) A first instar larva
(mean length of first projection: 0.31mm; mean length of body: 4.45mm; length of first projec-
tion relative to body length: 0.069; N = 14). (b) A second instar larva (0.97mm; 7.51mm; 0.129;
N = 19). (c) A third instar larva (2.39mm; 13.16mm; 0.182; N = 13). (d) A fourth instar larva
(5.88mm; 23.98mm; 0.245; N = 15). (e) A last (fifth) instar larva (9.73mm; 40.64mm; 0.239;
N = 16).
(TIF)

S2 Fig. A larva in the late fourth instar with the base of frontal projections being bound
with a fine thread (right), and a larva soon after molting that lost frontal projections with-
out any obvious loss of hemolymph (left).
(TIF)

S1 Movie. The active movement of frontal projections in Battus philenor larvae.
(MP4)

S1 Table. Data used for statistical analyses and for creating figures.
(XLSX)
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