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Abstract

Network analysis may improve the understanding of malaria epidemiology in rural areas of

the Amazon region by explicitly representing the relationships between villages as a proxy

for human population mobility. This study tests a comprehensive set of connectivity metrics

and their relationship with malaria incidence across villages with contrasting PAMAFRO (a

malaria control initiative) coverage levels in the Loreto department of Peru using data from

the passive case detection reports from the Peruvian Ministry of Health between 2011 and

2018 at the village level. A total of 24 centrality metrics were computed and tested on 1608

nodes (i.e., villages/cities). Based on its consistency and stability, the betweenness central-

ity type outperformed other metrics. No appreciable differences in the distributions of

malaria incidence were found when using different weights, including population, deforested

area, Euclidian distance, or travel time. Overall, villages in the top quintile of centrality have

a higher malaria incidence in comparison with villages in the bottom quintile of centrality

(Mean Difference in cases per 1000 population; P. vivax = 165.78 and P. falciparum =

76.14). The mean difference between villages at the top and bottom centrality quintiles

increases as PAMAFRO coverage increases for both P. vivax (Tier 1 = 155.36; Tier 2 =

176.22; Tier 3 = 326.08) and P. falciparum (Tier 1 = 48.11; Tier 2 = 95.16; Tier 3 = 139.07).

The findings of this study support the shift in current malaria control strategies from targeting

specific locations based on malaria metrics to strategies based on connectivity neighbor-

hoods that include influential connected villages.

Author summary

In our study, we explored how the connections between villages in the Amazon region

can help us better understand the spread of malaria. By examining how people move
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between these villages, we identified key locations that play a significant role in the spread

of the disease. We used data from 2011 to 2018, collected from the Peruvian Ministry of

Health, focusing on the Loreto department. Our analysis involved 1608 villages, where we

computed and tested 24 different connectivity metrics to see which one best predicted

malaria cases. We found that the "betweenness centrality" metric, which measures how

often a village serves as a bridge between others, was the most reliable predictor of malaria

incidence. Interestingly, we discovered that villages with higher connectivity tended to

have more malaria cases. This trend was even more pronounced in areas with stronger

malaria control efforts. Our findings suggest that current malaria control strategies could

be improved by focusing not just on individual villages with high malaria rates but also on

those that are well-connected to others. This approach could lead to more effective inter-

ventions and a better understanding of how diseases like malaria spread in rural areas.

1. Introduction

The Peruvian Amazon is experiencing epidemiological changes in malaria transmission as a

result of landscape modifications, climatic factors, malaria control interventions, and anthro-

pogenic drivers. Regionally, malaria epidemiology is dominated by P. vivax (80%), with

remaining 20% of cases attributed to P. falciparum [1]. Currently, the Loreto department

accounts for an estimated 90% of all malaria cases reported in Peru [2]. In this area, between

2006 and 2010, an intense malaria control program, PAMAFRO, (Project for Malaria Control

in Andean Border Areas) was undertaken, supported by the Global Fund [3]. This program

was successful and effective, resulting in a sharp reduction in malaria, with cases reaching their

lowest number (22,909) in 2011[4]. However, since 2011 this trend has been reversed, with a

peak of 61,108 malaria cases reported in 2014 [2]. Re-emergence factors such as asymptomatic

reservoirs [5,6], meteorological conditions [7], and changes in the mosquito population [8–10]

have been previously studied in this area. However, evidence of other factors such as human

population mobility (HPM) and, as a result, the connectivity between villages with contrasting

malaria transmission remains scarce.

The transit and return of people from locations with contrasting endemicity levels must be

addressed to achieve malaria elimination [11]. This flow, also referred to as connectivity, influ-

ences the endemicity level in the system (group of villages/cities) and jeopardizes control inter-

ventions that focus on targeted villages as isolated from (not connected to) other locations.

This human population flow between two areas influences, to some degree, the malaria

endemicity and risk in both locations (origin and destination). Under the World Health Orga-

nization (WHO) malaria elimination framework, human mobility and connectivity are key

parts of the malariogenic potential, defined as the likelihood that an imported infection estab-

lishes local malaria transmission due to characteristics of the host, the parasite, the vector, and

the ecosystem [12]. Therefore, understanding the role of human mobility in malaria transmis-

sion is critical for informing control efforts. By identifying how mobility patterns contribute to

the spread of malaria, we can develop more effective intervention strategies that target highly

connected regions, ultimately aiding in the goal of malaria elimination.

The relationships between two or more ecological entities (i.e., villages) are often analyzed

as networks [13–15]. Different properties can help capturing the level of connectivity between

such entities and can be measured at the entities (nodes), the links, or at the overall level, and

were recently used in the analysis of infectious diseases. Buckee et al. analyzed the malaria par-

asite population structure from serological networks [16]. Tatem et al. estimated the role of
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international population movements on P. falciparum malaria elimination strategies [17]. Pin-

dolia et al. further analyzed regional connectivity and the mobility of different demographic

groups in in East Africa and showed that demographically-stratified HPM and malaria move-

ment estimates using network analysis can provide quantitative evidence to inform the design

of more efficient malaria interventions [18]. And Huang et al. expanded this analysis to under-

stand the global malaria connectivity through air travel and showed that both malaria-free

areas and other endemic regions are strongly connected, particularly in Africa and Southeast

Asia [19].

However, no agreement has yet been reached on which network property best captures

how HPM affects malaria epidemiology, particularly in areas such as Latin America, which is

the region with the most rapid urban growth rate in the world [20,21]. Furthermore, the cur-

rent projections of population growth in the Amazon region involve dramatic changes in natu-

ral landscapes but also in human behaviors such as HPM. In consequence, in this study we

aimed to investigate how human population mobility, quantified through various connectivity

metrics, influences malaria transmission by different levels of PAMAFRO coverage in the

Loreto department of Peru between 2011 to 2018. We proposed to incorporate land use and

land cover (LULC) changes to reflect the expansion of villages and cities nested in watersheds

that reflect microcircuits of mobility. Taken together, refined metrics of connectivity between

villages have the potential to better inform malaria control efforts. In this study, we used data

from the passive case detection (PCD) reports from the Peruvian Ministry of Health (MoH)

between 2011 and 2018 at the village level to test a comprehensive set of connectivity metrics,

including population and environmental (deforestation) weights, and their relationship with

malaria incidence across villages with contrasting baseline malaria transmission and PAMA-

FRO coverage levels in the Loreto department of Peru.

2. Methods

2.1. Study design

This is an observational ecological study that tests the relationship between connectivity met-

rics and the malaria incidence in the Loreto department of Peru. Connectivity metrics were

derived from the combination of multiple centrality types (i.e., betweenness, strength, eigen,

and closeness) and weights such as masses (i.e., population and deforested area) and costs (i.e.,

distance and travel time). The relative importance of the nodes has been analyzed as a driver

for malaria incidence in the area using ten-year (2011–2018) records of the PCD data from the

MoH at village/city (node) level. This relationship was further stratified across villages with

contrasting baseline malaria transmission and PAMAFRO coverage levels.

2.2. Study area

The Loreto department, located in the northeast of Peru, covers 28.7% of the national territory

and a total population of 883,510. The political-administrative organization of Loreto is

divided into 8 provinces, 53 districts and 31 watersheds (Fig 1). Iquitos is the capital city and

the most densely populated with 510,000 inhabitants (the 7th most populated city in Peru).

Most inhabitants (69.6%) live in urban areas, 32.2% live in poverty, and 7% live in extreme

poverty. Only 39.6% of households have access to basic public services (water, sanitation, elec-

tricity, and telephone) [22]. Most common economic activities are based on agriculture, fish-

ing, and mining [22]. In 2016, Loreto had a total of 521 health care facilities, with a ratio of

1,086 inhabitants per healthcare personnel [22] and important transportation and monetary

barriers [23,24] to quality health care access. The tropical climate in this area ranges on average
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from 17˚C (between June and July) to 36˚C (between December and March) with a rainy sea-

son between December and March.

2.3. Data sources

2.3.1. Malaria passive case detection data. Malaria is a notifiable disease by the Peruvian

MoH and the registry of individual-level data started in 2009 [1]. These data are available in

both electronic and hardcopy format for the dominant malaria species P. vivax and P.

Fig 1. Study area and hydro-basins in the Loreto department in the Peruvian Amazon. Each point represents the location of villages and the color and size

represent their A) Mean Annual P. vivax API, B) Mean Annual P. falciparum API, C) Deforested area, and D) Population size. Maps were produced using R

v.4.1 (R Development Core Team, R Foundation for Statistical Computing, Australia) based on public geographic data extracted from Peruvian Open Data

Portal (https://github.com/healthinnovation/network-malaria/blob/main/data/processed/03_geometries_district.zip) under Open Data Commons (ODC-By)

v1.0 (http://opendefinition.org/licenses/odc-by/).

https://doi.org/10.1371/journal.pntd.0012560.g001
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falciparum. In Peru, malaria diagnosis relies primarily on microscopic inspection of thick and

thin blood smears in health facilities. The presence of asexual and sexual stages of Plasmodium
species is determined after examining 100 high-powered fields [25]. All positive cases are

immediately treated according to national guidelines from MoH [26]: chloroquine (CQ) for 3

days and primaquine (PQ) for 7 days in confirmed P. vivax malaria infections, and mefloquine

(MQ) for 2 days and artesunate (AS) for 3 days in confirmed P. falciparum infections. For this

study, georeferenced data were obtained at the village/city level from 2011 to 2018 for each

month and were collapsed for the entire study period. GPS coordinates of the centroids and

population size are provided for each village by the MoH. Malaria endemicity level was com-

puted by the (2011–2018) Annual Parasite Index (API) as the total number of cases per 1000

population.

2.3.2. Deforestation and watershed data. The Hansen collection [27], a high-spatial reso-

lution (1 arc-second, approximately 30 meters) dataset of yearly forest coverage loss, was used

to extract village-level (within 5 km radius from the centroids of villages/cities) mean defor-

ested area (2011–2018, Km2). The Hansen collection defines forest loss as a stand-replacement

disturbance, or a change from a forest to non-forest state, using the year 2000 as reference and

bands 3, 4, 5, and 7 of Landsat 7 cloud-free image composites. Hansen collection data were

gathered and processed in Google Earth Engine [28], a cloud-based platform for planetary-

scale geospatial analysis (https://earthengine.google.com). The watershed boundaries were

obtained from the Peruvian National Authority of Water (ANA by its Spanish acronym). ANA

provides a division, codification, and systematization of watersheds using two international

standard methodologies, the Pfafstetter coding system [29] and a Digital Elevation Model

(DEM) such as NASA’s SRTM of 30 meters spatial resolution. The final product is a map to a

scale of 1:100,000 cm.

2.3.3. Distance and travel time estimation. The computation of the distance from each

village to all villages analyzed in the entire department of Loreto was performed by calculating

the Euclidean distance using the R Statistical Software (v4.2.2; R Core Team 2021). Euclidean

distance assumes direct travel paths and may not accurately represent actual travel routes,

which can be influenced by road networks and geographical barriers. Despite this limitation,

Euclidean distance provides a simplified and computationally efficient method to analyze con-

nectivity. This Euclidean distance is defined as the shortest straight line that exists between

two points without considering the type of existing surface. For its calculation the following

formula was used:

dðxði;jÞ ;yði;jÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxj � xiÞ
2
þ ðyj � yiÞ

2

q

Where (xi, yi) are the coordinates of the origin and (xj, yj) are the coordinates of the

destination.

The estimation of travel time was conducted in R Statistical Software (v4.2.2; R Core Team

2021) using the rgee package [30] that bridges R to the Google Earth Engine (GEE) API [28].

We followed travel time estimation procedures described in previous literature [23,31]. To

summarize the method, information about land coverage, road infrastructure, and river net-

work was used to create a 30-m resolution grid surface. The speed assigned for each category

of land cover was obtained from elsewhere [31] and the Ministry of Transportation provided

the speed for the road infrastructure. Accuracy of speed restriction estimates should be vali-

dated with mayor precision at local level in future studies to better represent study settings. A

friction surface was constructed where each pixel contained the cost (time) to move through

the area encompassed in the pixel. Then, a cumulative cost function was applied (least-cost-
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path algorithm) that examined all potential paths iteratively, and the time-weighted cost was

then minimized to calculate the minimum travel time between villages.

2.4. Network analysis

From the Euclidean distance and travel time calculations, we obtained two origin-destination

datasets of all possible connections between villages in the study area. After data cleaning and

harmonization (S1 Methods), we used these interactions (links) to construct graph class

objects in R for visualization and calculation of centrality metrics for each community within

each of the watersheds (Fig 2). Network processing and visualization was performed using R

Statistical Software (v4.2.2; R Core Team 2021). The standardized mean and standard devia-

tion of the computed metrics were estimated overall and by watershed.

Fig 2. Connectivity and centrality estimation workflow. Synthetic example of all the steps to compute the centrality metrics that comprises A) the geolocation

of the river network and villages in each watershed area. B) Estimate the cost of displacement between villages (i.e. distance and travel time). C) Construction of

an undirected and unweighted network based on the connections between villages in the same watershed. Finally, D) testing gravity model weights for the links

in the network. Weights were computed using multiple masses (i.e. population and deforested areas). Edges widths relative to weights. Maps were produced

using R v.4.1 (R Development Core Team, R Foundation for Statistical Computing, Australia) based on public geographic data extracted from Peruvian Open

Data Portal (https://github.com/healthinnovation/network-malaria/blob/main/data/processed/03_geometries_district.zip) under Open Data Commons

(ODC-By) v1.0 (http://opendefinition.org/licenses/odc-by/).

https://doi.org/10.1371/journal.pntd.0012560.g002
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2.4.1. Network processing. In this study, the 1,608 communities were considered as

nodes and the 73,944 possible connections as the edges. The origin-destination dataset con-

taining the connections was formatted as an edge list, as each row represents an edge. The dis-

tances and travel times computed for each connection were assigned iteratively as edge

weights, which may represent the strength or weakness of the connection between nodes.

Additionally, we constructed four different versions of weights based on the gravity model by

combining population and average annual forest loss as masses with Euclidean distance and

travel time as cost proxies. Finally, we scaled the weights to range from 0 to 1 within each

watershed.

Having the nodes and edges with their different weights, we used the tidygraph package in

R [32] to create the graphs for each watershed. Since the connections between the villages are

unique and do not have a directional sense, the resulting graphs are undirected graphs. Next,

we calculated the centrality metrics. For this study, the strength, closeness, betweenness, and

eigenvector centralities were assessed (S2 Methods). The calculations of these centralities were

made considering the weight of the edges. Each type of centrality works with a different inter-

pretation of the weights. These measures were chosen to provide a comprehensive view of how

well-connected regions are within the network, each highlighting different facets of influence

and accessibility. This metrics evaluated crucial aspects such as: 1) the number of direct con-

nections to a node, providing insights into immediate contacts, 2) the average shortest path

from a node to all others, reflecting accessibility and potential for rapid dissemination, 3)

nodes that serve as bridges within the network, crucial for understanding pathways of patho-

gen transmission, and 4) the influence of a node’s connections, highlighting nodes connected

to other well-connected nodes. As mentioned earlier, the weights represent the relative impor-

tance of the connection between two nodes. In the case of strength and eigenvector centrality

indicators, the weight is interpreted as connection strength and, therefore, the higher the value

of the weight the greater the connection between the nodes. On the other hand, in the case of

closeness and betweenness centrality indicators, the weight is interpreted as connection weak-

ness and, therefore, the higher the value of the weight the lower the connection between the

nodes. For these reasons, since distance and travel time measure how far apart the communi-

ties are, we use the inverse of these measures for the calculations of the strength and eigenvec-

tor centralities. On the other hand, since the weights based on the gravity model represent the

"attraction" between communities, we used the inverses of these weights for the calculations of

the closeness and betweenness centralities.

We thus obtained six different versions of the centrality indicators depending on the weight

used: 1) Euclidean distance, 2) Gravity model with distance and population, 3) Gravity model

with distance and forest loss, 4) Travel time, 5) Gravity model with travel time and population,

and 6) Gravity model with travel time and forest loss. Within every watershed, we calculated

all the versions of the centrality indicators for each village and then scaled them from 0 to 1

using tidygraph. The correlation between all centrality metrics across all villages were com-

puted using a Pearson correlation and dendrograms to cluster centrality metrics were based

on a hierarchical cluster analysis using a complete linkage method.

2.4.2. Network visualization. Network visualizations were constructed using the ggraph

package in R [33]. Two types of visualizations were used for all versions of the centrality met-

rics. The first consisted of plotting all nodes and edges and distinguishing them by watershed

using colors, plotting the opacity of the edges as a function of the weight value (higher weight,

less opaque), and setting the node size as a function of the centrality index value (higher cen-

trality, larger size). The second type of visualization consisted of plotting the networks in dif-

ferent facets for each watershed and following the same settings for edge opacity and node size

as in the first type of visualization. For both visualizations, two node layout algorithms were
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tested: the Kamada-Kawai algorithm and the Stress majorization algorithm. Both algorithms

emerge from the same optimization problem, however, the second one uses a more global

approximation technique to the problem, resulting in improvements in run time and stability

of the resulting node layout [34]. The algorithm used for the final visualizations was chosen by

visual inspection of how well the nodes were arranged for our data.

2.5. Stratified analysis

Further explorations of the relationship between connectivity metrics and malaria incidence

were conducted by stratifying the data across levels of intervention coverage of the PAMAFRO

project (2006–2010). Four control activities were recorded per district and year including: i)

strengthening of malaria diagnosis, ii) training and supervision of community health workers,

iii) community-based larval source management (LSM), and iv) distribution of long-lasting

insecticidal nets (LLINs). A more detailed description of control activities carried out during

the 2006–2010 intensified malaria control period (PAMAFRO) are found elsewhere [3]. The

PAMAFRO intervention coverage was computed as the proportion of intervention-years

(maximum of 4 interventions multiplied by 5 years; 20 intervention-years) conducted in each

district and assigned to all of that district’s villages (code repository: https://github.com/

healthinnovation/network-malaria).

3. Results

The main findings of this study indicate a significant relationship between connectivity metrics

and malaria incidence. High malaria incidence was linked to highly connected villages, espe-

cially near Iquitos and in deforested areas. Betweenness centrality consistently demonstrated

the highest stability among 24 computed metrics, highlighting its importance in understanding

malaria transmission. Villages in the top quintile of betweenness centrality had significantly

higher malaria incidence compared to those in the bottom quintile, with this relationship

being more pronounced in areas with higher PAMAFRO coverage. In the following section we

will describe the baseline characteristics of the villages and centrality estimates to provide fur-

ther context to our findings, demonstrating how centrality patterns are related to higher

malaria rates.

3.1. Baseline characteristics of villages

In total, data from 1,608 nodes (villages/cities) nested within 31 watersheds in the Loreto

department were analyzed after data cleaning (S1 Fig). The total population in the selected vil-

lages was 15,045 inhabitants, and 232,252 P. vivax and 60,512 P. falciparum cases were geore-

ferenced to the village level during the 2011–2018 period. The average number of villages in

the selected watersheds is 51 ranging from 8 to 202 villages (Table 1). Most populated villages/

cities are located on the banks of rivers, mainly close to Iquitos city; in contrast, most highly

deforested areas are located on the south-west side of the study area (Fig 1).

Important spatial heterogeneity was observed for both P. vivax and P. falciparum cases. The

highest Annual Parasite Index (API) was observed in the watersheds of Pastaza, Tigre, Yavari,

and Napo (Fig 1). Historically, these watersheds showed contrasting trajectories. Pastaza and

Tigre watersheds showed a rapid increase in the malaria incidence, on the other hand, Napo

and Yavari watersheds, despite its high malaria endemicity level, were stable during the 2011–

2018 period (Fig 3). This scattered spatial location of villages and cities is reflected in the con-

trasting distributions of distance and travel time between village/city dyads (S2 Fig). Both are

positively skewed; however, a larger kurtosis is present in the travel time distribution in com-

parison to Euclidian distance. This pattern is consistent across all the 31 watersheds (S3 Fig).
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3.2. Centrality estimation

Multiple connectivity metrics were computed from the combination of centrality types and

weights. A consensus graph was constructed to represent the network between villages located

in the same watershed using the multiple iterations of centrality metrics. An example using

betweenness centrality with weights based on a gravity model that includes Euclidian distance

and population is shown in Fig 4. Due to the high density of villages and links, a version

divided by watersheds is presented in S4 Fig. The densest networks are Intercuenca 4977,

Napo, Medio Bajo Marañon, Pastaza, and Nanay.

A total of 24 centrality metrics were computed. Overall summary statistics are shown in

Table 2 and watershed-specific statistics are shown in S1 Table. Metrics with the highest stan-

dardized mean and variability are those that use distance and travel time as weights. On the

other hand, metrics with the lowest standardized mean and variability are those that use a

gravity model based on distance and population or travel time and population. Betweenness

Table 1. Descriptive demographical, epidemiological, and environmental characteristics (2011–2018) in all villages nested in 31 watersheds in the Loreto depart-

ment, Peru.

Watershed Name Number of villages Total number of cases Deforestation

P. falciparum P. vivax Mean sd

Cuenca Carhuapanas 32 10 664 5.41099 3.35717

Cuenca Itaya 69 2415 21452 4.75289 2.53186

Cuenca Manitı́ 14 327 1228 2.23778 1.79954

Cuenca Morona 46 595 2488 1.29575 0.88265

Cuenca Nanay 91 10276 47046 4.43810 3.29485

Cuenca Napo 169 6333 28177 3.15514 2.35080

Cuenca Paranapura 86 285 5073 9.75672 5.39148

Cuenca Pastaza 95 16825 34343 1.51598 1.24127

Cuenca Potro 8 15 310 1.35012 0.73314

Cuenca Putumayo 42 232 1037 1.07531 1.03147

Cuenca Tahuayo 17 10 213 4.36052 2.01849

Cuenca Tapiche 35 1365 4956 2.42216 2.55880

Cuenca Tigre 75 11830 33253 2.33620 1.84907

Cuenca Yavari 38 2815 10177 2.92976 2.09816

Intercuenca 4977 202 1820 16051 4.27788 3.04429

Intercuenca 49791 12 7 107 4.31276 2.35457

Intercuenca 49793 40 125 1441 5.53734 3.08079

Intercuenca 49795 8 4 34 4.88276 2.69110

Intercuenca 49797 49 82 1580 4.65196 1.88203

Intercuenca 49799 35 6 155 4.14853 1.97210

Intercuenca 49871 11 16 418 6.73127 3.70163

Intercuenca 49873 10 3 32 4.31457 2.41013

Intercuenca 49877 42 130 989 3.49134 2.32782

Intercuenca 49911 19 18 254 3.32678 1.99509

Intercuenca 49913 72 42 618 3.95505 2.86444

Intercuenca 49915 9 1 26 5.73575 2.71946

Intercuenca Bajo Huallga 62 136 500 7.78687 5.19647

Intercuenca Bajo Marañón 48 329 8600 3.89483 2.19509

Intercuenca Medio Bajo Huallaga 36 67 336 10.66703 6.19642

Intercuenca Medio Bajo Marañón 124 4383 10620 2.10576 2.06783

Intercuenca Medio Marañón 12 10 74 3.27035 2.35675

https://doi.org/10.1371/journal.pntd.0012560.t001
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centrality is consistently the metric with the lowest standardized mean and variability across

all weights (Table 2) and these trends are consistent across watersheds (S1 Table). Strong cor-

relation patterns were observed between centrality metrics (Fig 5). Betweenness centrality is

the metric that showed the most consistent clustering pattern in the hierarchical clustering

analysis (S5 Fig).

3.3. Relationship of centrality with malaria incidence

Betweenness centrality indicators using multiple versions of gravity models as weights were

selected for further analyses based on the criteria described above. This metric was used to

define categories of centrality (low vs. high quintiles) to test their relationship with malaria

incidence. Overall, villages in the top quintile of centrality have a higher malaria incidence in

comparison with villages in the bottom quintile of centrality (Mean Difference [MD] in cases

per 1,000 population; P. vivax = 165.78 and P. falciparum = 76.14) (S6 Fig). When stratifying

by levels of PAMAFRO coverage, the mean difference between villages at the top and bottom

centrality quintiles increase as PAMAFRO coverage increase for both P. vivax (Tier

1 = 155.36; Tier 2 = 176.22; Tier 3 = 326.08) and P. falciparum (Tier 1 = 48.11; Tier 2 = 95.16;

Tier 3 = 139.07). Overall distributions are comparable across calculations of weights (i.e.,

Fig 3. Annual malaria incidence rates variation by parasite species. Annual malaria incidence rates variation due to P. vivax (red) and P. falciparum
(light blue) in 31 watersheds of Loreto department between 2011 and 2018. Maps were produced using R v.4.1 (R Development Core Team, R

Foundation for Statistical Computing, Australia) based on public geographic data extracted from Peruvian Open Data Portal (https://github.com/

healthinnovation/network-malaria/blob/main/data/processed/03_geometries_district.zip) under Open Data Commons (ODC-By) v1.0 (http://

opendefinition.org/licenses/odc-by/).

https://doi.org/10.1371/journal.pntd.0012560.g003
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combinations of distance/travel time and population/deforestation); however, the dose-

response pattern following the PAMAFRO coverage is consistent across all combinations of

weight calculations for P. falciparum in contrast to P. vivax where the pattern is more notice-

able when using deforestation instead of population (Fig 6).

4. Discussion

Our findings indicate that betweenness centrality, among the various connectivity metrics,

consistently and stably predicts malaria incidence. This result held true across different weight-

ing methods, including population, deforested area, Euclidean distance, and travel time. Spe-

cifically, regions with higher betweenness centrality consistently exhibited higher malaria

incidence rates. Further analysis revealed that this pattern is particularly pronounced in areas

with extensive malaria control activities from the PAMAFRO project, which initially targeted

regions with high baseline malaria transmission. This underscores the need to reconsider cur-

rent malaria control strategies. Instead of focusing solely on locations based on their malaria

metrics, our findings support a shift towards strategies that target connectivity neighborhoods,

incorporating influential connected villages that facilitate the flow of parasites and hosts.

Understanding how villages and cities are connected and how these connections influence the

transmission of pathogens is of paramount importance for global public health. This study

contributes to the limited literature on human mobility and its impact on malaria in rural

areas of the Amazon region by investigating this relationship in the Peruvian Amazon. We uti-

lized a comprehensive set of connectivity metrics and malaria incidence records at a granular

spatial resolution. In summary, our study highlights the critical role of human connectivity in

malaria transmission in the Loreto department of Peru. By prioritizing highly connected

Fig 4. Consensus graph of the network of villages in the Loreto department in the Peruvian Amazon.

https://doi.org/10.1371/journal.pntd.0012560.g004
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regions, we can enhance the effectiveness of malaria control efforts and move closer to the goal

of malaria elimination.

The main mechanism of malaria transmission reestablishment is the importation of para-

sites from HPM, and this plays a major role in elimination scenarios. However, it is also mean-

ingful at the micro-geographical level, after malaria control interventions occur and malaria

endemicity is expected to be low with only remaining P. vivax hypnozoite reservoirs. In these

scenarios, interrupting importation pathways may greatly improve the effectiveness of current

malaria control efforts [11,35]. However, capturing individual HPM information requires

intensive use of resources [36–39]. The findings of this study showed that the use of connectiv-

ity metrics between villages contributes to an improved understanding of these complex

dynamics in rural areas that are highly connected through river networks.

Importantly, we found that in areas with the greatest malaria endemicity and coverage of

PAMAFRO control activities, the influence of connectivity was more prominent. These find-

ings challenge previous literature that highlighted a greater importance of HPM in low-trans-

mission and close-to-elimination settings than in moderate- and high-transmission settings

[12,17,35,40,41]. In fact, less attention was put into the role of HPM and connectivity in high

Table 2. Descriptive statistics of centrality metrics in all villages in the Loreto department, Peru.

Centrality Mean (sd)

Distance as weight
Strength 0.68 (0.26)

Closeness 0.65 (0.28)

Betweenness 0.14 (0.24)

Eigenvector 0.64 (0.28)

Distance and population based gravity model weight
Strength 0.11 (0.18)

Closeness 0.19 (0.21)

Betweenness 0.03 (0.15)

Eigenvector 0.12 (0.18)

Distance and forest loss based gravity model weight
Strength 0.27 (0.26)

Closeness 0.39 (0.29)

Betweenness 0.10 (0.23)

Eigenvector 0.26 (0.26)

Travel time as weight
Strength 0.62 (0.28)

Closeness 0.64 (0.28)

Betweenness 0.12 (0.23)

Eigenvector 0.60 (0.30)

Travel time and population based gravity model weight
Strength 0.09 (0.17)

Closeness 0.18 (0.20)

Betweenness 0.02 (0.14)

Eigenvector 0.10 (0.18)

Travel time and forest loss based gravity model weight
Strength 0.22 (0.26)

Closeness 0.33 (0.28)

Betweenness 0.12 (0.23)

Eigenvector 0.21 (0.26)

https://doi.org/10.1371/journal.pntd.0012560.t002
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malaria transmission settings [42,43]. Interestingly, areas with high vectorial capacity [8] and

parasite genomic diversity [44] are areas with intense HPM in the Peruvian Amazon. How-

ever, these findings are consistent with an emergent body of evidence showing the role HPM

in high- to moderate-transmission settings [36,45–50].

PAMAFRO intervention was temporally associated with a decrease in malaria transmission

in Loreto Department [1]. However, from 2012 to the present, both P. vivax and P. falciparum
malaria cases have rapidly increased, highlighting the fragile nature of these gains [1,51]. The

Fig 5. Correlation of centrality metrics of villages in the Loreto department in the Peruvian Amazon. Abbreviations: Mass (population [pop],

deforested area [adef], and none), cost (distance [d], travel time [t]), and centrality type (betweenness [between], strength [stre], eigen [eigen], and

closeness [close]).

https://doi.org/10.1371/journal.pntd.0012560.g005
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Fig 6. Distribution of Total Annual Parasite Index (API) per 1000 population (2011–2018) across high and low

centrality villages stratified by levels of PAMAFRO intervention coverage in the Loreto department in the Peruvian

Amazon. A) For Plasmodium vivax and B) for P. falciparum. Mean difference between groups are represented as diamonds

in each panel. T1 = Tier 1 (Low coverage; Low baseline endemicity), T2 = Tier 2 (Moderate coverage; Moderate baseline

endemicity), and T3 = Tier 3 (High coverage; High baseline endemicity).

https://doi.org/10.1371/journal.pntd.0012560.g006
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interruption of PAMAFRO led to a resurgence of malaria in Loreto, with precipitation and

actual evapotranspiration having a more significant effect on P. falciparum compared to P.

vivax [7]. This implicates that malaria control policies should include the re-establishment of

continuous vector control measures, community health education, and robust surveillance sys-

tems [52–54]. Therefore, Incorporating climate data into predictive models can help in antici-

pating and mitigating outbreaks [51].

In the Amazon region, as cities grow, HPM intensifies, and as a result so does the probabil-

ity of malaria importation. The magnitude of attraction in these areas is affected by the size of

the cities as a proxy for the number of services and level of commercial activity in place. In

addition, these anthropogenic environmental changes impact infectious disease dynamics

[55]. Increased human population and environmental modification influence biological com-

munities, including Anopheles mosquitoes, particularly those with some degree of competence

to transmit Plasmodium sp. that circulate in the Amazon region [56,57]. In this study, central-

ity metrics computed using population size and deforested area showed comparable perfor-

mance. These similarities may be leveraged in scenarios with weak vital registration statistics

such as rural areas, areas under conflict, or forced displaced populations [58–61] since the col-

lection of deforested area could be conducted using remote sensing tools in comparison to the

intense effort involved in a population census.

Nodes with high degree centrality, particularly those with high indegree, are crucial impor-

tation points and potential outbreak hubs, while nodes with high outdegree are significant in

exporting malaria to other areas. Evaluating directed graphs with differing indegree and outde-

gree values for each node allows us to identify and target these critical points within the net-

work. Nodes with high centrality values were pivotal during malaria epidemics, indicating that

these nodes play a significant role in the spread of the disease [62]. In addition, Woolhouse

et al.[63] and Smith et al.[64] emphasize the importance of tailored interventions based on the

population biology of multihost pathogens and the basic reproductive number for malaria.

This finding suggests that intensified surveillance and targeted control measures at these

nodes could substantially reduce transmission rates.

In this study, connectivity and centrality measures were assessed in relationship to land

coverage change using network analysis at the village level in Peru, and their effect on malaria

transmission was estimated. This evidence contributes to the understanding of the role of

HPM in malaria transmission in rural areas, and secondary, provides information to optimize

the distribution of services or the configuration of networks to reduce the overall flow of

malaria infections between cities and villages.

We acknowledge some limitations of this study. First, 221 villages (12%) were excluded

from the analysis in the data cleaning process due to missing data of the masses and costs for

the weight calculations (S1 Fig). These exclusions may alter the estimations; however, data was

missing completely at random (MCAR), reducing possibilities to overestimate or underesti-

mate our findings. Second, for the connectivity metrics computation, all villages located in the

same watershed were assumed to be connected. However, is plausible that human travel pref-

erences might involve avoiding certain villages within the same watershed or traveling to vil-

lages in different watersheds. Future studies should consider more complex network

structures to address these dynamics. While collapsing data for the entire study period (2011–

2018) simplifies our understanding of the relative contribution of spatial units containing

nodes/villages on malaria incidence, it is important to recognize the loss of temporal granular-

ity. During epidemics, the centrality value of a node can fluctuate significantly, reflecting shifts

in malaria transmission dynamics and being influenced by migration patterns and seasonal

variations [62]. Finally, previous studies in the Peruvian Amazon [65–67] reported a high

number of sub-clinical infections that are not recorded by the MoH during routine data
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collection. The findings of this study are relevant only for clinical cases, and caution is sug-

gested when interpreting these results for asymptomatic cases, which can contribute to the

maintenance of parasite transmission. Therefore, incorporation of active-case surveillance

data will be crucial to address this limitation in future studies.

5. Conclusion

This study exploited detailed malaria incidence data at the village level to test the influence of a

comprehensive set of connectivity metrics. The data in this study show that in the Loreto

department of Peru, villages and cities with high connectivity consistently have higher malaria

incidence. When stratified by coverage of PAMAFRO control activities, the areas where

malaria transmission was the highest are the areas where this difference in malaria incidence is

most pronounced. These findings challenge prior research that emphasized the importance of

HPM being greater in low-transmission and close-to-elimination settings rather than in mod-

erate- and high-transmission settings. The evidence outlined in this study can be used to tailor

malaria control strategies in rural areas by prioritizing influential connected neighborhoods

instead of single villages.
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nóstico de malaria. Lima: MINSA; 2003. Available: http://bvs.minsa.gob.pe/local/INS/163_malaria.pdf
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