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Abstract

Background: In vivo kinetics and frequencies of epitope-specific CD4 T cells in lymphoid compartments during M.
tuberculosis infection and their resting memory pool after BCG vaccination remain unknown.

Methodology/Findings: Macaque DR*W201 tetramer loaded with Ag85B peptide 65 was developed to directly measure
epitope-specific CD4 T cells in blood and tissues form macaques after M. tuberculosis infection or BCG vaccination via direct
staining and tetramer-enriched approach. The tetramer-based enrichment approach showed that P65 epitope-specific CD4
T cells emerged at mean frequencies of ,500 and ,4500 per 107 PBL at days 28 and 42, respectively, and at day 63
increased further to ,22,000/107 PBL after M. tuberculosis infection. Direct tetramer staining showed that the tetramer-
bound P65-specific T cells constituted about 0.2–0.3% of CD4 T cells in PBL, lymph nodes, spleens, and lungs at day 63 post-
infection. 10-fold expansion of these tetramer-bound epitope-specific CD4 T cells was seen after the P65 peptide
stimulation of PBL and tissue lymphocytes. The tetramer-based enrichment approach detected BCG-elicited resting memory
P65-specific CD4 T cells at a mean frequency of 2,700 per 107 PBL.

Significance: Our work represents the first elucidation of in vivo kinetics and frequencies for tetramer-bound epitope-specific
CD4 T cells in the blood, lymphoid tissues and lungs over times after M. tuberculosis infection, and BCG immunization.
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Introduction

CD4 T cells play a critical role in immune protection. CD4 T cells

function through their capacity to help B cells produce antibodies, to

activate macrophages for enhanced microbicidal activity, to recruit

leukocytes to infection/inflammation sites, and through their

production of cytokines and chemokines to orchestrate adaptive

immune responses. Naı̈ve conventional CD4 T cells can evolve to at

least four distinct cell populations, Th1, Th2, Th17 and induced

regulatory T cells (iTreg), in response to antigens. Since signaling

triggered by class II MHC/peptide-TCR interaction and cytokine

environment are important for activation and differentiation of naı̈ve

CD4 T cells, the evolution of these four T cell populations after

antigen exposure or infections may depend upon the pattern of

signals they receive during the initial interaction with antigen [1].

Direct tracking of class II MHC-restricted epitope-specific CD4 T

cells will help to elucidate evolution or differentiation of Th1, Th2,

Th17 and Treg cell populations in development of balanced anti-

microbial immunity against viral or bacterial infections.

Mycobacterium tuberculosis-induced tuberculosis remains to be a

major killer among infectious diseases. Studies in mice and HIV-

infected humans indicate that CD4 T cells are of central

importance for immune protection against tuberculosis [2,3].

While Th1 cytokines IFN-c and TNF-a are critical for immune

protection against tuberculosis in mice, the role of human TNFa
anti-tuber culosis immunity is demonstrated in the subjects who

receive anti-TNF mAb treatment of rheumatoid arthritis, and

develop reactivation tuberculosis [4,5]. Given the possibility that

human Th1, Th2, Th17 and Treg cells play a role in immune

regulation of tuberculosis, it is important to determine the

evolution and interrelation of these CD4 T cell populations in

primary M. tuberculosis infection. Developing better assay systems

for direct measurement of MHC-restricted epitope-specific CD4 T

cells should be an important step toward in-depth studies of

evolution and immune function of Th1, Th2, Th17 and Treg

during primary M. tuberculosis infection.

The recent development of tetrameric or multimeric MHC/

peptide complexes with the capacity to bind TCR has provided a
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useful tool to study antigen-specific T cell responses directly ex vivo

[6,7,8,9,10]. Class I MHC/peptide tetramers have revolutionized the

identification, enumeration, and phenotyping of antigen-specific

CD8+ T cells [8,11,12,13], but the potential of class II MHC/peptide

tetramers has not been adequately appreciated due to technical

problems for generating useful class II MHC/peptide tetramer and

for measuring low-frequency Ag-specific CD4+ T helper cells.

Despite the fact that class II MHC tetramers loaded with autoantigen

peptides have been well-documented [see review in reference [10]],

only limited numbers of class II MHC/microbial peptide tetramers

were developed to measure microbial epitope-specific CD4 T cells

[9,14,15,16,17]. Although class II MHC tetramer-based analysis may

open a new avenue to further understand differentiation and

evolution of antigen-specific CD4 T-cell subpopulations in the

context of vaccinations or infections, fundamental aspects of the

tetramer application remain to be characterized. While tetramer-

based assay is presumably advantageous over peptide-stimulation-

based intracellular cytokine staining assay in terms of direct/rapid

measurement, objective enumeration, and simultaneous phenotyping

analyses, comparative evaluation of these two assays during

mycobacterial infection and vaccination has not been done.

Importantly, the utility of MHC/peptide tetramers in documenting

fine development of epitope-specific CD4 T cell responses in the

blood, lymphoid tissues and infected lungs during primary M.

tuberculosis infection has not been determined [18]. The paucity of the

information is somehow attributed to the fact that murine class II

MHC tetramers for mycobacterial antigens are not available for

application in mouse models of tuberculosis. Furthermore, the

possibility that the class II MHC tetramer is able to confer direct and

rapid measurement of Mycobacterium Bovis Bacillus Calmette-Guérin

(BCG) vaccine-elicited resting memory CD4 T cells remains largely

unknown. To address these fundamental questions, we have

generated macaque class II MHC/Ag85B peptide tetramers. We

then evaluated standard tetramer direct staining, tetramer staining

after peptide stimulation, and tetramer-based enrichment approaches

for direct measurements of epitope-specific CD4 T cells in blood,

lungs, lymph nodes and spleens during M. tuberculosis infection of

Mamu-DRB*W201+ rhesus macaques. We also employed the

tetramer-based enrichment approach to successfully measure BCG-

elicited resting memory P65-specific CD4 T cells 2 years after

vaccination. Our studies represented the first elucidation of kinetics

for tetramer-bound epitope-specific CD4 T cells in animal models of

tuberculosis/vaccination.

Materials and Methods

Ethic Statement
The use of macaques and experimental procedures were

approved by Institutional Animal Care and Use Committee and

Biosafety Committee, University of Illinois College of Medicine at

Chicago (UIC), and we followed the national and international

guidelines regarding "The use of non-human primates in research

to minimize potential suffering of the studied macaques. Daily or

weekly clinical follow-up were taken to ensure that animals were

not suffering from severe coughing, respiratory distress, depres-

sion, refusion to take food, body-weight loss or other potential life-

threatening signs. Human euthanization procedures were imme-

diately taken if those signs occur progressively.

Proliferation assays to Mycobacterium antigen Ag85B
peptides in BCG vaccinated macaques

Twelve Indian rhesus macaques (Macaca mulatta) were vaccinat-

ed intravenously with 106 CFU of BCG and used screening

epitope peptides of Ag85B. Conventional proliferation assay was

carried out as described previously [19]. Briefly, Sixty nine 15mer

peptides overlapping by 11mer and spanning entire Ag85B protein

(synthesized by Genscript) were divided in 10 groups, 7 peptides

per group (6 for group 10). Macaque PBL (16105 cells per well)

were cultured in triplicate of 96-well plates in presence of one of

ten groups of Ag85B peptide pools, individual 15mer peptides,

purified protein derivative of tuberculin (PPD)(1, 5 or 25 mg/ml),

ConA (5 mg/ml), bovine serum albumin (BSA 3 mg/ml), or

medium alone. Five days later, cells were pulsed with 3H-

thymidine at 1.0 uCi per well, and uptake was measured 8 hours

later using a 1450 Mirocbeta scintillation counter (Wallac,

Gaithersburg, MD). Stimulation index was defined as the ratio

of the mean CPM of PPD-, peptide group- or ConA-stimulated

wells relative to the mean CPM of control wells (medium alone).

Determination of Mamu-DR alleles
To examine the associated class II MHC molecules in these BCG-

vaccinated macaques and identify Mamu-DR alleles in naı̈ve

monkeys for further immune studies, Mamu-DRB phenotype of each

macaque was screened using nest-PCR and DNA sequence analysis.

All macaques were collected 0.5 ml of anti-coagulated blood to

extract genomic DNA using DNeasy Blood & Tissue Kit (Qiagen),

the genomic DNA samples were used to amplify the full-length

Mamu-DRB fragment by a standard PCR with a forward primer (59-

GCCCGTCGACCTGTCCTGTTCTCCAGCATG-39) and a re-

verse primer (59-GGCGGGATCCCTTTTCATCCTGCAAAG-

CTG-39) as previous described [20], as the a-chain is usually

identical in all Mamu class II variants. Subsequently, a pair of

primers (59-CCGCTCCAGGATGTCCTCCC/59-CTCGAGTG-

TCCCCCCAGCACGTTTC) were used in a second-round PCR to

amplify the exon 2 of b1 domain in DRB*W201 chain [15]. The

separated DNA fragments with the exact predicted sizes on the

agarose gel were collected and purified by QIAquick Gel Extraction

Kit (Qiagen) and then directly sequenced. The Mamu-DRB allele of

individual macaques was determined by sequence analysis using the

Genbank data base [15,20].

Pulmonary M. tuberculosis infection in macaques
Six Chinese rhesus macaques, three DRB*W201+ and three

DRB*W201- were infected with Mycobacterium tuberculosis to

measure kinetics of epitope-specific CD4 T cells in different

lymphoid compartments. 500 CFU of M. tuberculosis Erdman

(validated stock from FDA) in 2 ml PBS were administered into

the right caudal lung lobe of each macaque using bronchoscope

(Olympics) in BRL Annex BSL3 monkey facility, as we recently

described [21]. Blood samples were collected from individual

animals after vaccination or infection to isolate PBL for evaluating

T-cell responses. Lung, axillary and periaortic lymph nodes, and

spleens were also collected at necropsy to isolate lymphocytes for

tetramer staining.

Construction of MHC class II plasmids with Ag85B P65
covalent loading

PBL collected from macaques were used to extract RNA using

the TRIzol-based (Invitrogen) isolation method and the cDNA was

synthesized using the First Strand cDNA Synthesis Kit (Clontech

Lab). Two pairs of oligonucleotide primers were synthesized

(Operon) to amplify the full-length DNA fragments of Mamu-DRa
and b chain by RT-PCR respectively. The PCR products were

cloned into vector pCR2.1 using TA cloning kit (Invitrogen) and

then determined their nucleotide sequences.

To generate the soluble Mamu-DR molecules, PCR-based

recombination technique was used to construct chimeric genes

Tetramer Gauge CD4 T Cells
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encoding the extracellular DR a-Jun and epitope-extracellular DR

b-Fos-BSP chains as we and others previous described

[6,7,9,12,22]. Briefly, Mamu DRa *0101 cDNA sequences

encoding extracellular domain was recombined with Jun-coding

sequence and then subcloned into the inducible vector pMT/V5-

His A (Invitrogen). The sequence encoding the Mycobacterium

Ag85B-P65 (258,272aa, PNGTHSWEYWGAQLN) was fused to

the N terminus of the Mamu-DRB* W201 extracellular domains

via a flexible polyglycine linker, and then linked to the Fos domain.

BirA biotinlyation sequence then added to the P65-DRb-Fos

fragment. The complete epitope-DRb-Fos-BSP cassette was

subcloned into the expression vector pMT/V5-His A. As a control,

a DNA construct encoding soluble DR306 b chain covalently

loaded with a Hsp65 epitope P1 [23] and fused with the Fos and

Bir A was similarly developed.

Selection of transfected cell clones capable of secreting
Mamu-DR ab monomer

Mamu-DR/P65 molecules were expressed in Drosophila Schnei-

der 2 cells using Drosophila Expression System Kit (Invitrogen) as

we recently described [22]. Briefly, the equal amount of DRa-Jun

and P65-DRb-Fos-BSP constructs, together with the plasmid

pCoBlast which carries the Blasticidin resistance marker, were co-

transfected S2 cells via a standard calcium phosphate transfection

technique. The post-transfected cells were selected with Blasticidin

(Invitrogen) at 25 mg/mL for 3,4 weeks to establish stable cell

colonies as our previous described. The expanded cells were

extracted DNA samples to identify the integrated DRa or b-chain

using a pair of specific primers as following: 1. Forward primer 59-

AAGCGCTCCAACAACACTCCAATC and reverse primer 59-

TTCTGCGCTTTCAAGGTTTTCACT were synthesized to

amplify DRa* 101 chain. 2. Forward primer 59-AGCCCCTG-

CAGCACCACACC and reverse primer 59-GTCGTTCAGTC-

CACCGCCACCTC were used to amplify DRb* W201 chain.

These a+ b+ cell lines were induced the production of soluble

Mamu-DR molecules by adding 500 mM CuSO4 for 3 days, and

then collected the supernatants by centrifugation. Then the

concentrated supernatants were performed dot-blot assay to

identify whether recombinant Mamu-DR ab chains have been

expressed. Subsequently, these polyclonal cell lines that confirmed

expression of Mamu-DR molecules were performed two rounds of

limited dilution assays to obtain a stable monoclonal cell line that

co-expresses DRa and DRb chains simultaneously as our previous

described. The established individual clones were identified by

PCR and dot-blot assays again.

Identification of recombinant Mamu-DR molecules by
dot-blot and PAGE analysis

The conformational antibody that reacted only with native

MHC class II ab molecules expressed in the surface of APC was

used to determine whether recombinant Mamu-DR molecules

mimic its native configuration that we desired. A prepared PVDF

membrane (0.45m, Millipore) were loaded to different samples

from the concentrated supernatants or the purified solutions, and

then blocked by PBS blocking buffer (Pierce) for 1 hour with

gentle agitation. After washing four times with 0.05% (v/v)

Tween-20 in PBS (PBST), the membrane was incubated with

1:1000 dilution of anti-HLA-DR antibody (clone L243, BD

Bioscience, cross-reaction with Mamu-DR molecules) for 1 hour.

The washed membrane was incubated with 1:5000 dilution of goat

anti-mouse HRP conjugated Ab (Bio-Rad) for 1 hour, and

developed using Supersignal West Pico Chemiluminescence

substrate (Pierce) and exposed to BioMax MR film (Kodak). The

purified protein samples from Ni-NTA agarose and avidin affinity

chromatography were concentrated, denatured and separated in a

12% SDS-PAGE gel (Bio-rad) to calculate the molecular weight of

a and b chain by comparison its migrated rate to that of protein

standard ladder. Also, the native purified samples were run in 12%

PAGE (Bio-rad) under non-reduction conditions and stained by

Imperial protein stain (Pierce) to determine whether the

recombinant Mamu-DRa and b molecules could assembly of

heterodimer by observing its diffuse bands.

Purification of biotinylated Mamu-DR ab monomer
The selected monoclonal cell line was adapted into serum-free

Express Five medium (Invitrogen) supplemented with 20 mM L-

glutamine and 10 mg/ml of Blasticidin. The expanded cells were

transferred to 1 L conical flasks (Wheaton) for large-scale culture

at 28uC with 120,140 rpm in a rotary shaker, and induced to

secrete expression with 500 mM CuSO4 for 3,4 days when cell

densities exceeded 26107/ml. The clarified supernatants were

collected by centrifugation, removed free Cu+2 by PBS dialysis,

and then concentrated by ultrafiltration with 30 kDa molecular

weight cut-off Vivacell concentrator (Vivasciences). The Mamu-

DR/P65 molecules were purified via two-round procedures as we

recently described [22]. First the concentrated samples were

passed through a Ni-NTA agarose affinity column (Qiagen) under

native conditions and then collected the 66His-tagged recombi-

nant proteins by 250 mM imidazole elution. After exchange with

10 mM Tris buffer (pH 8.0), the purified samples were concen-

trated to 2.0 mg/mL and then biotinylated using d-biotin and

BirA enzyme (Avidity) in the optimal conditions. The excess biotin

was removed by overnight PBS dialysis, the biotinylated molecules

were purified by passing through an avidin affinity column (Pierce)

as following to the supplier’s recommendations. In each purifica-

tion step, small portions of sample were drawn to SDS-PAGE

analysis, dot-blot assays and determine protein concentration by

BCA Kit (Pierce).

Assembling of Mamu-DR ab tetramer
This was done as we recently described [22]. Briefly, the

purified biotinylated Mamu-DR/P65 molecules were incubated

overnight at 4uC with one-fourth of its molar amount of

phycoerythrin (PE)-streptavidin (eBiosciences) to allow the forma-

tion of tetrameric complexes. After buffer exchange, the reaction

mixtures were passed through a SuperdexTM 75 10/300GL

column (GE Amersham) to separate unbinding Mamu-DR

monomers, remove free fluorescents and purify tetrameric

complexes by gel filtration in Duo-flow system (Bio-rad). The

tetrameric fractions were collected and stored in 150 mM NaCl/

20 mM Tris (pH 8.0) supplemented with 0.5% bovine serum

albumin (BSA) in the dark at 4uC for subsequent cell staining or

frozen with glycerol for longer periods of storage.

Intracellular cytokine staining for measuring Ag-specific
IFN-c+ CD4 T cells

16106 of PBL from naı̈ve, BCG-vaccinated, and Mycobacterial-

infected monkeys was stimulated with 8 mg/ml of PPD, 10 mg/ml

of Ag85B whole peptide pool or 10 mg/ml of P65 in the presence

of 2 mg/ml anti-CD28 (BD Biosciences, clone CD28.2) and

CD49d (BD Biosciences, clone 9F10) mAb at 37uC in 5% CO2 for

1 hour. PBMC stimulated with PMA (200 ng/ml, Sigma)/

Ionomycin (1 mg/ml, Sigma) and un-stimulated cells with 10%

FBS-RPMI 1640 medium only were served as a positive and

negative control respectively. The cells were incubated for 5 hours

with 1 ml of Golgi plug (Brefeldin A) at 37uC with shaking and

Tetramer Gauge CD4 T Cells
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then placed at 4uC overnight. Subsequently, the cells were washed

and stained with CD3-FITC (BD Biosciences), CD4-PB (eBio-

source). After washing two times with 2%FBS-PBS, 200 ml of

Cytofix/cytoperm solution (Becton Dickinson) was added to

permeabilize cells at 4uC in dark for 45 minutes and then

intracellular stained with IFN-c PE (BD Biosciences, clone 4S) in

dark for 45 minutes. Cells were fixed with 2% formalin and

analyzed by flow cytometry as we previously described [24].

Measurement of antigen-specific CD4+ T-cells by
tetramer direct staining

The tetramer staining was done as we recently described [22].

Briefly, PBL, splenocytes or cell suspension freshly collected from

individual macaques were stained with Mamu-DR*W201/P65-PE

tetramers at 2.0 mg/ml at room temperature for 20 minutes,

combined with fluorescence-conjugated mAb against CD4 and

CD3 or CD45 (clone MB4-6D6, Miltenyi Biotech) for 10 minutes.

After 2%FBS-PBS washing, the cells were fixed and gauged for

tetramer-bound epitope-specific CD4+ T cells by flow cytometry

analysis.

The combined tetramer staining and magnetic bead
enrichment approach

The tetramer-based enrichment as previous described [25] was

used to enhance the ability of the tetramer to distinguish and

quantitate epitope-specific CD4+ T cells. Briefly, 16105–16107

cells isolated from blood, spleen and periaortic lymph node (LN) of

macaques were incubated with 2.0 mg/ml of Mamu-DR*W201/

P65-PE tetramer at room temperature for 20 minutes. Cells were

then washed with ice-cold PBS buffer. The tetramer-stained cells

were then incubated with 0.1 ml of anti-PE Ab-conjugated

magnetic microbeads (Miltenyi Biotech) on ice for 20 min,

followed by two washes with PBS buffer. The cell suspensions

were passed over a magnetized LS column (Miltenyi Biotech) and

washed in the column three times with PBS buffer. The tetramer-

unbound cells (washes-out) were collected to stain for CD4 and

CD3 or CD45 markers for flow cytometric analysis. Then the

column was removed from the magnetic field, and the tetramer-

bound cells were eluted by pushing 5 ml of PBS buffer through the

column with a plunger. The enriched fractions of cells were

resuspended, stained for CD3 and CD4 markers, and then

counted for the total number of tetramer-bound CD4 T cells in

flow cytometry analysis.

P65 stimulation and 5, 6-carboxyfluorescein diacetate
succinimidyl ester (CFSE)-based proliferation

To increase sensitivity of tetramer staining of P65-specific

CD4 T cells, 16106 of PBL, splenocytes or LN cell suspension

was stimulated with 10 mg/ml of P65 in 10% FBS-RPMI 1640

medium at 37uC in 5% CO2. Cells stimulated with a SIV Gag

peptide and un-stimulated cells with medium only were served as

negative controls, respectively. 48 hours later, the cells were fed

every 2 days with IL-2 (5 U/ml) + P65 or control peptide

(10 mg/ml) until 7 or 12 days, and the cells were then harvested

and incubated with Mamu-DR*W201/P65-PE tetramers at

2.0 mg/ml for staining 20 minutes. Subsequently, cells were

stained with CD4, CD3 or CD45 antibodies for 10 minutes and

then gated for the tetramer-binding CD4+ T cells as described

above.

To demonstrate tetramer-specific binding to P65-specific CD4

T cells, PBL labeled with CSFE were stimulated with P65 or

control peptides, and then assessed for the ability of the

proliferating cells to be stained by the tetramer. Briefly, 26105/

well of PBL from the MTB-infected monkeys was labeled with

2 mM/ml of CFSE (5, 6-carboxyfluorescein diacetate succinimidyl

ester) using CellTrace CFSE cell proliferation kit (Invitrogen

Molecular Probes) as we recently described [26]. The labeled cells

were then stimulated with 10 mg/ml of P65 or control peptides at

37uC for 7 or 12 days as described above. Anti-CD3 plus anti-

CD28, and medium alone were used as positive and negative

controls, respectively. At end of assays, the cells ere harvested and

stained by the tetramer, and CD3 and CD4 antibodies, and then

analyzed by flow cytometer as recently described [26].

Results

Ag85B peptide 65 (P65) induced apparent proliferation in
PBL during BCG infection of Mamu-DRB*W201+ rhesus
macaques

As an initial effort to develop tetrameric MHC/peptide

complex, PBL from individual BCG-vaccinated macaques were

assessed for the ability to proliferate in vitro in response to pooled

15mer peptides overlapping by 11mer and spanning entire Ag85B

protein. We found that PBL from four BCG-vaccinated macaques

proliferated apparently in response to Group 10 peptide pool

comprised 6 overlapping peptides when compared to other

peptide groups (Fig. 1a). The further individual peptide experi-

ments allowed us to confirm that the peptide #65 (P65) bearing

PNGTHSWEYWGAQLN sequence stimulated potent prolifera-

tion of PBL from the BCG-vaccinated macaques (Fig. 1b). To

examine the potential P65-associated class II MHC allele shared

by the four BCG-vaccinated macaques, cDNA from PBL of the

macaques were detected by nest-PCR as previously described

[15,27] and sequenced the exon 2 gene encoding b1 domain of

Mamu-DRB allele (Fig. 1c, 1d). Using this approach, we identified

that the class II MHC gene encoding Mamu-DRB*W201 allele as

designated in the nonhuman primate data base was shared by the

four BCG-vaccinated macaques that developed proliferative

responses to P65. All the macaques shared a single Mamu-DRA

allele (DRA 101). These results allowed us to exploit class II MHC

molecule and P65 peptide for development of Mamu-DR*W201/

P65 tetramers.

Production and characterization of Mamu-DR*W201/P65
tetramers

To produce soluble Mamu-DR ab monomer, truncated cDNA

encoding the extracellular domains of Mamu-DRB*W201 and

Mamu-DRA were constructed using the PCR-based subcloning as

previously described [15,22]. To facilitate the formation of

recombinant Mamu-DR ab monomer, Jun and Fos dimerization

motifs were introduced, as we recently described [22], at the 39-

end of a and b chains, respectively (Fig. 2a). To ensure that the

epitope PNGTHSWEYWGAQLN was covalently attached to N-

terminal of Mamu-DRb chain for easy access to peptide-binding

site, the P65 peptide-coding sequence was linked to the 59 Mamu-

DRb cDNA (Fig. 2a). Furthermore, a short DNA fragment

encoding biotinylated domain (BSP) was introduced in frame at

the 39 of the P65-b-Fos cassette for biotinylation of Mamu-DR

molecules to assemble tetramer (Fig. 2a).

Soluble Mamu-DR ab monomer secreted in supernatant from

cloned S2 cells was initially purified by the Ni-NTA agarose, and

then biotinylated enzymatically with the BirA enzyme at its

optimal conditions. The efficiency of biotinylation was shown to be

about 85%. The biotinylated protein was further purified by

passing through an avidin affinity column. The two-round

purification gave rise to ,70% purity of Mamu-DR ab monomer

(Fig. 2b). To determine whether the soluble Mamu-DR ab

Tetramer Gauge CD4 T Cells
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monomer could be recognized by anti-MHC class II mAb that

reacts with HLA DR molecules on cell-surface, a dot-blot assay

was carried out under the non-denatured condition. The dot blot

results showed that the soluble Mamu-DR protein was clearly

recognized by anti-HLA DR mAb (Fig. 2c). To assemble Mamu-

DR*W201/P65-PE tetramers, biotinylated soluble Mamu-DR ab
monomers were mixed with phycoerythrin (PE)-labeled streptavi-

din at a molar ratio of 4:1. Unbound monomers and PE-

streptavidin were removed by gel filtration as we previously

described [22]. The assembled Mamu-DR*W201/P65 tetramers

were consistent with what was predicted in FPLC analysis (Fig. 2d).

These purified PE-labeled tetramers were then used as staining

reagent to analyze class II MHC-restricted epitope-specific CD4+

T cells in different samples.

Figure 1. Ag85B peptide 65 induced apparent proliferation in PBL from BCG-vaccinated Mamu-DRB*W201+ macaques. (a) Sixty nine
peptides spanning entire Ag85B protein were divided as 10 groups to examine PBL proliferation in the BCG-vaccinated macaques. The proliferation
index data indicate that Ag85B Group 10 peptide pool comprised 6 overlapping peptides induced significant PBL proliferation than other peptide
groups (*, p,0.05). Data were mean values derived from PBL of four BCG-vaccinated macaques, with error bars indicating standard errors of means
(SEM). (b) PBL from four BCG-vaccinated macaques were further tested for their proliferation to individual peptides in the Group 10 peptide pool, and
the proliferation index data reveal that PBL had stronger proliferation to the peptide #65 (P65) than other peptides (**,p,0.01; *, p,0.05). P65 bears
the sequence of PNGTHSWEYWGAQLN that corresponds to 258,272 amino acid of Ag85B. (c) Nest-PCR were used to amplify full-length Mamu-DRB
cDNA (left gel) and, subsequently, the exon 2 (right gel) of b1 domain in DRB*W201. As illustrated, each lane represents a sample from one animal;
,250 bp DNA fragments from the lanes 3 and 5 were excised for direct sequencing. The Mamu-DRB*W201+ allele was determined by sequencing
alignments through Blast research of GeneBank data base. Representative DNA sequence shows that the nucleotide sequences from a rhesus
macaques were identical to the Mamu-DRB*W201 prototype sequence except for one base substitution (TRA).
doi:10.1371/journal.pone.0006905.g001
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Mamu-DR*W201/P65 tetramer was able to specifically
stain epitope-specific CD4 T cells in M. tuberculosis-
infected Mamu-DRB*W201+ macaques

The PE-labeled Mamu-DR*W201/P65 tetramer was then used

as staining reagent to visualize P65 epitope-specific CD4 T cell

responses during mycobacterial infections of rhesus macaques. To

this end, we infected three naı̈ve Mamu-DRB*W201+ macaques with

M. tuberculosis to establish primary infection, and six Mamu-

DRB*W2012 macaques were included as controls. PBL from M.

tuberculosis-infected Mamu-DRB*W201+ macaques were stimulated

with P65 in CFSE-based proliferation culture as we previously

described [26]. The proliferating cells were then assessed for the

ability to be stained by the PE-labeled tetramer. As measured by the

dilution of CFSE incorporation, proliferating CD4+ T cells in PBL of

M. tuberculosis-infected Mamu-DRB*W201+ macaques increased from

#0.01 before stimulation to 2.0760.54% and 6.3260.91% after in

vitro P65 stimulation for 7 and 12 days, respectively (upper panel in

Fig. 3a). Interestingly, ,85% of these proliferating CD4 T cells as

gated by CD4 and CFSE were stained by PE-labeled Mamu-

DR*W201/P65 tetramer (middle and lower panels in Fig. 3a).

Importantly, this PE-labeled tetramer specifically bound to P65-

stimulated proliferating CD4 T cells in PBL from the M. tuberculosis-

infected Mamu-DRB*W201+ (positive) macaques, but not those

Mamu-DRB*W2012 (negative) animals (Fig. 3b). The control

Mamu-DR*W309/Hsp P1 tetramer was not able to stain P65-

stimulated proliferating CD4 T cells in M. tuberculosis-infected or

BCG-vaccinated Mamu-DRB*W201+ macaques (data not shown).

These results therefore demonstrated that our generated tetramer

was able to specifically stain Ag85B P65-specific CD4 T cells in M.

tuberculosis-infected Mamu-DRB*W201+ macaques.

Figure 2. Production and characterization of soluble Mamu-DR ab monomer and Mamu-DR*W201/P65 tetramer. (a) Schematic
presentation (cartoon) of the covalent peptide approach for developing class II MHC/peptide complex constructs. The epitope-coding sequence is
linked to the 59 Mamu-DRb cDNA; Jun and Fos-BSP are introduced by linking the extracellular domains of DR-a and -b chain, respectively. The
recombinant Mamu-DR ab monomer is stabilized by leucine zipper (LZ) formed through Jun-Fos interaction. (b) Protein samples after 1st round
(lane 1) and second round (lane 2) purifications were separated in the SDS-PAGE gel in reduction conditions and stained. Lane 1, the (His)6 tagged
recombinant protein purified from Ni-NTA agarose; lane 2, the biotinylated Mamu-DR recombinants purified further through an avidin column after
biotinylation. The arrow indicates two closely-separated protein bands in lane 2 (,34, 36 kD) that correspond to predicted molecular weights of
Mamu-DR a and b recombinants, respectively. (c) Dot blot assay indicates that anti-HLA-DR antibody (L243) bound to the soluble recombinant
Mamu-DR ab monomer purified by Ni-NTA affinity column (loading 1) and further by an avidin column (loading 2), but not to the denatured Mamu-
DR ab sample (loadings 3). The supernatant of non-transfected S2 cells served as a negative control (loading 4). (d) FPLC graph shows that the
unbound Mamu-DR ab molecules and free fluorescents were washed out, and the assembled Mamu-DR*W201-P65 tetramer was collected and
marked as tetramer.
doi:10.1371/journal.pone.0006905.g002
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Figure 3. Tetramer was able to specifically stain P65-specific CD4 T cells in M. tuberculosis-infected Mamu-DRB*W201+ macaques. (a)
PBL collected at day 42 from the M. tuberculosis-infected Mamu-DRB*W201+ macaque was stimulated with P65 for different days in CFSE-incorporated
culture; the proliferating cells were assessed for the ability to be stained by Mamu-DR*W201/P65 tetramer. The upper panel shows CD3-gated flow
cytometry histograms indicating proliferating and non-proliferating CD4 T cells as determined by CFSE dilution, with the numbers illustrated as
percentages of P65-expanded CD4 T cells. The middle panel histograms indicate that majority of P65-proliferating CD4 cells as gated on CD4 and
CFSE could be stained by Mamu-DR*W201/P65 tetramer. The lower panel shows CD3-gated flow histograms indicating the percentages of the
tetramer-bound CD4+ T cells in the cultures stimulated with for 7 and 12 days, respectively. The PBL not stimulated with P65 stimulation was denoted
as day 0. (b) The CD3-gated flow cytometric data show that Mamu-DR*W201/P65 tetramer specifically stains P65-proliferating CD4 T cells from the M.
tuberculosis-infected Mamu-DRB*W201+ macaque but not the naı̈ve macaque or the M. tuberculosis-infected Mamu-DRB*W201- animal (lower panel).
doi:10.1371/journal.pone.0006905.g003
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Standard tetramer staining measured P65 epitope-
specific CD4 T cells after M. tuberculosis infection and its
proliferation after P65 stimulation

The development of defined epitope-specific CD4 T cells in the

blood and lymphoid tissues during primary M. tuberculosis infection

remains poorly characterized [14,28,29]. At least two open

questions appear to remain for direct measurement of class II

MHC tetramer-bound CD4 T cells in M. tuberculosis infection

[14,28]: (i) given low-frequency antigen-specific CD4 T cells, how

can standard tetramer staining readily distinguish the tetramer-

bound CD4 T cells from background staining? (ii) how high are

the frequencies of tetramer-bound epitope-specific CD4 T cells in

lymphoid tissues compared to blood? To answer these straight

forward questions, we employed the standard direct tetramer

staining to determine frequencies of DR*W201-restricted, P65-

specifc CD4 T cells in the blood and lymphoid tissues during M.

tuberculosis infection. DR*W201/P65 tetramer-bound CD4 T cells

were undetectable or ,0.05% in PBL collected at days 28 and 42

after pulmonary M. tuberculosis infection of Mamu-DRB*W201+

macaques (left bar graph, Fig. 4a). However, at day 63 after the

infection, the tetramer-bound CD4 T cells increased to almost

0.2% of CD4 T cells in blood, and 0.3% in lymphocytes from

spleens and lymph nodes and lungs (Fig. 4a), indicating significant

increases in relative numbers of P65-specific CD4 T cells after

pulmonary M. tuberculosis infection of the Mamu-DRB*W201+

monkeys (*, p,0.05, (Fig. 4a). Of note, intracellular cytokine

staining assay did not detect significantly increased numbers of

P65-specific IFNc-producing CD4 T cells after M. tuberculosis

infection of the Mamu-DRB*W201+ macaques (right bar graph of

4a). Importantly, the tetramer staining after the in vitro P65

stimulation of PBL or tissue lymphocytes detected about 10-fold

greater numbers of DR*W201 tetramer-bound CD4 T cells in the

PBL or tissue lymphocytes (Fig. 4b). In contrast, control HSP

peptide stimulation for 7 days and 12 days did not induce any

increases in numbers of the tetramer-bound CD4 T cells (0.02 and

0.03 respectively, data not shown), making it possible to distinguish

tetramer-bound cells from background staining. Thus, these results

demonstrated that while DR*W201/P65 tetramer was useful for

rapid and efficient direct-measurement of P65 epitope-specific

CD4 T cells in the blood and lymphoid tissues during M.

tuberculosis infection of Mamu-DRB*W201+ macaques, the tetramer

staining after in vitro peptide stimulation detected 10-fold greater

numbers of P65-specific CD4 T cells.

Combined tetramer staining and magnetic-bead
enrichment approach conferred high-fidelity direct-
measurement of P65-specific CD4 T cells in Mamu-
DRB*W201+ macaques

Since in vitro peptide stimulation often causes phenotypic

changes, the next critical question is whether an innovative

application of DR*W201/P65 tetramer could confer high-fidelity

direct-measurement of the low-frequency tetramer-bound CD4 T

cells without peptide stimulation. To address this question, we

combined tetramer staining with magnetic bead enrichment to

detect P65-specific CD4+ T cells in the blood and lymphoid tissues

of M. tuberculosis-infected Mamu-DRB*W201+ macaques. The

tetramer-based enrichment technique has recently been shown

to be ultrasensitive for measuring rare Ag-specific CD4 T cells

[25,30]. For the tetramer-based enrichment, 16106, 56106, or

16107 PBL from the M. tuberculosis-infected macaques were

incubated with Mamu-DR*W201/P65 tetramer followed by

anti-PE-Ab-conjugated magnetic beads, and positively-selected

by a microbead column for flow cytometry analysis. The

enrichment technique allowed us to clearly distinguish and

quantitate DR*W201/P65 tetramer-bound CD4 T cells in PBL

from Mamu-DRB*W201+ macaques (data not shown). In fact, the

numbers of DR*W201/P65 tetramer-bound CD4 T cells enriched

from 107 PBL, splenocytes and lymph nodes were ranged from

,20,000 to ,30,000 at days 63 after M. tuberculosis infection in

Mamu-DR*W201+ macaques (Fig. 4c). In contrast, extremely small

numbers of the tetramer-bound CD4 T cells (#110 per 107 cells)

were nonspecifically stained after the enrichment of 107 PBL,

splenocytes, or lymph node cells of the control M. tuberculosis-

infected Mamu-DRB*W2012 macaques (Fig. 4c). Importantly,

while at days 28 and 42 after M. tuberculosis infection the standard

tetramer staining method failed to distinguish the tetramer-bound

CD4 T cells from background stained cells (p.0.05), the tetramer-

based enrichment approach conferred high-fidelity direct meas

urement of ,500 and ,4500 tetramer-bound CD4 T cells at the

two time points [p,0.05 and ,0.01 when compared to controls

(Fig. 4d)]. At day 63, the tetramer-based enrichment approach

more dramatically distinguished P65-specific CD4 T cells from

background stained cells in blood and tissues than the standard

tetramer staining (Fig. 4d). Thus, this tetramer-based enrichment

approach conferred high-fidelity direct-measurement of epitope-

specific CD4 T cells in the blood and lymphoid tissues during

primary M. tuberculosis infection of Mamu-DRB*W201+ macaques.

The DR*W201/P65 tetramer-based enrichment approach
detected BCG-elicited resting memory P65-specific CD4 T
cells at a frequency of 2-3/10,000 in PBL

Given the possibility that a number of new tuberculosis vaccine

candidates will have to be tested and compared with BCG in

macaques before moving to clinical trials, it would be necessary to

determine the utility of DR*W201/P65 tetramer for precise

measurement of vaccine-elicited P65-specific CD4 T cell respons-

es. To address this straight forward question, three Mamu-

DRB*W201+ macaques that were vaccinated for 2 years with

BCG were evaluated in this study. The standard DR*W201/P65

tetramer staining method could not confidently detect vaccine-

elicited P65-specific memory CD4 T cells in PBMC of the BCG-

vaccinated Mamu-DRB*W201+ macaques, because 0.03,0.04%

frequencies were too low to distinguish them from background

staining (left bar graph of 5a). Also ICS did not detect significant

numbers of IFN-c-producing CD4 T cells in the BCG-vaccinated

macaques compared to the unvaccinated Mamu-DRB*W201+

control animals (right bar graph of 5a), despite the fact that

PPD and the pooled Ag85B peptides and PPD were able to detect

IFNc-producing CD4 T cells. However, such low frequencies of

DR*W201/P65 tetramer-bound CD4 T cells appeared to be truly

P65-specific CD4 T cells as the tetramer-based enrichment

technique showed that ,3000 tetramer-bound cells were detected

in 107 PBL from the BCG-vaccinated Mamu-DRB*W201+

macaques, whereas ,70 tetramer-bound cells were seen in

controls (Fig. 5b). Similar to what was seen in M. tuberculosis-

infected macaques, the tetramer-based flow analysis after the in

vitro P65 peptide stimulation for 7 days of PBL from the BCG-

vaccinated macaques detected almost 10-fold greater numbers of

DR*W201/P65 tetramer-bound CD4 T cells compared to un-

stimulated PBL (Fig. 5c). Thus, DR*W201/P65 tetramer staining

approach was quite useful for measuring BCG vaccine-elicited

memory immune responses of P65-specific CD4 T cells.

Discussion

The current work represents a first extensive experimental study

of epitope-specific CD4 T cells using class II MHC/peptide
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tetramer in animal models of tuberculosis. Our successful

development of macaque class II MHC tetramer is indeed based

on our recent production and application of Vc2Vd2 TCR

tetramer and class I MHC tetramer [22,27]. The Mamu-

DR*W201/P65 complex appears to be adequately folded and

produced by the covalent peptide approach in which the peptide is

Figure 4. Tetramer-based enrichment conferred high-fidelity to measure P65-specific CD4 cells in comparisons of standard tetramer
staining. (a) Left bar graph shows the frequencies of Mamu-DR*W201/P65 tetramer-bound epitope-specific CD4 T cells detected by standard tetramer
staining in the different samples after M. tuberculosis infection. Standard tetramer staining detected significant increases in percentages of the P65-
specific CD4 T cells in the blood, lymph nodes, spleens, and lungs compared to base line levels in blood or to those of the infected Mamu-DRB*W201-

macaques at day 63 after the infection (**, p,0.01), but no significance at days 28 and 42 post-infection. Right bar graph shows that ICS does not detect
significantly-increased numbers of P65-specific IFNc-producing CD4 T cells after M. tuberculosis infection. (b) The bar graph shows that the tetramer
staining after P65 stimulation detects about 10-fold greater numbers of DR*W201 tetramer-bound CD4 T cells in PBL or tissue lymphocytes compared to
standard tetramer staining without P65 stimulation (**,p,0.01; *, p,0.05). (c) Flow cytometry histograms show that the tetramer-based enrichment
approach confers the enhanced ability to enumerate P65-specific CD4 T cells and to distinguish from background staining in 16107 PBL or tissue
lymphocytes from individual M. tuberculosis-infected monkeys. Tetramer-unbound cells washing out from the microbead column were shown in CD4
versus CD3 or CD45 events in the flow cytometry analysis. The bead-enriched tetramer-bound cells were counted and displayed in the contour plot in
the upper right CD4 quadruple, with the total numbers shown in the upper left CD4 quadruple. (d) Bar graph shows absolute numbers of Mamu-
DR*W201/P65 tetramer-bound epitope-specific CD4 T cells in 107 total cells detected by the tetramer-based enrichment approach in different samples.
This enriched approach readily detects significant increases in numbers of the tetramer-bound CD4 T cells in blood at days 28 and 42 post-infection
(P = 0.016, P = 0.008 as indicated) thanks to the much lower nonspecific staining for control samples. This is in sharp contrast to the standard tetramer
staining that fails to reveal significant increases in the tetramer-bound cells at these time points due to the relatively-high background staining (Fig. 4a).
Also, at day 63 after the infection, the tetramer-based enrichment approach can more dramatically distinguish the tetramer-bound cells from control
nonspecific cells (P values 0.0004–0.0005) than the standard tetramer staining (P values 0.008–0.005).
doi:10.1371/journal.pone.0006905.g004
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Figure 5. This tetramer-enriched approach detected BCG-elicited resting memory P65-specific CD4 T cells at a frequency of 2-3/
10,000 in PBL. (a) Left bar graph shows that the frequency of #0.03% tetramer-bound CD4+ T-cells detected by tetramer direct staining in the BCG-
vaccinated Mamu-DRB*W201+ macaques was difficult to distinguish from background staining (p.0.05). The bar graph on right shows that
intracellular IFN-c staining could not detect the epitope-specific IFN-c-producing memory CD4 T cells. (b) The flow cytometry histograms on left
show the total numbers of tetramer-bound epitope specific CD4 T cells detected by the tetramer-based enrichment approach in 107 PBL from each
macaque. The enriched tetramer+ CD4+ T-cell population is counted by flow cytometry and displayed in the contour plot in the upper right of the
CD4 quadruple, with the total numbers shown in the upper left CD4 quadruple. The bar graph on right shows that this tetramer enriched approach
can detect significantly greater numbers of P65-specific CD4 T cells in BCG-vaccinated Mamu-DRB*W201+ macaques than those in the vaccinated
Mamu-DRB*W201- animals. (c) The bar graph shows that the tetramer staining after P65 stimulation detects about ten-fold greater numbers of the
BCG-elicited tetramer-bound CD4 T memory cells than without stimulation. The numbers of tetramer-bound cells in PBL from Mamu-DRB*W201+

macaques were significantly greater than those in naı̈ve or BCG-vaccinated Mamu-DRB*W201- animals (**, p,0.01).
doi:10.1371/journal.pone.0006905.g005
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covalently linked to the b-chain for peptide placement in the

peptide-binding groove during the synthesis process. Leucine zipper

strategy based on Jun and Fos dimerization domains of a and b
chains may also help to stabilize the folding and formation of the

Mamu-DR*W201/P65 tetramer [6,7,9,12]. The Mamu-

DR*W201/P65 tetramer indeed made it possible to measure

P65-specfic CD4 T cells directly and rapidly ex vivo during primary

M. tuberculosis infection. It is important to note that in-depth studies

of epitope-specific CD4 T cells using class II MHC tetramers for M.

tuberculosis peptide antigens have not been reported in mice and

other laboratory animals [10]. This appears to be attributed largely

to the technical challenge for generating useful class II MHC

tetramers. Since mouse models of tuberculosis are usually used as

pioneer and proof-of-concept studies to make novel observations

regarding infection and immunity, it is not surprising that current

understanding of evolution and differentiation of antigen-specific

CD4 T cells during M. tuberculosis infection of wild-type hosts is still

limited. Now, the development of Mamu-DR*W201/P65 tetramers

should provide a useful tool to engage many fundamental

immunologic questions regarding epitope-specific CD4 T cells

and their potential interrelation with Th1, Th2, Th17 and Treg

differentiation during M. tuberculosis infection.

Both peptide stimulation and tetramer-based enrichment ap-

proaches can increase the sensitivity of DR*W201 tetramer-based

measurement of P65-specific T cells. Earlier reports demonstrate that

class I tetramer direct staining can pick up 0.1–1% of antigen-specific

CD8 T cells in the blood, whereas in most cases class II tetramer-

bound CD4 T cells are usually much lower or indistinguishable from

background staining [10]. Our studies have shown that the tetramer

staining after peptide stimulation can lead to an almost 10-fold

increase in detection levels of Mamu-DR*W201/P65 tetramer-

bound CD4 T cells in the blood compared to the standard direct

staining. Importantly, we have shown that the combined tetramer-

staining and magnetic-bead-enrichment approach appears to

unequivocally discriminate the tetramer-bound CD4 T cells from

the background-stained cells. This combined approach indeed makes

it possible to directly enumerate P65-specific CD4 T cells in the blood

during early time points of M. tuberculosis infection, circumventing the

ambiguous measurement of antigen-specific T cells in acute infection.

In fact, this approach is doable for using less than 106 PBL (data not

shown) [25,30]. Since the tetramer-based enrichment does not

require in vitro antigen stimulation or other manipulations, this

approach should be useful for directly measuring dynamic changes in

numbers, phenotypes and differentiation of antigen-specific CD4 T

cells after infections or vaccination.

The current study demonstrates for the first time that class II

MHC/peptide tetramers can confer visualization of mycobacterial

epitope-specific CD4 T cells not only in the blood but also in

lymphoid tissues and lungs. In fact, our data provide first evidence

indicating immune distribution of single epitope-specific CD4 T

cells in the blood, lymph node, spleen and infected lung after

pulmonary M. tuberculosis infection. Interestingly, P65-specific CD4

T cells appear to be little more readily detected by the tetramer in

lungs, lymph nodes and spleens than in the blood of Mamu-

DRB*W201+ macaques two months after M. tuberculosis infection,

despite no statistical significance for the difference (data not

shown). Our results derived from the tetramer-based analysis are

quite contrasted to what is found after M. tuberculosis infection of

BALB/c mice, in which T cells specific for peptides spanning

entire Ag85B or Ag85C protein are not detectable in spleens by

intracellular cytokine staining assays [29]. Moreover, our results

suggest that the lymph nodes and spleens harbor many antigen-

specific CD4 T cells, and should not be ignored when counting

their frequency during M. tuberculosis infection. Although there is

limitation for a single CD4 T-cell epitope, our finding indeed

raises the possibility to determine whether the DR*W201/P65-

bound CD4 T cells have different phenotype, differentiation or

effector function in the different anatomic compartments during

pulmonary M. tuberculosis infection.

The development of Mamu-DR*W201/P65 tetramer should

facilitate evaluation of new tuberculosis vaccine candidates in

nonhuman primates. It is generally believed that resting memory

CD4 T cell population are typically present at much lower

frequency, beyond the detection limit by the standard tetramer

staining method. In the current study, macaques vaccinated for .2

years with BCG do not exhibit P65-specific CD4 T cells that can be

confidently detected by intracellular IFN-c staining or by direct

DR*W201/P65 tetramer staining. However, after P65 stimulation

for 7 days or 12 days, up to 0.4 and 1.7% P65-specific CD4 T cells

can be detected in PBL by the tetramer, respectively. More

importantly, the combined tetramer staining and magnetic-bead

enrichment approach can clearly pick up the tetramer-bound P65-

specific CD4 T cells in PBL from the BCG-vaccinated macaques.

These results demonstrate the utility and value of Mamu-

DR*W201/P65 tetramer for precise direct-measurement of vac-

cine-elicited memory CD4 T cell responses years after vaccination.

It is important to note that Mamu-DRB*W201 is one of several

common alleles that are able to present peptides to CD4+ Th cells

[14,31]. This allele appears to be seen at a high frequency in Indian

rhesus monkeys, accounting for 35% [15]. Our initial screening

shows that ,22% of Chinese rhesus and ,10% of cynomolgus

macaques from different colonies express the Mamu-DRB*W201

allele. On the other hand, since Ag85B has been shown to be

protective antigen in macaques [32], it is useful to target and

measure detectable-frequency of Ag85B P65-specific CD4 T cells in

vaccine efforts. Thus, Mamu-DR*W201/P65 tetramer in combi-

nation with other assays should provide a useful system for in-depth

studies of immune biology of antigen-specific CD4 T cells in the

context of vaccine testing and M. tuberculosis infection.
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