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Abstract

Drosophila ‘‘gap’’ genes provide the first response to maternal gradients in the early fly embryo. Gap genes are expressed in
a series of broad bands across the embryo during first hours of development. The gene network controlling the gap gene
expression patterns includes inputs from maternal gradients and mutual repression between the gap genes themselves. In
this study we propose a modular design for the gap gene network, involving two relatively independent network domains.
The core of each network domain includes a toggle switch corresponding to a pair of mutually repressive gap genes,
operated in space by maternal inputs. The toggle switches present in the gap network are evocative of the phage lambda
switch, but they are operated positionally (in space) by the maternal gradients, so the synthesis rates for the competing
components change along the embryo anterior-posterior axis. Dynamic model, constructed based on the proposed
principle, with elements of fractional site occupancy, required 5–7 parameters to fit quantitative spatial expression data for
gap gradients. The identified model solutions (parameter combinations) reproduced major dynamic features of the gap
gradient system and explained gap expression in a variety of segmentation mutants.
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Introduction

Fertilized eggs of Drosophila contain several spatially distributed

maternal determinants - morphogen gradients, initiating spatial

patterning of the embryo. One of the first steps of Drosophila

embryogenesis is the formation of several broad gap gene

expression patterns within first 2 hrs of development. Gap genes

are regulated by the maternal gradients, so their expression

appears to be hardwired to the spatial (positional) cues provided by

the maternal gradients [1]; in addition, gap genes are involved into

mutual repression [2]. How the maternal positional cues and the

mutual repression contribute to the formation of the gap stripes

has been a subject of active discussion [3,4,5].

Accumulated genetics evidence and results of quantitative

modeling suggest the occurrence of maternal positional cues

(position-specific activation potentials), contributing to spatial

expression of four trunk gap genes: knirps (kni), Kruppel (Kr),

hunchback (hb) and giant (gt). Existing data suggest that the central

Knirps domain stripe is largely the result of activation by Bicoid

(Bcd) and repression by Hunchback [1,4,6]. Central domain

Kruppel stripe is the result of both activation and repression from

Hunchback, which acts as a dual transcriptional regulator on Kr

[5,7,8]. Hunchback is one of the most intriguing among the

segmentation genes. Maternal hb mRNA is deposited uniformly,

but its translation is limited to the anterior, zygotic anterior

expression of hb is under control of Bcd and Hb itself [9,10,11,12].

Zygotic posterior expression of Hunchback (not included in the

current model) is under the control of the terminal torso signaling

system [13]. Giant is activated by opposing gradients of Bicoid and

Caudal and initially exprxessed in a broad domain, which refines

later into anterior and posterior stripes. This late pattern appears

to be the consequence of Kruppel repression [2,14].

Predicting functional properties of a gene network combining

even a dozen genes may be a difficult task. To facilitate the

functional exploration, gene regulatory networks are often split

into network domains or smaller units, network motifs with known

or predictable properties [15,16,17]. The network motif based

models can explain dynamics of developmental gradients [18] and

even evolution of gradient systems and underlying gene regulatory

networks [19]. The gene network leading to the formation of

spatial ‘‘gap’’ gene expression patterns is an example, where

simple logic appeared to be far behind the system’s complexity

[6,20]. Gap genes provide first response to maternal gradients in

the early fly embryo and form a series of broad stripes of gene

expression in the first hours of the embryo development. While the

system has been extensively studied in the past two decades both in

vivo [2,21,22] and in silico [5,6,23] a simple and comprehensive

model explaining function of the entire network has been missing

[24,25].

In the current study, a modular design has been proposed for

the gap gene network; the network has been represented as two

similar parallel modules (or two sub networks). Each module

involved three network motifs, two for maternal inputs (one for

one gap gene) and a toggle switch describing mutual repression in

the pair of the gap genes. Formally, the toggle switches present in

the gap gene network are evocative of the bistable phage lambda
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switch [26,27]; however, they are operated by maternal inputs and

their steady state solutions depend on spatial position in embryo,

not environmental variables. The proposed modular design

accommodated 5–7 realistic parameters and reproduced major

known features of the gap gene network.

Results and Discussion

1. General model for a toggle switch with variable
synthesis rates

Mutual repression between the gap genes represents a critical

component of the gap gene network. However, not all possible

repressive interactions between the four trunk gap genes are

equally important. Analysis of expression in gap gene mutants and

exploration of connectionist models (see Figure 1A) provided

evidence for mutually repressive interactions between giant and

Kruppel [2,14] as well as hunchback and knirps [1,6]. The pairs Gt-Kr

and Hb-Kni have partially overlapping expression patterns. With

the account of strongest repressive interactions [23] (see

Figure 1B), the mutually repressive gap gene pairs Gt-Kr and

Hb-Kni can be considered as two parallel toggle switches operated

by the maternal positional cues (Figure 1C).

A positionally operated toggle switch can be simulated by

variation of synthesis rates for repressors (see methods, eq. 12). In

this case, the synthesis rates are analogous to maternal inputs,

changing along the anterior-posterior axis of the embryo (see
Figure 2A, C). If the synthesis rates are high for both repressors,

then the system resembles classical bistable phage lambda switch

with two dynamic attractors [26,27] (Figure 2E). If the synthesis

rates are asymmetric or low, then the system has only one dynamic

attractor (monostability) and a single solution (Figure 2F–I). The

observed ratios of concentrations in the simulated positionally

operated toggle switch are in a good agreement with ratios

observed between the mutually repressive gradients Hb-Kni and

Gt-Kr (Figure 2B, D). For instance, zygotic expression of hb in

the anterior is driven by Bicoid acting on hb P2 promoter,

containing an array of moderate-affinity binding sites for Bcd,

responding to high and intermediate Bcd concentrations [10]. The

knirps cis enhancer contains cooperative arrays of high-affinity Bcd

sites that are sensitive to lower Bicoid concentrations [28].

Expression of kni is excluded from the anterior domain of Hb

due to Hb repression, which correspond to asymmetric synthesis

rates (aHb .. aKni) at around 30% of embryo length (e.l.) and

elimination of Kni. Instead, at around 65% of e.l. synthesis of Hb

is lower due to low sensitivity of P2 promoter to Bicoid, while kni

cis enhancer with its high affinity Bcd sites is still active; this

corresponds to a reverse ratio of the synthesis rates (aHb ,, aKni)

and elimination of Hb. The simulated toggle switch also produced

solutions corresponding to equally low concentrations of repres-

sors, as shown on the example of Gt-Kr pair of gradients

(Figure 2I).

2. Steady-state models describing maternal positional
cues for the trunk gap genes

The positional cues determining the variable synthesis rates are

established by maternal inputs. Most of these positional signals are

known from experimental or in silico analysis of the gap gene

network [2,5,6,21,22,23]. Below is a formal summary of the

maternal inputs, expressed via steady-state fractional site occu-

pancy models (see methods section) [4,17,29,30,31] for the four

trunk gap genes. Full versions of the models are available in

Supporting Information File S1, on page 2 ‘‘Detailed models

describing positional cues for maternal and gap genes’’.

Hunchback. Bicoid and Hunchback itself regulate expression

of hunchback; both regulators are required (operator AND) for

Hunchback expression:

PHb~pBcdpHb ð1Þ

Figure 1. Architecture of the gap gene network. (A) A ‘‘connectionist’’ network starts from total connectivity. Fitting connectionist model to
data removes unnecessary links and adds signs (activation or repression). (B) A ‘‘minimalist’’ network, connectivity reflects critical interactions
supported by genetic data and connectionist models. (C) Modular design: the minimalist network is split into parallel sub networks (1 and 2, in red),
each containing one toggle switch, operated by two positional cues.
doi:10.1371/journal.pone.0021145.g001
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Substitution using eq. 1 for a cooperative array of activator

binding sites (see methods, eq. 13) returns a full model, describing

inputs to Hunchback (anterior domain, see also eq S7 and S7a in

the Supporting Information File S1):

PHb~
1zCBcdKBcd ½Bcd�
� �NBcd

{1

CBcdz 1zCBcdKBcd ½Bcd�ð ÞN
Bcd

{1
�

1zCHbKHb½Hb�
� �NHb

{1

CHbz 1zCHbKHb½Hb�ð ÞNHb
{1

ð2Þ

Notice, any other regulatory link, including Bicoid-activator will

carry exactly the same Bicoid-specific parameter values (KBcd, CBcd,

NBcd). This emulates an assumption that every gene activated by

Bicoid carries exactly the same array of Bicoid binding sites. Here

and below p stands for the maternal (elementary) inputs, P for the

outputs integrating several maternal inputs. This is true for nearly

every other transcriptional regulator (node) in the integrated

model. For instance, Hunchback acting as activator or dual

regulator utilizes the same set of constants (KHb, CHb, NHb),

however, Hunchback acting as a repressor was allowed to use a

different set of constants.

Caudal is repressed by Bicoid translationally, however the

same framework has been applied to this network connection,

given that Bicoid directly binds sites in the caudal 3’ mRNA (see

also eq S8 and S8a in the Supporting Information File S1):

PCad~1{pBcd{R ð3Þ

The caudal model was a single steady-state model, taking the place

of yet another maternal input to the dynamic gap gene network

model.

Kruppel is activated and repressed by Hunchback (dual

regulation Hb parameters, see also eq S9 and S9a in the

Supporting Information File S1) [5]:

PKr~pHb 1{pHb
� �

ð4Þ

Knirps is activated by Bicoid and is repressed by Hunchback (Hb-

R parameters, see also eq S10 and S10a in the Supporting

Information File S1):

PKni~pBcd 1{pHb{R
� �

ð5Þ

Giant. Either Bicoid or Caudal (operator OR) activate

expression of giant (see detailed description of the Giant model in

the Supporting Information File S1, eq S11 and S11a):

PGt~1{ 1{pBcd
� �

1{pCad
� �

ð6Þ

Steady-state models eq. 1, 2, 4, 5 have been described in detail in

previous publications [4,11,32]. Model eq. 3 fits well the observed

distribution of Bicoid and Caudal gradients; model eq. 6 has been

developed in this work based on Giant expression in Bicoid and

Cad mutants.

Figure 2. Positionally operated toggle switches. (A) Gradients for Bicoid (Bcd) and Hunchback (Hb) define positional potential (cue) for Knirps.
(B) Relative distribution of mutually repressive Hb and Kni gradients. (C) Dual regulation by Hb defines positional cue for Kr. (D) Relative distribution
of mutually repressive Giant (Gt) and Kruppel (Kr) gradients is similar to that of Hb and Kni (parallel module). (E) Phase portrait of a bistable toggle
switch; the system has two dynamic attractors (diamonds) if rates of synthesis a1 and a2 (in red) are high. (F–I) Predicted behavior of a simulated
toggle switch is in agreement (see the arrows) with the observed distribution of gap gradients in Hb-Kni and Gt-Kr pairs. If the synthesis rates a
(positional cues) are asymmetric or low at a given coordinate, the toggle switch has a single attractor at that position.
doi:10.1371/journal.pone.0021145.g002
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3. Integrated dynamic model for the gap gene network
The described combination of 6 networks motifs including 4

positional cues (one for each gap gene) and 2 positionally operated

toggle switches might represent a minimal architecture, core of the

gap gene network. Given that the maternal Bcd gradient is stable

in time and the maternal Hb is initial condition for Hb, a

quantitative dynamic model for this spatio-temporal network can

be expressed using 4 partial differential equations one equation for

each trunk gap gene :

L½A�x
Lt

~aPA
x 1{PB

x

� �
{b½A�xzD

L2f A xð Þ
Lx2

ð7Þ

Here, production of a gap gene A (Hb, Kr, Kni, Gt) in the spatial

coordinate x depends on its synthesis rate PA
x (positional cue) and

repression 1{PB
x by it’s mutual counterpart, repressor B. a, b and D

here are the synthesis, decay and diffusion rate constants [33,34]

correspondingly. The positional cues and repression terms are

expressed via fractional site occupancy models (see methods section)

for transcriptional gene networks [4,35]. Therefore, at the core, the

current model is based on gene regulation by transcriptional signals.

Transcriptional responses in the system of segmentation genes are

mediated by arrays (largely homotypic arrays) of binding sites

present in enhancer regions [36,37], accordingly, every i th

connection in the model has been approximated by a response of

an i th array of equal binding sites with binding constant Ki,

cooperativity of binding Ci and the number of sites Ni. Steady-state

models, directly derived from enhancer DNA sequences (distribu-

tions of binding sites), recently gained popularity in the fly modeling

field [32,35,38]. Dynamic models, described here, have all

components describing binding site distributions and may be

extended to reflect the actual structures of enhancers.

Combining positional cues (x-dependent synthesis rates) given

by eq. 1–6 with mutual interactions as in eq. 7 returns the

following system of four differential equations (eq. 8–11) for the

four trunk gap genes:
Hunchback. In addition to the positional cues considered

above, hunchback is repressed by Knirps, substituting the

corresponding terms in eq. 7 returns a dynamic model for the

anterior Hunchback expression pattern:

L½Hb�
Lt

~aHbpBcd pHb 1{PKni
� �

{bHb½Hb�zDHb L2f Hb xð Þ
Lx2

ð8Þ

In this model, Knirps repression (1-PKni) is given by eq. 5 with the

set of the corresponding Kni - specific parameters, emulating

presence of an array of Knirps sites in Hunchback transcription

regulatory regions.

Knirps is repressed by Hunchback and Tailless (the former was

incorporated in this model as a stable gradient):

L½Kni�
Lt

~aKnipBcd 1{pHb{R
� �

1{pTll
� �

{bKni½Kni�z

DKni L
2f Kni xð Þ

Lx2

ð9Þ

Notice that in the actual model above, the Hunchback repression

on Knirps as a positional cue (eq. 5) is indistinguishable from the

Hunchback repression on Knirps in the toggle switch. This simply

reflects overlapping of the two motifs in the gap network (see

Figure 1). Repression from Tailless is also incorporated into the

Knirps model.

Kruppel is activated and repressed by Hunchback (positional

cue) and it is also repressed by Giant:

L½Kr�
Lt

~aKrpHb 1{pHb
� �

1{PGt
� �

{bKr½Kr�zDKr L2f Kr xð Þ
Lx2

ð10Þ

Giant. Either Bicoid or Caudal (positional cue) activate giant;

Kruppel and Tailless repress giant:

L½Gt�
Lt

~aGt 1{ 1{pBcd
� �

1{pCad
� �� �

1{PKr
� �

1{pTll
� �

{

bGt½Gt�zDGt L
2f Gt xð Þ
Lx2

ð11Þ

The system of differential equations (eq. 8–11), describing

interactions in the network shown in Figure 1C has been

explored using standard methods.

4. Fitting dynamic model to data using global
parameters with realistic values

Robust models typically have little or no dependence on the

parameter values. If so, a set of global parameters, equal for almost

every edge in the gap gene network should still deliver high quality

model-data fits. The set of global parameters used in this study is

shown in the Figure 3A. In all models tested in this study, maximal

absolute concentrations [39], maximal synthesis rates, diffusion,

decay and cooperativity rates were set equal for all four gap genes

(see methods). Preliminary analysis has shown that the condition of a

single dynamic attractor (see above) may require unequal repression

in the mutual pairs Hb-Kni and Gt-Kr. Given this condition, the

binding affinity was set equal (K, global) for 12 out of 14 connections

(edges) in the network (Figure 3A). The toggle switches added 1 (K1)

or 2 (K1, K2) node-specific binding affinity parameters to the model

(see red network connections in the Figure 3A).

Fitting dynamic model (eq. 8–11) to data from FlyEx database

[40,41] demonstrated that even with as few as 4 open parameters

(no diffusion [33], fixed number of binding sites, one additional

affinity parameter, (see Figure 3B) it was possible to obtain

multiple high-quality fits (correlation r.0.7, see the methods

section). However, the best quality fits (r.0.9) were obtained for

models containing 5–9 parameters, including 3–4 global and 3–5

node-specific (binding affinities K, K1, …K5) parameters (see also

Supporting Information File S1, Figure S1). Analysis of solutions,

obtained for the 7-parameter model (model ‘‘B-7’’ in Figure 3A,
B, 4 global, 3 edge-specific: K, K1, K2) revealed surprisingly realistic

parameter values, close to the values observed for transcription

factors in this and related systems [42,43,44,45,46,47,48] (see

Figure 3C, D, E). However, the global binding affinity K was off

the realistic values in most solutions (Figure 3D). This result

might be a consequence of the minimalist model design or may

suggest that many regulatory interactions in the gap gene network

are achieved via vast arrays of relatively weak binding sites [36].

About 50% of all solutions for the model ‘‘B-7’’ returned site

arrays containing 3–7 binding sites.

Models with large numbers of parameters may achieve data

overfitting, this argument has been raised in many quantitative

studies [49]. To detect potential limits for overfitting in this study,

models with various number of parameters (4–10) were fit to incorrect

data, containing swapped expression data for Kruppel and Knirps. In

these fitting tests, successful solutions (r.0.7) were detected only for

models containing .8 parameters (see Figure 3B), however, the

number of solutions and their quality were lower. Thus, the main

model (7 parameters) is still below the detected overfitting limit.

Minimal Design for Drosophila Gap Gene Network
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5. Reverse modeling of mutant expression using
identified model solutions

Fitting models to data in itself rarely supports any concept, as it

simply may be the result of overfitting, typically caused by excessive

number of free parameters. Model validation strategies adopted in

this study required: first, fitting model to wild type expression data

and, second, predicting mutant expression patterns (different data)

using parameters, identified at the first, fitting step.

Model parameters were constrained based on quantitative

expression data (see methods) for the gap genes available from

FlyEx database [40]. Best model solutions, matching realistic

parameter ranges (Figure 4A–C) were examined for dynamics of

the stripe patterns and mutant expression. One of the most

documented dynamic effects in the system is the anterior shift of

gap patterns during cell cycle 14 [6]. The dynamic anterior shift

has been reproduced by the model for kni and Kr expression

Figure 3. Model design, performance and solution ranges. (A) The number of open for optimization parameters (in red) incorporated into the
model. The global parameters included binding affinity, cooperativity, number of binding sites, synthesis, decay and diffusion rates and maximal
absolute concentration. Node-specific parameters included binding affinities, different from the global K for some regulatory connections (K1, K2, K3,
see the network above). (B) Performance of different models. The explored network with 2 toggle switches performed similarly to the same network
plus one link connecting the switches. With more than 8 open parameters, the two-switch model fitted incorrect data (swapped Kr and Kni
expression data). (C) Values of global (K) and specific (K2) binding affinity constants from solutions for B-7 model. Markers show known binding
affinities for some transcription factors [47,48]. (D) Values of diffusion for B-7 model. Red triangles on top (markers) show some known diffusion rates
[45,46]. (E) Cooperativity values from solutions for B-7 model, markers show some known cooperativity values [42,43,44].
doi:10.1371/journal.pone.0021145.g003
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patterns (Figure 4F, G). Dynamics of more terminal Gt stripes

was different, perhaps, due to the incomplete set of terminal inputs

in the current model. Directly or indirectly, all gap genes are wired

to the major Drosophila morphogen Bicoid [21]. Increasing the

number of copies for bicoid gene in vivo shifts the entire array of gap

and pair-rule stripes to posterior [10]. Simulation of 4 copies of bcd

reproduced the expected shift for all four trunk gap genes (see

Figure 4D, E). Mutants for maternal determinants, Bicoid and

Hunchback disrupt expression of gap genes [22]; major features of

these mutant phenotypes have been reproduced by the model as

well (Figure 4H–J). Thus, for the bicoid null mutant in vivo (bcd -,

tor-, to eliminate contribution of terminal system), Kruppel is

expressed in the anterior, while Giant is expressed in the posterior.

The anterior expression of Kruppel in bcd - is explained by lower

concentrations of Hunchback, activating, but not repressing

Kruppel. This Kruppel expression eliminates the anterior Giant

expression (simulation in Figure 4H). Removal of Hb from the

bcd -, tor- embryos eliminates the anterior Kruppel expression, so

the Giant is expressed both in the anterior and the posterior

regions (simulation in Figure 4I). Hb exhibits uniform expression

Figure 4. Reverse modeling features of the gap gene network. (A) Parameter values for the analyzed solution. (B) Absolute concentrations
(nM) of gap gradients in the selected solution. (C) Data to model agreement (relative concentrations). (D, E) Posterior shift of gap stripes in response
to 4x Bicoid. (F, G) Dynamic anterior shift of Knirps stripe. (H–J) Gap gradients in maternal mutants. (H) In the absence of Bcd, gt is expressed in the
posterior and Kr in the anterior. (I) In the absence of both Bicoid and Hunchback, Gt has uniform pattern, while Kr is absent. (J) In the absence of
Bicoid, the uniform Hunchback activates Kr uniformly; Giant is absent (Gt is low in this simulation). (K–M) Simulation of indirect regulatory links. (K)
Uniform maternal Hunchback results in the loss of the posterior Gt stripe. (L) In a knirps mutant, the posterior Gt stripe is weakened. (M) Kr stripe in
the knirps mutant is shifted posteriorly. Model contained no direct links for pairs Hb-Gt, Kni-Gt and Kni-Kr.
doi:10.1371/journal.pone.0021145.g004
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in bcd-, tor-, nos- resulting in uniform expression of Kruppel and

absence of Giant [22]. Though the actual simulation shows residual

expression of Giant (see Figure 4J), its level is low in comparison to

the level of Kr, the ratios Kr:Gt conforms to that observed in this

mutant. Along with the mutants for maternal determinants, the

model reproduced many mutant phenotypes reflecting direct and

indirect regulatory links in the gap gene network [2,14,50]. Figure
S2 in Supporting Information File S1 shows simulations for mutants

disrupting regulatory interactions in the toggle switches. Typically,

removal of one component (Kruppel from Kr-Gt pair) results in a

corresponding spatial expansion of its mutual counterpart (Giant,

Figure S2E in Supporting Information File S1). Successful

simulation of these mutants is not too surprising since the

corresponding direct links are parts of the model (see Figure 1C).

It is interesting that the model was able to reproduce some indirect

regulatory connections as well.

Consequences of mutations in the Hb-Kni module on the

parallel module Gt-Kr are given in Figure 4K–M. Despite the

absence of direct links between Hb-Gt and Kni-Gt gap pairs, the

model was able to correctly reproduce elimination of posterior Gt

in nos- mutants expressing uniform Hb (Figure 4K) and reduction

of posterior Gt stripe in kni- mutant (Figure 4L). Similarly, in the

absence of direct Kr-Kni links in the model, the Kr stripe was

shifted in the simulated kni- mutant posteriorly, as observed in vivo

(Figure 4M).

Simulated mutant expression using parameters obtained based

on the wild type data, has demonstrated reasonable performance

of the minimal model proposed for the gap network. Largely, our

model produced mutant patterns only at qualitative levels,

sometimes with certain aberrant features (Figure 4J, 4K, 4L);

however, in majority of the considered cases, the qualitative

changes in the simulated patterns followed trends observed in the

same mutants in vivo.

6. Mutual repression between the gap genes may be
required for the formation of pair-rule stripes

How do the positional toggle switches operating in the gap gene

network affect downstream genes? Concentration ratios between

the gap gradients Hb-Kni and Kr-Gt are critical for expression of

pair-rule genes, such as even-skipped (eve) or hairy (h) [51,52,53].

Formation of Eve stripe 2 requires precise ratio between Gt and

Kr concentrations (see Figure 2D, I); formation of the Eve stripes

3, 4, 6, 7 requires precise ratio of Hb and Kni concentrations [54]

(see Figure 2B, G, H). Surprisingly, these pairs of gap genes (Gt-

Kr, Hb-Kni) correspond to the described toggle switches; no Eve

stripes require inputs combining Kni and Gt or Hb and Kr.

therefore, the concentration ratios (positional dynamic attractors)

established between the gap gradients in response to maternal

positional cues may be required to ‘‘open windows’’ for the pair-

rule stripes (see Figure 5). Without mutual repression, establishing

appropriate ratios between the gap gradients would be problem-

atic, thereby compromising the positioning of pair rule stripes.

Materials and Methods

Quantitative gene expression data
Quantitative gene expression data were downloaded from the

FlyEx database [40]. The input data for the Bicoid and

Hunchback gradients corresponded nuclear cleavage cycle 14.1,

the output data for Hunchback, Kruppel, Knirps and the input

Tailless data corresponded cleavage cycle 14.4. All data was

resampled to 100 spatial points (Dx = 5 mm) in the fitting tests.

Analysis of the toggle switch with variable synthesis rates
To analyze function of the toggle switches, phase portraits were

obtained for the following system of ordinary differential equations:

Figure 5. Mutually repressive gradients position pair-rule stripes. (A, B) Phase portraits of monostable toggle switches (as in Figure 2),
analogous to gradient pairs establishing expression of Eve stripes (see the network motifs). (C) Formation of the Eve stripe 3 (as well as the Eve stripes
4, 6, 7) requires specific ratio between the Hb and Kni concentrations. (D) Formation of the Eve stripe 2 (as well as the Eve stripe 5) requires specific
ratio between the Gt and Kr concentrations. Gradients in (C) and (D) are color-coded in accordance with the network nodes in (A) and (B). Notice,
every Eve stripe requires a combination of inputs present in either of the toggle switches (e.g. either Hb+Kni or Gt+Kr).
doi:10.1371/journal.pone.0021145.g005
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d½R1�
dt

~aR1pR2{b½R1�

d½R2�
dt

~bR2pR1{b½R2�

8>><
>>:

ð12Þ

Variable synthesis rates a here emulate positional cues of gap genes,

changing across the axis coordinate. In all tests, b = 0.1, a changed

in the [0; 1] range and p was simulated based on eq. S4 (see

Supporting Information File S1) with realistic parameters (see

below), equal for both mutual repressors.

Quantitative framework – binding site occupancy models
For an array of N cooperating (C - cooperativity fold,

C[½1; z?�) equal binding sites, all with affinity (binding constant)

K, the probability of occupancy of at least one site in the array is

equal to [4,32]:

pA ½A�,K ,C,Nð Þ~ 1zCK ½A�ð ÞN{1

Cz 1zCK ½A�ð ÞN{1
ð13Þ

Within this framework, equation 13 is proportional to the

probability of activation (rate of synthesis) of a gene, regulated

by the transcriptional activator A. If A is a transcriptional

repressor, then the probability of repression of the downstream

gene is reverse of pA. If gene expression is outcome of several

regulatory events and they are all required for expression (logical

operator ‘‘AND’’), then the synthesis rate of that gene P is given by

the product of activation from i site arrays for i activators and

repression from j site arrays for j repressors as follows [17]:

P~P
i

pA
i Pj

1{pR
j

� �
ð14Þ

Input integration using logical operator ‘‘OR’’ (multiple indepen-

dent activators) can be expressed using the following expression:

P~1{P
i

1{pA
i

� �
ð15Þ

Normalization of synthesis rates in the dynamic model
Every dynamic model contained synthesis rates, which include

synthesis rate constants a, positional cues p and mutual repression

terms (1-P). The synthesis rate constants a were equal for all

components and were also equal to decay constants b (global

parameters, see Supporting Information File S1, Figure S1). As to

maternal positional cues, it has been assumed that the absolute

maximal possible rates of synthesis across all spatial coordinates in

the embryo, should be similar for all four gap genes at the beginning

of their expression. For this reason, values P(x) where normalized for

every gap gene to [0–1] range for every parameter combination at

the initial moment of time. Analytically, this operation is equivalent

to incorporation of a multiplier vA into the synthesis rate terms:

L½A�
Lt

~aAvAPA
x 1{PB

x

� �
{b½A�zDA L2f A xð Þ

Lx2
ð16Þ

vA~
1

Max(PA(x jt~0,K,C,N))
ð17Þ

Fitting parameters for dynamic model
The Metropolis-Hastings algorithm was used for fitting model to

data and obtaining parameter combinations [55,56]. The objective

function of the algorithm was based on the correlation r, measured

between the model and the data [5]. At every step of the Metropolis

algorithm (evaluation of a parameter set), the model-data correlation

has been measured for each of the four gap genes, the worst value of

this correlation Min(r1..r4) has been taken as an argument for the

objective function. Solutions for the system of 4 differential equations

have been obtained by numerical integration using Euler method

(Dt = 2.2 min) for every Metropolis step (Metropolis loop was

external to the integration). Diffusion has been simulated by

Gaussian filter, applied to the output gradients between every step

of the numerical integration (loop, internal to the integration).

Probability of acceptance was calculated from the likelihood ratio

between the current (r0) and the proposed states (r1). The proposed

state was accepted if the likelihood ratio produced a number greater

than a random number U, derived from a uniform distribution:

Uv

1zr1
� �

1{r0
� �

1zr0ð Þ 1{r1ð Þ ; U[½0; 1� ð18Þ

In all fitting tests, the search was run for 500 Metropolis steps per

every seed point for 1000 independent seed points in a grid of 100 for

every parameter, for exception the number of binding sites (range 1–

20). In quality solutions, every gap gene was required to achieve at

least 50% (25 nM) of the maximal concentration (50 nM); beyond

that, the ratio between the resulting gap gradients was disregarded.

Fitting ranges for gap genes were: Hb, 30–70% of embryo length

(e.l.); Gt, 10–90% e.l.; Kr, 20–80% e.l.; Kni, 40–90% e.l. All

programs used in this study are available in the ‘‘Fitting and

simulation software’’ file.

Simulation of mutant expression
All mutant expression tests in silico were carried out based on the

same (best) solution with realistic parameter values (the parameters

are shown in the Figure 3 and Figure S1 in Supporting

Information File S1) by removing the corresponding regulatory

links from the network and integrating the system of differential

equations as described above. Misexpression of the maternal

Bicoid and the maternal Hunchback has been simulated by

replacing the original maternal gradients in the input data.

Supporting Information

File S1 The Supporting Information File S1 contains detailed

description of fractional occupancy framework, steady-state

models used under the synthesis terms and two supplementary

figures, Figure S1 describing overfitting test and Figure S2

describing mutant expression.

(PDF)

File S2 The file contains a software package for fitting expression

patterns and simulating mutant expression. The software includes

help and files for a test run.

(RAR)
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