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Abstract
Transgenic mice (Tg) overexpressing human apolipoprotein D (H-apoD) in the brain are

resistant to neurodegeneration. Despite the use of a neuron-specific promoter to generate

the Tg mice, they expressed significant levels of H-apoD in both plasma and liver and they

slowly develop hepatic steatosis and insulin resistance. We show here that hepatic PPARγ

expression in Tg mice is increased by 2-fold compared to wild type (WT) mice. Conse-

quently, PPARγ target genes Plin2 and Cide A/C are overexpressed, leading to increased

lipid droplets formation. Expression of the fatty acid transporter CD36, another PPAR-

gamma target, is also increased in Tg mice associated with elevated fatty acid uptake as

measured in primary hepatocytes. Elevated expression of AMPK in the liver of Tg leads to

phosphorylation of acetyl CoA carboxylase, indicating a decreased activity of the enzyme.

Fatty acid synthase expression is also induced but the hepatic lipogenesis measured in

vivo is not significantly different between WT and Tg mice. In addition, expression of carni-

tine palmitoyl transferase 1, the rate-limiting enzyme of beta-oxidation, is slightly upregu-

lated. Finally, we show that overexpressing H-apoD in HepG2 cells in presence of

arachidonic acid (AA), the main apoD ligand, increases the transcriptional activity of

PPARγ. Supporting the role of apoD in AA transport, we observed enrichment in hepatic AA

and a decrease in plasmatic AA concentration. Taken together, our results demonstrate

that the hepatic steatosis observed in apoD Tg mice is a consequence of increased PPARγ

transcriptional activity by AA leading to increased fatty acid uptake by the liver.

Introduction
Apolipoprotein D (apoD), a 29 kDa glycoprotein, is a member of the lipocalin super family [1].
It transports several small hydrophobic compounds such as arachidonic acid (AA), progester-
one, pregnenolone, bilirubin, cholesterol and E-3-methyl-2-hexenoic acid [2–7]. In human,
apoD is found in the plasma fraction, associated with high-density lipoprotein (HDL). It is
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highly expressed in the brain, adrenal glands, kidneys, pancreas and placenta and to a lower
extent in intestine and liver [1,8–10]. In contrast, the murine expression of the apoD gene is
almost exclusively expressed in the central nervous system (CNS) [11,12].

We have previously shown that transgenic mice (Tg) overexpressing human apoD (H-
apoD) in the brain are protected against neurodegeneration and injuries [13,14] suggesting
that apoD could be a good therapeutic target against neurodegenerative diseases. Unfortu-
nately, these mice develop, with age, insulin resistance, glucose intolerance as well as hepatic
and muscular steatosis [15].

Our previous observations showed that the peroxisome proliferator-activated gamma
(PPARγ) mRNA expression is increased in the liver of H-apoD Tg mice [15]. PPARγ is a
nuclear receptor implicated in adipocyte differentiation. Two isoforms exist: PPARγ1 is ubiqui-
tously expressed while PPARγ2 is almost exclusively expressed in the adipose tissue [16,17].
When activated by one of its ligands, PPARγ heterodimerizes with retinoid X receptor α
(RXRα) and binds to the peroxisome proliferator response elements (PPRE) on the promoter of
its target genes [18,19]. PPARγ regulates positively its own transcription and induces transcrip-
tion of the CCAAT/enhancer-binding protein α (C/EBPα), which in turn also activates PPARγ
gene expression [20,21]. Many natural PPARγ ligands have been discovered including AA, pros-
taglandins, oxidized fatty acid (FA) and some polyunsaturated fatty acid (PUFA) [22–26].

Activation of hepatic PPARγ leads to an upregulation of free FA (FFA) uptake by increasing
the expression of fatty acid transporter CD36 [27]. PPARγ is also involved in lipid droplets
(LD) formation through increased expression of LD-associated proteins such as perilipin 2
(Plin2) and cell death-inducing DFFA-like effectors (Cide) A and C [28–30]. These LD-associ-
ated proteins down-regulate LD lipolysis by reducing association of lipases with the surface of
the LD [31–33]. On the other hand, hepatic PPARα regulates energy combustion [34] by acti-
vating the mitochondrial and the peroxisomal β-oxidation pathways as well as the microsomal
ω-oxidation pathway [35]. Paradoxically, PPARα also activates lipogenesis by regulating the
sterol regulatory element binding protein-1 (SREBP-1c) and liver X receptor α expression
(LXRα) [36].

Many studies have demonstrated a link between elevated PPARγ expression and hepactic
steatosis. Adenoviral over-expression of PPARγ1 in PPARα knockout (KO) mice displaying
reduced fatty acid oxidation in liver, induces ectopic fat accumulation and lipogenesis leading
to hepatic steatosis [37]. In Ob/Ob and lipoatrophic mice, elevated expression of PPARγ2 is
associated with non-alcoholic fatty liver disease (NAFLD) while inhibition of PPARγ expres-
sion reduces hepatic steatosis through downregulation of lipogenesis and inhibition of LD for-
mation [38–40].

Lipogenesis is regulated at various levels. SREBP-1c and LXRα are the main transcription
factors responsible for the induction of acetyl-CoA carboxylase (ACC) and fatty acid synthase
(FAS) expression, the two rate-limiting enzymes of lipogenesis. These enzymes produce non-
esterified FA (NEFA) that are subsequently desaturated by the stearoyl-CoA desaturase (SCD1).
These NEFA are further esterified to form the triglycerides (TG) by enzymes such as the digly-
cerol acyltransferase (DGAT) [41]. Lipogenesis can be inhibited by AMP-activated protein
kinase (AMPK) through phosphorylation and inhibition of both ACC and SREBP-1c [42].

In the present study, we demonstrate that H-apoD Tg mice express significant amounts of
H-apoD in the liver. As a result, these mice develop hepatic steatosis through over-expression
and activation of PPARγ1. Consequently, the expressions of Plin2, Cide A and C are increased
leading to stabilization of LD. In addition, we observed an increase in CD36 expression associ-
ated with an elevation of FA uptake. In these conditions, lipogenesis remains unaffected despite
an elevated expression of FAS and an inhibition of ACC activity. Overexpressing H-apoD in
HepG2 cells in the presence of AA strongly suggests that the presence of hepatic steatosis in Tg
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mice is the result of PPARγ activation by AA, one of the main ligand of apoD. Supporting this
hypothesis, we showed that AA concentration is enriched in liver and decreased in plasma.
Our work reveals a novel mechanism of apoD action in lipid metabolism.

Material and Methods

Materials
Cell culture medium was purchased fromWisent (Wisent, St-Bruno, Qc, Canada). Bodipy
493/503, Prolong Gold antifade reagent, Galacto-light beta-galactosidase reporter gene assay
system, Trizol Reagent and mouse anti-myc monoclonal antibody were purchased from Invi-
trogen (Invitrogen, Burlington, ON, Canada). AA, anti-mouse horseradish peroxidase-conju-
gated secondary antibody, luciferin and propidium iodure were obtained from Sigma (Sigma-
Aldrich, Oakville, ON, Canada). Anti-PPARγ (C26H12), anti-AMPKα, anti-phospho-AMPKα
(Thr172)(40H9), HPRT and β-actin antibodies were from Cell signaling (cell signaling technol-
ogy, Danvers, MA, USA). Anti-ACC and anti-phospho-ACC (Ser79) antibodies were pur-
chased fromMillipore (Millipore, Billerica, MA, USA). Anti-Plin2 antibody was bought from
Novus Biological (Novus Biologicals, Littleton, CO, USA) and goat anti-rabbit horseradish per-
oxidase-conjugated secondary antibody and Bradford reagent were acquired from Bio-rad
(Life Science Bio-rad, Mississauga, Ontario, Canada). The antibody against mouse apoD was
purchased from Abcam. The H-ApoD monoclonal antibody has already been described [7,43].
Complete Protease Inhibitor Cocktail Tablets were purchased from Roche (Laval, PQ, CAN).
Collagenase Type I was acquired fromWorthington (Lakewood, NJ). Gal4-PPARγ and
UAS-Luciferase plasmids were generously provided by Dr. Maurizio Crestani (University of
Milano, Italia).

Animals
All the experimental procedures were approved by the Animal Care and Use Committee of
Université du Québec à Montréal. Animals were housed at 24 ± 1°C in a 12h light dark cycle
and fed a standard rodent chow ad libitum with free access to water. The H-apoD Tg mice in a
C57BL/6 background overexpress the H-ApoD gene under the control of the neuron-specific
Thy-1 promoter [13–15]. All experiments were carried out on 12 month old males.

Preparation of primary hepatocytes
Primary hepatocytes were isolated by in situ liver perfusion and collagenase digestion as previ-
ously described [44]. Briefly, mice were anaesthetized by intraperitoneal injection of pentobar-
bital and the portal vein was cannulated. The liver was then perfused with perfusion buffer
(10 mM HEPES, 142mM NaCl, 6,7mM KCl; pH 7,85) containing 0,6mM EGTA and 1,5 U/
mL heparin and subsequently digested with 30 000U collagenase type I (Worthington) dis-
solved in 150 mL of perfusion buffer containing 5 mM calcium. Hepatic cells were gently
released from the Glisson capsule and incubated for 1h at room temperature with 5XWash
solution consisting of DMEM/F12 (Life technologies, Gibco) with 10% fetal bovine serum
(Life technologies, Gibco), 500 U/mL penicillin, 500 μg/mL streptomycin and 1,25 μg/mL
Fungizone (Life Technologies) by an orbital shaker. 1x106 cells were seeded on collagen-pre-
treated plates (Corning Costar) in DMEM/F12 media containing 10% FBS, 100 U/mL penicil-
lin and 100 μg/mL streptomycin. The next day, culture media was removed and renewed with
serum-free DMEM/F12 containing the same antibiotics. The cells were starved for 48h prior
to the experiments.
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Transfection of HepG2 cells
The human hepatocarcinoma cells (HepG2) were cultured in Eagle’s Minimum Essential
Medium (EMEM) supplemented with 10% FBS. Cells were then transfected with a UAS-Luci-
ferase construct (a luciferase reporter plasmid containing five PPAR response elements) in
combination with a human myc-tag apoD cDNA construct [43] (or an empty vector) in the
presence or not of Gal4-PPARγ (containing the PPARγ cDNA and the DNA binding domain
of GAL4) using Fugene HD transfection reagent. 48h after the transfection, cells were incu-
bated for 4h with 7μM of AA bound to BSA at a mole ratio AA:BSA 4:1. Cells were then har-
vested and cellular extracts were prepared for luciferase [45] and β-galactosidase assays
(Invitrogen).

RNA extraction and semi-quantitative RT-PCR
Tissues were collected, frozen in dry ice and kept at −80°C until further use. Total RNA was
extracted with the TRIZOL reagent according to the manufacturer instructions. Total RNA
was then reverse transcribed using Transcriptor First Strand cDNA Synthesis Kit and amplified
with a Taq DNA polymerase and specific primers (S1 Table). HPRT was used as control.

Immunoblotting
Tissues or cultured cells were homogenized in cold lysis buffer (50 mM Tris�HCl pH 7.3, 150
mMNaCl, 5 mM EDTA, 0.2% Triton X-100, 2 mM sodium orthovanadate and 10% Complete
protease inhibitor). Lysates were then incubated 30 min at 4°C, cleared by centrifugation and
stored at –80°C until further use. Based on Bradford assay [46], 50 μg of protein of each sample
were separated on SDS-PAGE and transferred onto PVDF membranes. After blocking with 5%
milk, 1h at room temperature, the membranes were incubated with the primary antibodies
overnight at 4°C. Dilutions of the primary antibodies were: 1:1000 for PPARγ (C26H12),
1:1000 for total AMPKα antibody; 1:1000 for phospho-AMPKα (Thr172) (40H9) antibody;
1:1000 for ACC antibody; 1:300 for anti-phospho-ACC (Ser79) antibody; 1:5000 for Plin2 anti-
body, 1:10000 for H-apoD antibody [43], 1: 1000 for the mouse apoD (m-apoD) antibody,
1:10000 for HPRT antibody and 1:100000 for β-actin antibody. Primary antibodies were then
detected with a goat anti-rabbit horseradish perioxidase-conjugated secondary antibody
(1:10000) and visualized by chemiluminescence. Amidoblack staining was used as loading con-
trol. Briefly, membranes were stained for 20 min in amidoblack solution (0,1% Amidoblack,
40% v/v methanol and 10% v/v acetic acid) and washed 10 min twice in decoloration solution
(40% v/v methanol and 10% v/v acetic acid). Bands were quantified by densitometry using the
image J software.

Indirect ELISA assay
Human apoD was quantified in plasma and liver homogenate of transgenic Tg-apoDHmice
by Elisa. 96-well ELISA plates were coated overnight at 4°C with purified human apoD stan-
dards (with range concentration of 0–10 μg/mL) and samples (for plasma, 10 μL and for liver,
5 μg) diluted in 0.1M sodium carbonate pH 9.5 to a final volume of 100 μL. The coated wells
were blocked with 3% BSA for 1h at RT and were incubated overnight at 4°C with an antibody
against biotinylated human apoD (1:10000, biotinylated H-apoD antibody (43)). After wash-
ing, the wells were treated with HRP-streptavidin (1:25000) for 1h at RT. After washing, perox-
idase substrate TMB (3,3’, 5,5’-Tetramethylbenzidine) solution (100 μL, Fitzgerald, MA, USA)
was applied to each well for 30 min and the reaction was stopped by adding 50 μL of 1M
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phosphoric acid. Absorbance values (at 450 nm) were obtained with Elisa Plate Reader (Tecan
Infinite M1000, Tecan US, NC, USA).

To measure the concentration of Prostaglandin E2 (PGE2), whole blood samples were col-
lected from 1 year-old WT and Tg mice by cardiac puncture using heparinized syringe and
kept on ice. Plasma was isolated by centrifugation (2000 RPM for 10 minutes at 4°C) and
stored at -80°C. Liver extracts were prepared by homogenizing tissues in cold lysis buffer (50
mM Tris-HCl pH 7.3, 150 mMNaCl, 5 mM EDTA, 0.2% Triton X-100, 2 mM sodium orthova-
nadate and 10% Complete protease inhibitor). Lysates were then incubated 30 min at 4°C,
cleared by centrifugation and stored at –80°C. The concentration of PGE2 was then measured
using a specific immunoassay (Enzo Life Sciences, ADI-900-001) according to the manufac-
turer protocol.

Lipid staining
Liver samples were incubated overnight at 4°C in 4% paraformaldehyde, frozen in dry ice and
kept at −80°C until further use. 4 microns thick longitudinal sections were sliced with a cryostat
and incubated 5 minutes in a solution of PBS containing 0.04 mg/ml propidium iodide and
0.1 μg/ml Bodipy 493/503. After 3 washes of 5 min in PBS, coverslips were mounted onto slides
using Prolong Gold antifade reagent and observed within 24h with a laser scanning confocal
microscope (Nikon TE300) (original magnification X60). Lipid droplets were visualized and
quantified using image J software.

In vivo lipogenesis
1-year-old mice fed ad libitum were injected intraperitoneally with 7 μCi of 3H₂O. One-hour
post-injection, animals were sacrificed and the blood and liver were collected. To evaluate the
presence of radioactivity, 20 μl of plasma was diluted in 4 ml of Scintillator (Ultima Gold, from
Perkin Elmer) and counted with a scintillation counter (TRi Carb 2800TR). To evaluate the
fatty acid specific radioactivity, 1g of liver was homogenized in 30% KOH at 70°C. 3 ml of etha-
nol 96% was added and the samples were heated at 70°C for 2h and acidified with 3 ml of sulfu-
ric acid 9 M. Lipids were extracted 3 times with 10 ml of light petroleum, washed 3 times with
10 ml of water, and dried at RT. Lipids were then mixed in 15 ml of scintillator and counted as
described previously. Fatty acid specific radioactivity was expressed as cpm/g of liver and
counted. The rate of lipogenesis was calculated by dividing the fatty acid specific radioactivity
by the plasma water specific activity.

3H-oleate fatty acid uptake
Primary hepatocytes fromWT and Tg mice were cultured in serum free media for 48h. Fatty
acid uptake was measured using 3H-oleate as previously described [47]. Briefly, cells were incu-
bated in 0.68 μCi/mL 3H-oleate (50 μM)_bound to BSA (fatty acid/BSA molar ratio 2:1) in
serum free DMEM/F12 media for 10 min at RT. The reaction was stopped by adding 200 μM
of ice-cold phloretin solution for 2 min. Cells were then washed 3 times with PBS and lysed in
0.1 N NaOH for 30 min at RT. Radioactivity in lysates was counted in 10 mL Ultima-Gold
solution (Tri-Carb 2800TR, Perkin Elmer) and protein were quantified (Bradford Assay,
BioRAD).

Fatty acid (FA) profiling
FA composition was measured by a modified gas chromatography-mass spectrometry
(GC-MS) method, as previously described [48]. Briefly, total lipids were extracted from plasma
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with a mixture of methyl-tert-butyl ether (MTBE), methanol and water [49]. For liver, pulver-
ized tissues (25mg) were incubated overnight at 4°C in a solution of chloroform/methanol (2:1)
containing 0.004% butylated hydroxytoluene (BHT), filtered through gauze and dried under
nitrogen gas. Plasma and liver FA were analyzed as their fatty acid methyl derivatives (FAME)
after direct transesterification with acetyl chloride/methanol [50]. Injections (2 μL for plasma
and 1 μL for liver samples) were performed onto an Agilent 7890B gas chromatograph equipped
with a Select FAME CP7420 capillary column (100 m; 250 μm inner diameter; 230 μm thick-
ness) coupled with a 5977AMass Selective Detector operated in positive chemical ionisation
mode using ammonia as reagent gas. FA were identified according to their retention time and
m/z, and their concentration was calculated using a mix of internal and external labelled stan-
dards added to liver and plasma samples at known concentrations. The concentration of arachi-
donic acid, calculated using its [2H8]-labeled counterpart as internal standard, is reported as
absolute concentration (μM or nmol/mg tissue) and relative to total fatty acid content (%).

Statistical analysis
Results are expressed as means ± SD. Statistical analysis was performed with GraphPad 5 soft-
ware. The statistical significance from control values was determined by Student's t-test. Values
were considered to be significant at P�0.05.

Results

Elevated PPARγ and C/EBP expression in liver of H-apoD Tg mice
In the present study, we used a H-apoD Tg mice where the transgene is driven by the neuron
specific Thy-1 promoter (14). Despite a predominant expression in the central nervous system,
a significant mRNA expression was detected in both plasma and liver (for liver, 20% of the
level detected in the hippocampus). The H-apoD protein is also detected in the plasma (WT
mice were used as a negative control) (0.5 mg /100 ml of plasma) and in liver (0.7 ng/mg pro-
tein) of Tg mice. We also detected the endogenous protein in the blood but not in the liver (S1
Fig). Therefore, the hepatic H-apoD protein can originate either from an endogenous hepatic
expression or from a selective blood uptake.

Using the H-apoD Tg mice, we previously demonstrated that hepatic PPARγmRNA was
increased [15]. In the present study, we showed that both PPARγ1 and γ2 mRNA levels are
increased (1.37-fold and 1.16-fold Tg vsWT respectively) (Fig 1A). At the protein level,
PPARγ1 was increased by 2.24-fold in Tg mice while PPARγ2 was poorly detected (Fig 1B).
The expression of C/EBPαmRNA, an early marker of adipogenic-like phenotype and a PPARγ
target gene was also increased (Fig 1C) while C/EBPβ, which is not a PPARγ target, remained
unchanged (Fig 1D).

Lipid droplets formation
We then measured the expression level of key proteins known to be involved in LD formation.
The expression of the PPARγ target gene Plin2 [51] was increased by 1.98-fold in Tg mice (Fig
2A). Similar observations were made regarding Cide A and Cide C (1.47 and 1.45-fold respec-
tively), two other targets of PPARγ that are implicated in LD fusion [52] (Fig 2B and 2D). A
well-documented independent gene of PPARγ regulation, Cide B remained unchanged (Fig
2C). Conversely, the expression of genes coding for several lipases (adipose triglyceride lipase
(ATGL), hormone sensitive lipase (HSL) and monoglyceride lipase (MGL)) as well as for the
ATGL coactivator comparative gene identification 58 (CGI-58) remained identical (data not
shown). Consistently with an elevated expression of proteins involved in hepatic LD formation
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and fusion, we found that the size of the hepatic LD in H-apoD Tg mice was drastically
increased (5.45-fold) compared to WT. However, we did not detect a significant modification
in the number of LD between the Tg andWT mice suggesting that the observed phenomenon
was a result of both LD fusion and formation of new LD (Fig 2E).

Fig 1. PPARγ and C/EBP expression in the liver of H-apoD Tgmice. Semi- quantitative RT-PCR (A) andWestern blot (B) analysis of PPARγ expression
in liver and skeletal muscle of WT and H-apoD Tg mice. A- Graphs represent the mRNA expression level normalized by HPRT. A representative gel is
presented above.B- The graph represents the level of PPARγ protein expression standardized by amidoblack staining. Muscle tissue was used for PPARγ1/
PPARγ2 positive control. Semi-quantitative RT-PCR analysis of C/EBPα (C) and C/EBPβ (D) mRNA expression. The graphs represent the level of mRNA
expressions normalized by HPRT. Values are expressed relatively to the WTmice and are the means ± SD of 4 mice per group. *P<0.05 and **P<0.01 vs
WTmice.

doi:10.1371/journal.pone.0130230.g001
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Fig 2. Lipid droplets formation in the liver of H-apoD Tgmice. A- Western blot analysis of Plin2 expression. The graph represents the level of Plin2
protein expression standardized by amidoblack staining. A representative gel is presented. Semi-quantitative RT-PCR analysis of Cide A (B), Cide B (C) and
Cide C (D) mRNA expression. The graphs represent the level of mRNA expressions normalized by HPRT. Values are expressed relatively to theWTmice
and are the means ± SD of 4 mice per group. E-Confocal analysis of lipid droplets in liver tissues of WT and H-apoD Tg mice. Lipid droplets are stained with
bodipy (in green) and nucleus with propidium iodide (in red). Graphs represent the quantification of 18 images. *P<0.05, **P<0.01, P<0.001 vs WTmice.

doi:10.1371/journal.pone.0130230.g002
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Hepatic FFA uptake
We previously demonstrated that circulating FFA, cholesterol and TG concentrations were not
different between H-apoD Tg and WTmice [15]. The mRNA expression of two enzymes
implicated in lipoprotein metabolism, lipoprotein lipase (LPL) and hepatic lipase (HL)
remained also unaffected in Tg mice (Data not shown). In contrast, the expression of CD36, a
target of PPARγ and the main transporter of hepatic FFA in cells, was significantly increased
(1.2-fold) in the liver of Tg mice (Fig 3A). To evaluate the effect of elevated CD36 expression
on hepatic FA uptake in Tg mice, we prepared primary hepatocytes from both WT and Tg

Fig 3. FFA uptake in the liver of H-apoD Tgmice. A- Semi-quantitative RT-PCR analysis of CD36
expression in liver tissue fromWT and H-apoD Tg mice. Graph represents the mRNA expression levels
normalized by HPRT. Representative gels are presented. Values are expressed relatively to the WTmice
and are the means ± SD of 4 mice per group.B- 3H-oleate uptake was evaluated in primary hepatocytes
prepared fromWT and Tg mice. Results are expressed as CPM of 3H per mg of hepatic protein and represent
the mean of 3 independent experiments. **P<0.01 vsWTmice.

doi:10.1371/journal.pone.0130230.g003
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animals. Incubation of cells with 3H-oleate showed a 30% increase in oleate uptake in Tg mice
(Fig 3B). This confirmed that the upregulation of CD36 provides a functional role in those
mice.

Hepatic lipogenesis
We previously demonstrated that the mRNA levels of SREBP-1c and FAS were increased in
the liver of H-apoD Tg compared to WT mice [15]. Since elevated lipogenesis has also been
associated with hepatic steatosis, we evaluated the expression levels and the activity of several
other key proteins involved in hepatic lipogenesis. We showed that the AMPK expression was
increased by 1.82-fold in the liver of Tg mice. Its phosphorylation on Thr172 residue was also
increased (2.63 fold), but the AMPK activity was unaffected as evaluated by the ratio of
P-AMPα/AMPKα (Fig 4A). As a consequence of increased AMPKα phosphorylation in Tg
mice, one of the AMPKα target proteins, ACC displayed higher phosphorylation levels on
Ser79 (1.7 fold, measured by the ratio P-ACC/ACC) suggesting a reduced activity of the first
lipogenic enzyme (Fig 4B). On the other hand, a significant increase in FAS protein expression
was observed (1.97-fold) complementing our previous observation at the mRNA level [15] (Fig
4C). However, the mRNA expression of ACC, SCD1, DGAT and LXRα remained unaffected
in the liver of H-apoD Tg mice compared to WT (Fig 4D).

As an increased phosphorylation of ACC and an augmented expression of FAS seemed con-
tradictory, we measured the de novo lipogenesis in vivo by ³H2O injection in mice. As shown in
Fig 4E, despite a trend, the level of de novo lipid synthesis in the liver is not significantly differ-
ent between Tg andWT mice suggesting that hepatic steatosis cannot be attributed to a signifi-
cant modification of de novo lipid synthesis.

Hepatic β-oxidation
We previously demonstrated that PPARαmRNA was increased in H-apoD Tg mice liver sug-
gesting an elevated hepatic lipid β-oxidation [15]. A similar increase was observed at the pro-
tein level (2.73 fold) (Fig 5A). Since PPARα is known to regulate the expression of genes
involved in the β-oxidation pathway, we examined the expression of two key proteins involved
in this process. The mRNA of PGC-1α, a co-activator of PPARα remained unchanged (Fig
5B). However, the mRNA expression of the carnitine palmitoyltransferase I (CPT-1), the rate
limiting enzyme of the mitochondrial lipid transfer was slightly increased (1.26-fold) in the
liver of H-apoD Tg mice compared to WT (Fig 5C). This might be associated to a slight upre-
gulation of lipid β-oxidation in the liver of H-apoD Tg mice.

Effect of apoD overexpression on PPARγ activation by AA
To understand the link between apoD and PPARγ over-expression and activation, we evalu-
ated the potential role of apoD as an AA transporter, one of the main ligands of PPARγ. We
used the human hepatocarcinoma HepG2 cell line as a well-characterized model for the study
of hepatic lipid metabolism. Cells were transfected with a construct containing the cDNA of
human apoD. No apoD was detected in cells either untransfected or transfected with an empty
vector. Transfection with the H-apoD cDNA showed a strong expression of the protein (Fig
6A). We next co-transfected the H-apoD cDNA construct with a construct containing five per-
oxisomes proliferator-activator receptor elements (PPRE) linked to a luciferase reporter gene.
Thereafter, cells were incubated with 7 μM of AA in presence or absence of apoD. At this con-
centration, AA does not induce any cellular toxicity [53] but a slight decrease in apoD expres-
sion (Fig 6A). Over-expression of apoD increased PPARγ transcriptional activity (3.7 fold, Fig
6B). Addition of AA alone increased PPARγ transcriptional activity to a similar extent
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Fig 4. Lipogenesis in the liver of H-apoD Tgmice.Western blot analysis of total and phospho-AMPKα (A), total and phospho-ACC (B) and FAS (C)
protein expression in the liver of WT and H-apoD Tg mice. The graphs represent the levels of protein expressions standardized by amidoblack staining.
Representative gels are presented.D- Semi-quantitative RT-PCR analysis of ACC, SCD1, DGAT and LXRαmRNA expression. The graph represents the
level of mRNA normalized by HPRT. Representative gels are presented. E- In vivo lipogenesis measured in 1 year old mice. The values represent the
amount of 3H2O incorporated into triglycerides. Values are expressed relatively to the WTmice and are the means ± SD of 4 mice per group. *P<0.05,
**P<0.01 vs WTmice.

doi:10.1371/journal.pone.0130230.g004
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(3.9-fold). Very interestingly, a combination of AA and apoD over-expression showed a very
strong synergistic transactivation effect on PPARγ transcriptional activity (approximately
9-fold) (Fig 6B).

Consequence of apoD overexpression on plasma and hepatic AA
concentration
To support our hypothesis on the role of apoD in AA transport and the consequence on
PPARγ activation, we evaluated the total concentration of AA (free and bound to TG and PL)
in plasma and liver of WT and H-apoD Tg mice using quantitative isotope dilution gas chro-
matography-mass spectrometry. Our data show that the absolute AA concentration is signifi-
cantly decreased in the plasma of H-apoD Tg compared to WT mice. Consequently, we also
observed a significant enrichment in hepatic AA in the total fatty acid pool (Fig 7). However,
the prostaglandin E2 concentration is similar between WT and H-apoD Tg mice (S2 Fig)

Taken together, our study shows that overexpression of H-apoD leads to increased hepatic
PPARγ expression and subsequent activation of the proteins involved in LD formation. This
effect is also associated with an elevation of fatty acid uptake while lipogenesis remains unaf-
fected. Because the metabolic syndrome is mild, the slight increase in the mitochondrial β-

Fig 5. Analysis of genes involved in β-oxidation in the liver of H-apoD Tgmice. A- Western blot analysis of PPARα protein expression. The graph
represents the level of PPARα protein expression standardized by amidoblack staining. A representative gel is presented. Semi-quantitative RT-PCR
analysis of PGC-1α (B) and CPT1 (C) expression in liver of WT and H-apoD Tg mice. PGC1α and CPT1 gene expression was normalized by HPRT. For
each graph, the H-apoD Tg values were normalized by the WT values and are the means ± SD of 4 mice per group. *P<0.05 and **P<0.01 vsWTmice.

doi:10.1371/journal.pone.0130230.g005
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oxidation is probably a compensatory mechanism. Experiments performed with HepG2 cells
suggest that the hepatic steatosis is a result of an increased AA by apoD in the liver as con-
firmed by the enrichment of hepatic AA in H-apoD mice. This leads to PPARγ transcriptional
activation and downstream effects such as the mild metabolic syndrome and the associated
insulin resistance.

Fig 6. PPARγ transcriptional activity in presence of AA and/or apoD. A- HepG2 cells were either non
transfected (NT) or transfected with a myc-Tag apoD-cDNA or empty vector (EV) construct and incubated
with BSA or arachidonic acid (AA). The level of H-apoD expression was evaluated by Western blot using a
specific H-apoD antibody.B- HepG2 cells were transfected with UAS-Luc, GAL4-PPARγ, β-galactosidase
and with either an empty vector or a myc-Tag apoD-cDNA construct. After transfection, cells were treated
with 7 μMAA for 4h. Luciferase activity represents data normalized by β-galactosidase activity. The data
represent the mean ± SD (n = 3). *P<0.05 and **P<0.01 vs the non-stimulated control without apoD. The gel
presented below showed the expression of apoD in transfected cells using a myc antibody.

doi:10.1371/journal.pone.0130230.g006

Activation of Fatty Acid Uptake by apoD

PLOSONE | DOI:10.1371/journal.pone.0130230 June 17, 2015 13 / 21



Discussion
The goal of this study was to characterize the molecular mechanisms leading to TG accumula-
tion in the liver of adult H-apoD Tg mice. In mice, apoD is mainly expressed in the CNS while
in human, it is expressed in several organs although at different levels [1,12]. As expected, anal-
ysis of the expression pattern of human apoD mRNA in Tg mice clearly showed a higher
expression in the CNS but expression in the liver and in the plasma was also observed [15].
Similar observations were made at protein levels. The hepatic steatosis can therefore be the
result of increased apoD concentration in the liver or from the uptake of circulating apoD.
Indeed, as previously suggested by the study of Suresh and collaborators using a mice model of
the Niemann-Pick type C (NPC) disease, apoD is a circulating protein [54]. Further

Fig 7. Concentration of plasmatic and hepatic AA in WT and H-apoDmice. The concentration of
arachidonic acid was evaluated by isotope dilution gas chromatography-mass spectrometry and reported in
A) plasma as absolute values (left panel: μM) and relative to total fatty acid content (right panel: %); and in B)
liver as absolute values (left panel: nmol/mg tissue wet weight) and relative to total fatty acid content (%). The
data represent the mean ± SD (n = 3 for plasma and 3 for liver). *P<0.05 vsWTmice.

doi:10.1371/journal.pone.0130230.g007
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experiments are needed in order to clearly determine the origin of the hepatic H-apoD protein
in our Tg mice.

It was previously shown that apoD interacts with the leptin receptor regulating the hypotha-
lamic function in energy control [55]. It is unlikely that our observations are a result of an over-
expression of apoD in the hypothalamus. In the study mentioned here above, the authors
observed a strong correlation between the hypothalamic level of apoD, the body fat mass and
the circulating level of leptin which was associated with increased food intake. However, in H-
apoD Tg mice, we did not observe any changes in body fat mass and in circulating leptin con-
centration [15]. In addition, the food intake was not modified (data not shown). Taken
together, this argues for a direct effect of apoD in the liver rather than a role in hypothalamus.

It is also unlikely that our observations are due to an insertion of the apoD transgene in a
genomic area disrupting the metabolism, since we observed a similar phenotype in Tg mice
where H-apoD expression was driven by the neuron-specific enolase promoter (NSE) [15].
The behavioral, molecular, biochemical and general health characterization demonstrated sim-
ilar phenotypes between the NSE and the Thy-1 strains. However, we only studied the Thy-1
mice because the hepatic steatosis was more pronounced in this line.

In the present study, we showed that increased expression of H-apoD in the liver activates
the nuclear receptor PPARγ, leading to hepatic fat accumulation at one year of age. The devel-
opment of hepatic steatosis is probably not a consequence of age-dependent insulin resistance
as the increased hepatic PPARγ expression is observed as early as 3 months of age in Tg ani-
mals (data not shown). Despite an increase in hepatic FA uptake in Tg mice, no differences
were detected in the plasmatic levels of FA and TG. As such, our hypothesis is that the increase
in FA uptake is probably a slow process that does not allow the detection of differences in the
plasmatic levels of FA and TG.

Our in vitro studies strongly suggest that apoD acts as an AA transporter, leading to the acti-
vation of PPARγ. AA is the preferential ligand of apoD [3] and a precursor for prostaglandins
which are also natural PPARγ activators [22,23]. We showed that activation of PPARγ by AA
in HepG2 cells is significantly potentiated by apoD. In agreement with our study, Thomas et al.
[56] demonstrated in cultured embryonic kidney (HEK) 293T cells that apoD stabilizes AA at
the plasma membrane and inhibits the release of AA in the extracellular media. Here, we show
that plasmatic AA is decreased in H-apoD Tg compared to WT mice while hepatic concentra-
tion is enriched. Interestingly, increased hepatic concentration of AA has been associated with
fatty liver [57] as observed in H-apoD Tg mice.

Challenging our observations, Perdomo et al.[58] showed that, in mice injected with an ade-
novirus expressing apoD, the activation of LPL leads to a decrease in circulating TG-rich lipo-
proteins. The authors did not observe any accumulation of ectopic fat in the liver. The
difference between their study and this one could be attributed to the fact that the adenovirus
half-life in mice is certainly too short to allow development of steatosis. Also, the use of adeno-
viruses to overexpress apoD may lead to a different level of apoD expression in the liver.

In the liver of H-apoD Tg mice, we observed a strong increase in PPARγ expression associ-
ated with an activation of its transcriptional activity. Interestingly, PPARγ and C/EBPα activate
each other’s expression maintaining a positive feedback loop for the development of an adipo-
cyte like phenotype [20,21,59]. Complementing these data, we observed a slight increase in C/
EBPα expression while C/EBPβ remained unchanged. It is to note that the upregulation of C/
EBPα expression is minor. This could be explained by the fact that the hepatic steatosis pro-
gression in Tg mice is very slow and hence, the genes implicated are expected to be only slightly
modulated. Furthermore, elevated PPARγ expression results in the increase of CD36 expres-
sion. However, the LPL and HSL levels remained constant at least at the mRNA level. Previous
studies demonstrated that activation of PPARγ in the liver increases expression of LPL and
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CD36 [29,30] however, in our model only the FA uptake is affected without any increase in
lipoproteins hydrolysis. Similar observations associating increased CD36 expression and FA
uptake were made in cardiac cells [60].

Another mechanism by which PPARγmay be implicated in hepatic lipid accumulation
could be by the induction of LD formation and maturation [28–30]. In the present study, we
demonstrated that the expression of Plin2, Cide A and C, three targets of PPARγ, was increased
in H-apoD Tg mice. At the opposite, the expression of Cide B, which is not a PPARγ target,
was unaltered. Listenburger et al [33] showed that Plin2 lowers the rate of TG turnover in LD
by reducing the association of ATGL with LD and therefore the hydrolysis of TG [61] while
Cide A and C are implicated in the fusion of LD [62–65]. This may explain the 5-fold increase
in LDs’ size observed in the liver of H-apoD Tg mice.

Several studies showed that activation of PPARγ induces lipogenesis [38–40]. Since we pre-
viously showed that SREBP-1c and FAS mRNA expressions were increased in H-apoD Tg
mice liver [15], we measured the mRNA levels of key lipogenic enzymes including LXRα, a
transcription factor that induces lipogenic gene transcription [66–70]. We did not observe any
change in the mRNA levels of ACC, SCD1, DGAT and LXRα. We also observed an elevation
of AMPK expression. The increased expression of AMPKα is consistent with a recent study
reporting that CD36 increases AMPK expression through the action of both PPARγ and PGC-
1α [71]. Consequently, AMPKα phosphorylation is higher in the liver of Tg mice, resulting in
increased phosphorylation and inhibition of ACC [72]. Interestingly, Mao et al [73] showed
that inhibition of ACC1 in mouse liver induces expression of FAS explaining why FAS expres-
sion is increased in our conditions. However, by directly measuring de novo lipogenesis in vivo
using 3H2O, we showed the over-expression of H-apoD has no significant effect on de novo
lipid synthesis in 1-year-old animals. A similar observation was made in 3-month-old mice
(data not shown).

PPARα is activated by long chain fatty acid (LCFA) [74,75]. We previously demonstrated
that hepatic PPARαmRNA is increased in H-apoD Tg mice liver [15]. PPARα is a nuclear
receptor that activates the transcription of several genes implicated in the mitochondrial β-oxi-
dation of lipids [75]. Its elevated expression is associated with an increased expression of
CPT1, the rate limiting-enzyme of the mitochondrial β-oxidation [76]. Since CPT-1 is nor-
mally inhibited by malonyl-CoA produced by ACC [77], inhibition of ACC in the liver of H-
apoD Tg mice is associated with an increased expression of CPT-1 strongly suggesting an acti-
vation of the β-oxidation. However, this increased expression is mild and does not appear suffi-
cient to reverse the progression of the hepatic steatosis in the H-apoD Tg mice.

Conclusion
Our study describes for the first time a role for apoD in the regulation of PPARγ and the down-
stream activation of metabolic pathways leading to hepatic steatosis. In Tg mice, elevated apoD
expression leads to higher hepatic AA concentration and subsequent activation of the nuclear
receptor PPARγ. As a result, PPARγ target genes such as CD36, Plin2, Cide A and Cide C are
increased leading to an enhanced LCFA uptake by the hepatocytes and protecting LD against
lipolysis by blocking access to lipases. Both PPARγ activation and high CD36 expression
induce AMPK expression which leads to increased PPARα expression and its downstream tar-
get gene, CPT1 which in turn activates mitochondrial β-oxidation. However, the activation of
this compensatory pathway is insufficient to fully inhibit the accumulation of ectopic fat in the
liver, but it probably contributes to reduce the progression of hepatic steatosis. Overall, our
study highlights a new role for apoD as an AA transporter regulating lipid accumulation in the
liver.

Activation of Fatty Acid Uptake by apoD

PLOSONE | DOI:10.1371/journal.pone.0130230 June 17, 2015 16 / 21



Supporting Information
S1 Fig. ApoD expression in tissues of WT and Tg mice. The expression of H-apoD mRNA
was evaluated by Northern blot analysis in various tissues of H-apoD Tg mice. HPRT was used
as a reference. Results are expressed as a percentage of the expression level measured in the hip-
pocampus and standardized by the level of HPRT expression (Fig. A). Human apoD was quan-
tified in plasma and liver homogenate of transgenic Tg-apoDH mice by indirect Elisa. Results
are expressed as average ± SEM. (Fig. B). Western blot analyses of plasma (P) and liver (L) in
WT and Tg mice. A polyclonal mouse antibody was used to detect the endogenous apoD pro-
tein (Fig. C).
(TIF)

S2 Fig. Prostaglandin E2 expression in tissues of WT and Tg mice. PGE2 levels were mea-
sured by Elisa as described in the Material and methods section, in the plasma and the liver of
1 year-old WT and Tg mice. The data are the means ± SEM of 3 mice per genotype.
(TIF)

S1 Table. Primers used in semi-quantitative RT-PCR. The table indicates the sequence of the
primers used in semi-quantitative RT-PCR analysis presented in the manuscript.
(TIF)
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