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Abstract

Background

Malaria elimination using current tools has stalled in many areas. Ivermectin (IVM) is a

broad-antiparasitic drug and mosquitocide and has been proposed as a tool for accelerating

progress towards malaria elimination. Under laboratory conditions, IVM has been shown to

reduce the survival of adult Anopheles populations that have fed on IVM-treated mammals.

Treating cattle with IVM has been proposed as an important contribution to malaria vector

management, however, the impacts of IVM in this One Health use case have been untested

in field trials in Southeast Asia.

Methods

Through a randomized village-based trial, this study quantified the effect of IVM-treated cat-

tle on anopheline populations in treated vs. untreated villages in Central Vietnam. Local

zebu cattle in six rural villages were included in this study. In three villages, cattle were

treated with IVM at established veterinary dosages, and in three additional villages cattle

were left as untreated controls. For the main study outcome, the mosquito populations in all

villages were sampled using cattle-baited traps for six nights before, and six nights after a 2-

day IVM-administration (intervention) period. Anopheline species were characterized using

taxonomic keys. The impact of the intervention was analyzed using a difference-in-differ-

ences (DID) approach with generalized estimating equations (with negative binomial distri-

bution and robust errors). This intervention was powered to detect a 50% reduction in total

nightly Anopheles spp. vector catches from cattle-baited traps. Given the unusual diversity

in anopheline populations, exploratory analyses examined taxon-level differences in the

ecological population diversity.
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Results

Across the treated villages, 1,112 of 1,523 censused cows (73% overall; range 67% to 83%)

were treated with IVM. In both control and treated villages, there was a 30% to 40%

decrease in total anophelines captured in the post-intervention period as compared to the

pre-intervention period. In the control villages, there were 1,873 captured pre-intervention

and 1,079 captured during the post-intervention period. In the treated villages, there were

1,594 captured pre-intervention, and 1,101 captured during the post-intervention period.

The difference in differences model analysis comparing total captures between arms was

not statistically significant (p = 0.61). Secondary outcomes of vector population diversity

found that in three villages (one control and two treatment) Brillouin’s index increased, and

in three villages (two control and one treatment) Brillouin’s index decreased. When examin-

ing biodiversity by trapping-night, there were no clear trends in treated or untreated vector

populations. Additionally, there were no clear trends when examining the components of

biodiversity: richness and evenness.

Conclusions

The ability of this study to quantify the impacts of IVM treatment was limited due to unex-

pectedly large spatiotemporal variability in trapping rates; an area-wide decrease in trapping

counts across all six villages post-intervention; and potential spillover effects. However, this

study provides important data to directly inform future studies in the GMS and beyond for

IVM-based vector control.

Author summary

Malaria incidence in Vietnam has substantially declined in the last decade, however, cur-

rent prevention strategies may be insufficient to achieve national elimination goals. A pro-

posed tool for use as a mosquitocide is zooprophylaxis-aided ivermectin-based

elimination (i.e., treating cattle with ivermectin to kill feeding mosquitoes). Ivermectin

(IVM) is an inexpensive helminthicide and is safe for use in mammals. In laboratory stud-

ies, mosquitoes feeding on IVM-treated cattle have increased mortality compared to con-

trols. Presented here is a randomized village-based trial to determine whether IVM

treatment can reduce the number of captured mosquitoes. Six villages in Central Vietnam

were randomly assigned to either receive IVM treatment or remain a control. Mosquitoes

in each village were captured for six trap nights, followed by treatment in three villages,

followed by trapping for an additional six nights. A difference-in-differences model did

not show any statistically significant differences in capture rates between the treated and

control villages. Factors including the amount of circulating IVM in the cattle population,

crossover of mosquito populations, and differential feeding habits may have affected cap-

tures. A total of 18 species were identified using dichotomous keys. In post hoc analyses,

no clear trends were observed in the anopheline populations after IVM treatment, as mea-

sured by ecological diversity metrics. Future studies should include additional villages,

greater control of cattle movements, and consider potential vector movements.
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Introduction

Malaria transmission in Vietnam

Major progress has been made in many areas toward malaria elimination, and the Greater

Mekong Subregion (GMS) is a major focus of these efforts. Through multiple elimination ini-

tiatives, malaria incidence in Vietnam has declined substantially over the last two decades;

from 2000 to 2019, there has been a 95% reduction in cases and a 96% reduction in malaria

mortality [1]. This rapid progress has prompted the Government of Vietnam to set the goal of

national Plasmodium falciparum elimination by the year 2025, and national malaria elimina-

tion due to all Plasmodium species by the year 2030 [2].

Challenges to malaria elimination

Globally, malaria control and elimination programs are focused on high coverage of long-last-

ing insecticide-treated nets (LLINs), indoor residual spraying (IRS), universal access to artemi-

sinin-based combination therapy (ACT), and rapid diagnostic tests, however, these tools may

not be sufficient to achieve malaria elimination in all settings [3,4]. Specifically, progress

toward elimination has been stalled due to “residual transmission” which may be driven by

combinations of outdoor biting vectors, changes in vector bionomics, and decreased sensitivity

to insecticides [5]. These problems are especially complex in the GMS, where a diverse set of

vectors have been implicated in transmission, and where peri-domestic vector feeding is com-

mon in many settings [6].

Ivermectin as a tool to accelerate malaria elimination

One promising tool to accelerate malaria elimination is ivermectin (IVM). IVM is an inexpen-

sive and non-toxic helminthicide and mosquitocide with a well-established regulatory envi-

ronment [7]. And while IVM is lethal to many invertebrates, it has very limited toxicity in

mammals [8]. IVM undergoes limited primary metabolism and is excreted largely unchanged

after administration in animals.

Other studies with IVM treatment in cattle have been reported, or are underway in a range

of settings. Published studies include lab studies in Belize [9], Tanzania [10], Kenya [11,12],

and Burkina Faso [13]. Ongoing studies with IVM treatment in cattle and humans include the

BOHEMIA study in Mozambique and Kenya [14].

While this drug is practical for use in livestock, its limited half-life necessitates retreatment

at regular intervals [15]. Because of the many desirable characteristics of IVM, several prior

studies have tested the impact of using this drug to increase mosquito mortality [10,13,16–18].

All studies published to date show that under laboratory conditions, mosquitoes blood-fed on

IVM-treated cattle have major decreases in survival rates, especially when fed shortly after

drug administration. Several studies have quantified the relative mortality in important vector

species in the GMS, including Cramer et al. [18], and Kobylinski et al. [19].

Literature gaps

Though treating cattle with IVM has been demonstrated to be an effective mosquitocide after

being administered to cattle under laboratory conditions, to our knowledge, no field trials

have been published examining the impact of IVM treatment in cattle on a village level. By

focusing on zoonotic feeding by vectors, a targeted program has the potential to reduce the

overall peridomestic anopheline populations in suitable contexts, such as the GMS.
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Entomological context

The GMS (including Vietnam) is an ideal setting for zooprophylaxis-aided IVM-based vector

elimination (ZAIVE) as many anopheline species display both zoophilic and anthropophilic

behavior in this region [20]. A unique feature of the GMS is the highly diverse range of anoph-

eline species found in the area that are primary and secondary malaria vectors [20]. Incrimina-

tion of vectorial capacity is extremely challenging due to both very low sporozoite rates, and

the myriad species and vector complexes in the region, leading some experts to state “Given

the occurrence of 52 genetic forms in the GMS, of which about 39 forms remain unnamed and

their exact species (sensu stricto) are indeterminate, a sensible approach is to delete sensu lato

(s.l.) to mean any or all members of the species complex from this point onwards.”[21].

The southern parts of the GMS subregion (including Vietnam, Cambodia, and Lao PDR)

have some of the highest diversity of potential malaria vectors [22,23]. Vietnam has two major

vector complexes (An. dirus and maculatus), with at least 15 secondary vectors [20,24]. Ento-

mological surveys conducted in the same study villages in Central Vietnam just prior to this

study identified both of these 2 primary vector complexes (An. dirus and An. minimus), “along

with 9 secondary malaria vectors: An. aconitus, An. barbirostris s.l., An. harrisoni, An. macula-
tus, An. peditaeniatus, An. philippinensis, An. sawadwongporni, An. sinensis, and An.

vagus.”[25]. While An. minimus and dirus are generally found in forested and forest-fringe

areas, many secondary vectors are found in peridomestic settings in Vietnam and are a major

contributor to residual malaria transmission.

The relative proportions of forest-based, and peri-domestic vector exposures. vary widely

by geography, and by season depending on patterns of forest-based activities throughout the

GMS; moreover “. . .malaria vectors that preferentially bite outdoors will freely enter these

open dwellings and complicate the indoor/outdoor biting distinction” [21]. Moreover, studies

in adjacent areas of Cambodia have highlighted indoor biting [26], and a range of studies

emphasize the need for continued high coverage of interventions like LLINs in elimination

areas due to peridomestic feeding, e.g., Lao PDR, “The findings showed that residual transmis-

sion may occur outdoors in the villages, and outside the villages in cultivation fields and for-

ested areas [27]." Finally, control of peridomestic anophelines in villages is essential to ensure

“imported” infections can’t seed continued transmission. This issue is especially critical in

areas with P. vivax transmission (a major obstacle to elimination goals) [28] as relapses are

generally responsible for many new episodes of parasitemia [29], and where gametocytemia

occurs early in the infection. Lastly, building on work by other researchers in Vietnam who

proposed the use of cattle baits around human settlements to directly reduce vector density

and longevity as a supplement to LLINs, this work uses an “attack and kill” strategy [30].

Cattle management practices in Central Vietnam

In many rural villages of Central Vietnam, cattle are the major household asset and often serve

as dowry. Consequently, livestock health is a major priority, and cattle are treated for any

infections including helminths and heartworms, and there is already an established system to

administer medication to these animals. However, cattle are not routinely treated with antipar-

asitics or “cattle dips.” In these villages, some families occasionally have a few water buffalos;

no other ruminants are present. Typically, cattle owned by a family are allowed to graze freely

during the day in areas surrounding these forest-fringe villages, and then are penned adjacent

to, or directly underneath, houses at night. Having cattle penned in direct proximity to house-

holds provides a clear rationale to directly impact the peridomestic anophelines contributing

to the well-documented residual malaria transmission in these villages [25] (Fig 1, photo credit

AAL).
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Fig 1. Representative cattle management in close proximity to households, ZAIVE trial, Central Vietnam, 2019.

(Photographs captured by study authors).

https://doi.org/10.1371/journal.pntd.0012014.g001
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Study hypothesis

Using a randomized village-based trial, this study quantifies the effect of IVM-treated cattle on

the female anopheline populations in treated vs. control villages in rural areas in Central Viet-

nam. We hypothesize that villages with IVM-treated cattle will have a greater decrease in

Anopheles mosquitoes captured during the post vs. pre-intervention period as compared to

control villages without IVM-treated cattle.

Materials and methods

Ethical clearance and consent

IACUC (Institutional Animal Care and Use Committee) approvals were obtained from the

National University of Singapore (ref: B18-0303), and the University of Massachusetts

Amherst (Approval# 2019–0011); all local regulations were followed. Cattle owners were

advised not to sell meat or dairy products for at least 28 days post-intervention. All owners

willing to enroll their cattle were informed of these limitations in writing, with follow-up by

local Ministry of Agriculture staff to ensure adherence. Verbal consent was obtained from all

cattle owners prior to intervention. Treatment of cattle with subcutaneous injections of IVM is

routine policy in animal health, and the drug is fully approved in Vietnam for veterinary use

(National Guidelines for Animal Health, 2016). No adverse events were reported.

Study site

This study was conducted in six rural villages in Krông Pa District of Gia Lai province in Cen-

tral Vietnam [Chı́nh Ðơn (CD), Hòa Mỹ (HM),Ơi Jit (OJ),Ơi Ðăk (OD), H Yú (HY), and H

Lang (HL)] (Fig A in S1 Text). These specific villages were chosen in close consultation with

local health staff, who were familiar with the area’s cattle-rearing practices and had strong

links to local village leaders. The number of individuals living in each village as of 2018 ranges

from 325 inhabitants in CD to 1,891 inhabitants in HL. In 2018, malaria was found in all vil-

lages except HM; in OD, only 2 malaria cases were reported (API = 6.0 per 1000 population).

The largest case burden was reported from CD, with sixteen reported cases in 2018

(AP = 49.2) (Table A in S1 Text).

Study design

To quantify the relationship between treating cattle with IVM and anopheline mosquito cap-

tures, a village-based randomized controlled trial was implemented. In this repeated measures

trial, three villages (HM, OJ, and HL) had their cattle treated with IVM, and three villages

(CD, OD, and HY) served as controls. The villages were chosen for treatment using a random

draw (Stata, ralloc) [31].

Power calculations and sample size

A repeated measures design was used for pre- and post-intervention measurement of outcome;

this was essential to maximize study power with the resources available. As stated by Vickers,

“. . .repeating measures can have dramatic effects on power. Increasing the number of follow-

up and/or baseline measures from a single one to three or four can reduce sample sizes by 35–

70%. . .” [32]. The trial design was also constrained by the logistics of entomological staff for

trapping cycles, and funding available for this pilot study. The number of villages and sampling

sites required within each arm for valid statistical comparisons was estimated using a simula-

tion-based approach, as direct analytical methods have not been developed for repeated-mea-

sures (longitudinal) experimental designs.
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Simulation-based power calculations were used for a range of sampling designs. Simula-

tions were performed using Stata software (version 15, College Station TX, USA); power calcu-

lations were performed for a range of villages and sampling events (Table E in S1 Text).

The sample size for the primary evaluation at the end line survey was determined based on

the power to detect a difference between treated and control villages, assuming a 50% reduc-

tion in total nightly Anopheles spp. vector catches from cattle-baited traps. This target reduc-

tion was established with consideration of multiple other anopheline vector-control trials (eg,

44% reduction in indoor resting density [33]) and; 50% reduction from ATSBs [34]).

Simulations were parameterized using capture rates from trapping data from the Institute

of Malariology, Parasitology, and Entomology (IMPE) (2016; routine public health surveil-

lance trapping), published data collected in Lao PDR [35], and cattle-baited trapping data

from Cambodia [36]. Prior trapping data from Krông Pa using CDC traps found a mean of 3.5

vectors/night (median 1; SD = 6.5), and data from Cambodia suggest that cattle-baited traps

(CBTs) have nightly capture rates that are 10- to 20-fold higher [36]. With an assumption of a

mean of 35 captures per trapping-night, and with a between-village variance of 0.10, to detect

a 50% difference in captures with 80% power at a 5% significance level, a total of twelve trap-

ping nights (six pre-intervention and six post-intervention) are required (Table F in S1 Text).

Cattle census and treatment

Villages were randomized to treatment or control arm; and prior to cattle treatment, a short

questionnaire was administered to each head of household to determine the total number of

cows that the household owned in treatment villages only. All cows that were pregnant, lactat-

ing, currently ill, or under 1 year old were excluded from potential inclusion. After owner con-

sent, all cattle eligible for treatment were injected with a standard veterinary dose of 0.2 mg

IVM/kg body weight with a 1% IVM dosage by staff from the local animal health workers

using girth-weight charts with validation for Asian breeds [37].

Treatments were conducted across all treated villages over the same two-day period. Veteri-

nary-grade “Vimectin” (Vemedim Corporation; Can Tho, Vietnam) was administered by joint

teams from IMPE and local animal health staff. Cattle in control villages were not treated with

IVM or a placebo during this study, hence, no blinding was possible.

Mosquito trapping schedules and logistics

The primary study outcome was a comparison of pre- and post-intervention trapping-night

totals of all female anopheline species captured via centralized CBTs (with one trap per village

site). These traps were chosen to maximize the study power, as CBTs have been shown to cap-

ture 10- to 20-fold more vectors relative to CDC traps in the GMS [36]. and in these study vil-

lages specifically [25].

To quantify the impact of IVM treatment on mosquito populations, mosquitoes were trapped

every other night over a twelve-day period prior to IVM administration (pre-intervention period).

Following baseline mosquito collection, there was a two-day waiting period followed by IVM

administration to cattle in the three treatment villages over a two-day period. This was followed

by another two-day waiting period, then another round of mosquito trapping (trapping every

other night over 12 days) in all six villages (post-intervention period). Overall, a total of 72 trap-

site-nights were conducted over the course of this study (twelve nights in six villages).

Mosquito capture

To capture anophelines, CBTs were used from 18:00 to 6:00 the following morning; traps were

swept for mosquitoes using hand aspirators by entomological staff during collection periods
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(generally hourly). For each CBT trapping-night, a new cow was randomly selected in each

control village. In treated villages, a minimum of four male cows were left untreated, and then

each night a new random selection was made from the combined total of the four untreated

males plus all other untreated cows (pregnant, young calves, etc.). In addition to these CBTs,

CDC light traps and double-net traps (DNTs) were used concurrently to capture mosquitoes

at these same trapping stations.

Sample population

The population included in this study was female anopheline vectors captured in CBTs in six

villages in Central Vietnam. All captured female Anopheles mosquitoes were included in the

sample population for this study, regardless of their potential vectorial capacity.

Mosquito classification

The collections were identified using a standard key to the mosquitoes of Thailand [38]. Iden-

tified female mosquitoes were placed into individual cryotubes and stored at -20˚C or -80˚C

until processing. Sporozoite rates were not analyzed in this study, as very low indexes are

found throughout the GMS (1/1000 or 1/2000) [39], which precludes any valid statistical

inferences.

Statistical analysis

To evaluate the impact of IVM in the treated vs. control villages, a difference-in-differences

(DID) model was used. Specifically, differences in trapping totals were quantified between

study arms and interventional periods using generalized estimating equations (GEE), with a

negative binomial distribution and error-clustering at the village-level. Confidence intervals

and p-values for statistical significance were calculated using robust standard errors.

A statistically significant result from this trial was considered to be a p-value < 0.05 for the

difference-in-differences interaction term (study arm x time period). Main analyses were per-

formed with Stata software (version 16, College Station TX, USA) and other analyses were per-

formed using R version 4.1.2 [40].

In addition to using a negative binomial model with GEE, three additional models were

examined as a sensitivity analysis for model specification. These models used GEE with a Pois-

son distribution and robust errors; a GEE with a negative binomial distribution and boot-

straped errors (xtgee); and a quantile regression for the median, with robust errors (qreg). All

additional models were run in Stata.

Comparisons of anopheline population diversity

To assess the potential impacts of IVM treatment on anopheline species diversity at the vil-

lage-level, the ecological metric of Brillouin’s Index (HB) was used. This index measures biodi-

versity in collections where it is assumed that there is sampling without replacement, and

where one species may be likely to be captured than another (such as mosquitoes being differ-

entially attracted to a CBT) [41,42]. This metric is thus more exact than the more commonly-

used Shannon’s diversity index; HB is recommended for use in almost all situations in which

the aim is to quantify biodiversity. Unlike Shannon’s diversity index, p-values to indicate sta-

tistical significance are not meaningful for HB. The reported value measures diversity across a

sample collection, and therefore has no variance [41]. For HB, the minimum value is zero,

which occurs when only one species is present in a population; while the maximum value

occurs at: (log N!)/N, where N is the number of individuals in a system. The greater the value,
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the greater the biodiversity. Lastly, biodiversity metrics are composed of two components: spe-

cies richness (a count of the number of species in a population) and species evenness (mea-

sured as pi log log pi) where pi is the relative proportion of a species in a population.

In calculating biodiversity in this sampled population, a set of complementary analyses

were performed. First, HB was calculated for each village during the pre-intervention and

post-intervention periods. Next, HB was calculated for each individual night of trapping for

each arm (treatment vs. control) to assess longitudinal changes in each study arm. Thirdly, HB

was calculated for each village for each trapping-night to evaluate changes at the village-level.

Finally, the components of biodiversity (species richness and species evenness) were also cal-

culated for each village at each trapping-night, and for each arm at each trapping-night.

Results

Treatment coverage

During the intervention period, all eligible and owner-consented cattle in the three treated vil-

lages (HM, OJ, and HL) were treated intravenously with IVM at standard dosing. Over two

days, a total of 1,112 cattle were treated with 18,761 mL of IVM (1,993 mL HM, 6,200 in OJ,

and 10,568 in HL), with IVM dosed at 0.2 mg/kg IVM per total body weight of the cattle.

The arm-level coverage was 73.0% (95% CI: 70.7 to 75.2%; 1112 of 1523). At the village-

level, total cattle coverage was over 80% in HM and OJ (81.1% and 83.8% respectively) and

66.8% in HL (Table 1).

Mosquitoes captured using cattle-baited traps

A total of 5,647 female anophelines were captured using CBTs during the study period; 3,467

were captured before the intervention with 2,180 were captured after the intervention. In the

control arm, the greatest number of mosquitoes was captured on trapping-night four; in the

treatment arm, the largest number of mosquitoes was captured on trapping-night three. The

control arm has the lowest number of captures on trapping-night seven and trapping-night

eight; the treatment arm has the lowest number of captures on trapping-night ten. There was

less variation in the number of captures in the treatment arm post-intervention in comparison

to the control arm post-intervention (Fig 2A). These totals correspond to a mean of 96 per

trapsite-night in the pre-intervention phase, and a mean of 61 per trapsite-night post-interven-

tion; these counts are all substantially larger than the minimum required for sufficient study

power (Table F in S1 Text).

Across all villages, the greatest number of mosquitoes captured was in CD during the pre-

intervention period; 923 mosquitoes were captured, with a median of 141 captured per night.

The second largest number captured was in OJ during the pre-intervention period with a total

Table 1. Ivermectin dosages administered, and treatment coverage, ZAIVE trial, Central Vietnam, 2019.

Treated village Total cattle from census Total cattle treated Total ivermectin dosage dispensed

(in mL; as 1% solution)

Estimated cattle coverage %

(95% CI)

Hòa Mỹ (HM) 148 120 1,993 81.1

(73.8–87.0)

Ơi Jit (OJ) 433 363 6,200 83.8

(80.0–87.2)

H Lang (HL) 942 629 10,568 66.8

(63.7–69.8)

total 1523 1,112 18,761 73.0

(70.7–75.2)

https://doi.org/10.1371/journal.pntd.0012014.t001
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of 919 specimens captured, with a median of 161.5 per night (S1 File). In five of six villages,

there was a decrease in the total female Anopheles captured during the post-intervention

period compared to the pre-intervention period. The only exception was the control village,

HY, which had a total of 263 mosquitoes captured pre-intervention and a total of 340 mosqui-

toes captured post-intervention (S1 File and Fig 2B). Across all the sites, eighteen unique

Anopheles species were morphologically identified. Of these, HY had the highest diversity,

with 14 species, CD had 13, HM, OD, and OJ had 12 unique species, while HL had the fewest,

with 10 unique species (Fig 2 and Table 2).
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Fig 2. Total anopheline captures by trapping-night before and after intervention by treatment arm (A) and by village (B), ZAIVE trial, 2019, Central

Vietnam. Number of captured female anophelines in the control arm (blue circles) and the treatment arm (red triangles) over twelve trapping-nights. Values in

Panel A represent aggregate mosquito captures across study arm (aggregated treated or controlled villages). Values in Panel B represent counts of mosquitoes

captured, by individual village.

https://doi.org/10.1371/journal.pntd.0012014.g002

Table 2. Anopheles species diversity metrics, ZAIVE trial, Central Vietnam, 2019.

Village Name Study arm Brillouin’s Index, pre-intervention Brillouin’s Index, post-intervention Total species

(pre-)

Total

species

(post-)

Chı́nh Ðơn (CD) Control 1.25 1.03 13 6

H Lang (HL) Treat 1.52 0.57 7 7

H Yú (HY) Control 1.37 1.62 11 13

Hòa Mỹ (HM) Treat 1.15 1.02 11 8

Ơi Ðăk (OD) Control 1.01 0.97 11 9

Ơi Jit (OJ) Treat 1.02 1.16 11 10

https://doi.org/10.1371/journal.pntd.0012014.t002
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Most commonly trapped species in CBTs

The most commonly collected anopheline species across all sites was Anopheles peditaeniatus
(1,812 captured during the pre-intervention; 1,047 captured post-intervention). The second

most commonly captured species were: An. aconitus (835 pre- and 522 post-intervention), An.

sinensis (326 pre and 194 post), and An. vagus (242 pre and 113 post) (Fig 3). In CD, HM, OD,

and OJ, the number of species captured during the pre- vs post-intervention period decreased.

In HL the number of different species remained stable across the study, while in HY there

were more unique species captured post-intervention (Table 2, Table B in S1 Text, Table C in

S1 Text).

Mosquitoes captured using human landing catches and CDC light traps

Concurrent with cattle-baited trapping, human landing catches (using a double-net trap) and

CDC light traps were also used (18.00 to 06.00) to survey anopheline populations at the same

sites. As expected, few female Anopheles were captured using these alternative methods. CDC

light traps captured a total of 54 mosquitoes during the pre-intervention period, and 69 mos-

quitoes were captured during the post-intervention period. No anophelines were collected

using human landing catches from a double-net trap (Table H in S1 Text).

Impact of treatment on total mosquito captures (primary outcome)

Of the 18 unique Anopheline species captured, all of which have been reported to be malaria

vectors in at least part of their reported range [20,25]. In both the treated and control villages,

there was a marked reduction in mosquito captures during the post-intervention period com-

pared to the pre-intervention period. The reduction in the treated villages (30.9%) was less
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https://doi.org/10.1371/journal.pntd.0012014.g003
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than the reduction in the control villages (42.4%). Model-based estimates did not provide any

evidence for a statistically significant difference in sampled mosquito density between the

treatment and control groups, with an interaction term (as incidence rate ratio) of 1.20,

(p = 0.61) (Table 3 and Fig E in S1 Text).

Additional statistical analyses (GEE Poisson model with robust errors and negative binomial

with bootstrap errors), provided consistent estimates for equation coefficients and confidence

intervals (Fig C in S1 Text, Fig D in S1 Text). Importantly, all models had p-values> 0.05 for

the interaction term. These sensitivity analyses support the finding of no statistically significant

evidence for IVM reducing the number of anopheline captures (Table D in S1 Text).

Impact of treatment on most common mosquito species captures

(secondary outcome)

To determine whether IVM differentially impacted specific anopheline species, additional

analyses evaluated whether there were different trends across the six most prevalent mosquito

species (Fig F in S1 Text and Table G in S1 Text). Other than An. peditaeniatus, a relatively

consistent number of captures was found each night after treatment. For An. peditaeniatus,
there was an initial decrease in captures and then a consistently increasing number of captures

for the control arm only (Fig F in S1 Text and S1 File).

Impact of treatment on Anopheles population diversity (secondary

outcomes)

Across study arms, there was no evidence for statistically significant changes in species diver-

sity. However, in each village, there were noticeable changes in the species diversity during the

study period. Across the six villages, four experienced a decrease in biodiversity metrics; two

control villages and two treatment villages (CD, OD, HL, and HM). Additionally, two villages

experienced an increase in measured biodiversity—one control village and one treatment vil-

lage (HY and OJ) (Fig 3 and Table 2).

When these data were stratified by village, and by trapping-night, there were no apparent

trends in trap-night species diversity. The maximum value for the diversity index occurred in

three villages (control village CD and treatment villages HL and HM) during the pre-treatment

period, and in three villages (control villages HY and OD, and treatment village OJ) during the

post-treatment period. In all village-level analyses, there were no clear trends across the time-

span of this intervention (Fig 4).

Similarly, there were no clear trends in trapping-night HB values when data was stratified

by treatment arm (Fig G in S1 Text). In the control villages, the aggregated day with the lowest

measured diversity occurred in the pre-intervention period, while the day with the greatest

diversity occurred in the post-intervention period. For the treated villages, the days with the

minimum and maximum diversity occurred before treatment administration (Fig 4).

Table 3. Results from the primary difference-in-differences analysis, ZAIVE trial, Central Vietnam, 2019. Results

from the generalized estimating equations with a negative binomial distribution. Confidence intervals and p-values

were calculated using robust standard errors. The main outcome metric is the interaction term, assessing the differ-

ence-in-difference change in mosquito populations due to both time and intervention. The incidence rate ratio and the

p-value do not show any statistically significant impacts on the anopheline mosquito captures in the treated groups

compared to the control groups across the study periods.

Comparison Incidence Rate Ratio (95% CI) P value

Intervention to Control arm

Post- to Pre-intervention

Interaction term

0.85 (0.37–1.97)

0.58 (0.31–1.06)

1.20 (0.61–2.39)

0.71

0.08

0.61

https://doi.org/10.1371/journal.pntd.0012014.t003
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Decomposition of Brillouin’s Index into richness and evenness

In separate analyses of species evenness and richness, there were no apparent trends across

nights post-intervention or across treatment vs. control grouping. Some villages exhibited

more species richness during the pre-treatment period and higher species evenness of species

evenness during the post-treatment period, however, there are no clear trends over all villages

in the treatment or control groups (Fig 5). There also do not appear to be any obvious trends

at the arm-level when examining either richness or evenness (Fig G in S1 Text).

Discussion

This research study was not able to demonstrate statistically significant differences between

the study arms as measured by the primary outcome of total anophelines captured in cattle-
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baited traps. Ecological diversity indexes were used to assess potential differential mortality in

cattle-feeding anopheles. Few species have had quantified IVM-based mortality (Kobylinski

[19], and Cramer [18]), and so IC50 values are not known. We postulated that if there were

some species more susceptible to IVM-based mortality relative to other species present, the

population diversity would show large decreases in the intervention areas when comparing

pre- and post-intervention diversity metrics. Conversely, if all species present had generally

comparable mortality, no shifts in diversity would be observed.

There were no consistent impacts of IVM on the Anopheles species diversity by study arm

or by village; four villages exhibited a decrease in diversity while two villages showed greater

diversity post-intervention period. Moreover, large decreases in nightly captures were mea-

sured during the study across both intervention and control villages. This lack of differential

impacts may be due to combinations of factors, as discussed below.
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The total IVM circulating in treated cattle may be insufficient to impact

overall anopheline population densities

Evaluating higher cattle coverage levels in areas with larger herds could be important to assess

impact “dose density” (the spatial density of treated cows) relative to total anopheline popula-

tions with zoophagic or catholic feeding patterns. Alternatively, the use of IVM congeners

with higher therapeutic indexes could be an important addition to this intervention so even

partial feeds might be lethal to feeding mosquitoes. Lastly, the timeframe of trapping post-

treatment in this study was insufficient to measure secondary impacts of IVM (gravity and

fecundity) which both lag any direct mortality [43,44].

There was the potential for crossover in mosquito populations between

treated and control villages

The villages in this study population were in proximity to each other: the closest pair were

approximately 500m apart. This scenario is supported by the decrease in mosquitoes captured

in both the treatment and control villages during the post- vs. pre-period. During a capture-

recapture study of An. maculatus in Malaysia, 68% of recaptures were taken within a distance

of 0.5 km, however, a flight range of 1.6 km was detected [45]. This species is a known vector

in adjacent areas of Vietnam [46]. However, the availability of readily accessible blood meals

from cattle within each village site suggests this crossover is unlikely.

Mosquitoes may not have fed on cattle

Many vectors in this population are largely anthropophilic and thus may not readily have fed

on the cattle. The most common mosquito species captured in this study was An. peditaeniatus
which is primarily anthropophilic [47] and therefore is less likely to be impacted by animal-

focused interventions. However, as CBTs were used to measure the primary outcome, and

human landing catches and CDC traps had very limited capture rates, it appears unlikely that

the lack of impact of IVM was due to mosquitoes selecting hosts other than the cattle.

Spatial spillover

In addition to vector movement between villages, it is possible that the treated cattle may have

impacted vectors outside their assigned study arm. This scenario would be important if herd

movements coincided with crepuscular feeding, which is common in the GMS [48]. If the cat-

tle are only grazing outside of their randomized area during the day (when few vectors are

active) this would be unlikely to impact the outcomes; however, if cattle are grazing outside of

their randomized area during dawn or dusk when there is increased vector biting, this would

lead to biased results [49]. While spillover effects have had extensive consideration in epidemi-

ology this issue has received limited attention in entomological trials [50]. To account for the

lack of clear spatial boundaries caused by cattle grazing in different locations, spatial impacts

would need to be included in both the analyses and the design of a future study to account for

daily cattle movements and potential vector migration [49,51].

Impact of moonlight

Animal-baited traps for anophelines have been shown to be greatly impacted by ambient

moonlight and lunar cycles [52]. The major peak of trapping (Sept 14 coincided with a full

moon) and the nadir was associated with a new moon (Sept 28), results that are well-aligned

with prior studies. Treatment and control arms had collections conducted on the same trap-

ping-nights, so there would likely be limited differential impacts in trapping rates from
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moonlight. However, greatly diminished total captures in the post-intervention may have

attenuated our ability to measure any differences in trap-night totals.

Strengths of this study include the fact that it is the first study, to our knowledge, to examine

the effect of IVM-treated cattle on wild anopheline populations in a field setting. Though prior

work has shown that IVM is an effective mosquitocide in laboratory conditions [18], no prior

work has tested the effectiveness in a field trial. The nightly trapping rates greatly exceeded the

estimated totals utilized for study design, but this gain was offset by greater-than-expected var-

iability between villages.

Limitations of this study include greater than expected spatiotemporal variability; large

decreases in trapping rates across all sites post-intervention; a limited number of villages

included in the trial design; and potential spill-over from cattle movements. All of these factors

impacted our ability to measure differences in trapping rates in intervention villages. Future

studies examining the effectiveness of IVM on a village level should consider including more

villages with expansive spatial buffers (e.g., the BOHEMIA trial was designed with 1 km buffers

between sites) [14]. While coverage in two villages was above the 80% target, the largest village,

and the arm-level coverage was limited at 73%. Future studies should aim to treat at least 80%

of the cattle in the village in order to best evaluate reductions in Anopheline species; this target

is consistent with modeling efforts for IVM-based malaria control, and from prior human

MDA campaigns [53].

This pilot study did not find evidence for statistically significant differences in total anophe-

line captures in IVM-treated villages relative to control villages. The marked decrease in cap-

tures across all study sites post-intervention, and unexpectedly large spatial variation in

nightly trap rates limited our ability to quantify changes due to IVM treatments. These changes

may be due to natural population fluctuations; spill-over of treated cows between villages; or

movement of treated vectors. To inform future studies, a range of coefficients of variation

from these trial data were used to generate sample sizes for similar studies (Table D in

S1 Text).

Future work should prioritize longer-term pre-intervention (pilot) trapping data to fully

quantify heterogeneity in trap rates (Fig B in S1 Text) and potential longer-term cycling from

lunar phasing; prioritize fully spatially separated clusters despite the increased logical burdens;

and consider areas with more constrained cattle movements wherever possible. The use of eco-

logical diversity metrics may also be a useful outcome metric in areas with extremely diverse

anopheline populations where vector feeding preferences may be unknown. If IVM treatment

is to be an effective tool in reducing vector populations, it is vital to understand how to best

scale this intervention for population-level epidemiological impacts.
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4. Hemingway J, Shretta R, Wells TNC, Bell D, Djimdé AA, Achee N, et al. Tools and strategies for malaria

control and elimination: what do we need to achieve a grand convergence in malaria? PLoS Biol [Inter-

net]. 2016 Mar; 14(3):e1002380. Available from: https://doi.org/10.1371/journal.pbio.1002380 PMID:

26934361

5. Chaumeau V, Cerqueira D, Zadrozny J, Kittiphanakun P, Andolina C, Chareonviriyaphap T, et al. Insec-

ticide resistance in malaria vectors along the Thailand-Myanmar border. Parasit Vectors [Internet].

2017 Mar 31; 10(1):165. Available from: https://doi.org/10.1186/s13071-017-2102-z PMID: 28359289

6. Marcombe S, Maithaviphet S, Bobichon J, Phommavan N, Nambanya S, Corbel V, et al. New insights

into malaria vector bionomics in Lao PDR: a nationwide entomology survey. Malar J [Internet]. 2020

Nov 9; 19(1):396. Available from: http://dx.doi.org/10.1186/s12936-020-03453-9
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