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Abstract

Improved serodiagnostic tests for typhoid fever (TF) are needed for surveillance, to facilitate

patient management, curb antibiotic resistance, and inform public health programs. To

address this need, IgA, IgM and IgG ELISAs using Salmonella enterica serovar Typhi (S.

Typhi) lipopolysaccharide (LPS) and hemolysin E (t1477) protein were conducted on 86

Nigerian pediatric TF and 29 non-typhoidal Salmonella (NTS) cases, 178 culture-negative

febrile cases, 28 “other” (i.e., non-Salmonella) pediatric infections, and 48 healthy Nigerian

children. The best discrimination was achieved between TF and healthy children. LPS-spe-

cific IgA and IgM provided receiver operator characteristic areas under the curve (ROC

AUC) values of 0.963 and 0.968, respectively, and 0.978 for IgA+M combined. Similar per-

formance was achieved with t1477-specific IgA and IgM (0.968 and 0.968, respectively;

0.976 combined). IgG against LPS and t1477 was less accurate for discriminating these

groups, possibly as a consequence of previous exposure, although ROC AUC values were

still high (0.928 and 0.932, respectively). Importantly, discrimination between TF and chil-

dren with other infections was maintained by LPS-specific IgA and IgM (AUC = 0.903 and

0.934, respectively; 0.938 combined), and slightly reduced for IgG (0.909), while t1477-spe-

cific IgG performed best (0.914). A similar pattern was seen when comparing TF with other

infections from outside Nigeria. The t1477 may be recognized by cross-reactive antibodies

from other acute infections, although a robust IgG response may provide some diagnostic

utility in populations where incidence of other infections is low, such as in children. The data

are consistent with IgA and IgM against S. Typhi LPS being specific markers of acute TF.
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Author summary

In many African countries, clinical management of children that present with symptoms

of bacterial sepsis, such as typhoid fever (TF) caused by Salmonella Typhi, consists of

empiric broad spectrum antibiotics. Blood culture remains the gold-standard for diagno-

sis, but is slow, suffers from poor sensitivity, and often unavailable. Consequently multi-

drug resistant bacteria have emerged that are difficult to manage with antibiotics. There is

an urgent need to develop rapid, sensitive and affordable tests for patient diagnosis, help

curb antibiotic resistance, and inform public health preventive strategies such as the

deployment of vaccines. Here, we have assessed antibodies to S. Typhi lipopolysaccharide

(LPS) and hemolysin E (HylE, t1477) in the sera of Nigerian children with acute TF and

compared them with heathy children, children with other febrile infections, and adults

from around the world with a variety of other bacterial infections. The key finding con-

cerns LPS. This is a common cell-wall component present in many bacterial species. Yet

despite this, S. Typhi LPS-specific IgA and IgM are excellent markers of acute TF in Nige-

rian children, and insensitive to other non-salmonelloses. This surprising finding suggests

a rapid point-of-care test for TF can be developed based on detection of LPS-specific IgA

+IgM.

Introduction

Salmonelloses are a group of potentially fatal bacteremias caused by different serovars of Sal-
monella enterica. Typhoid fever (TF), caused by the human-specific serovar S. Typhi, is a global

health problem, especially in developing countries [1, 2]. In 2010 there were an estimated 26.9

million TF episodes worldwide, with a case-fatality rate of ~ 1% [3]. Salmonellosis caused by

nontyphoid Salmonella (NTS) serovars are caused predominantly by the zoonotic serovars, S.

Typhimurium and S. Enteritidis [4–7]. These are emerging in sub-Saharan Africa as an impor-

tant cause of bacteremia in young children, typically when associated with malnutrition,

malaria, severe anemia, and/or HIV co-infection [6, 8–11]. Case-fatality rates for blood-borne,

or invasive, NTS (iNTS) infection is higher than that for typhoid, typically ~20% [4, 6, 12],

although the antibiotic treatment regimen is the same. Over-use of empiric broad-spectrum

antibiotic treatment for undifferentiated febrile disease has led to an increase in antibiotic

resistance in both typhoidal and nontyphoidal serovars, and the potential for new antibiotics is

not encouraging [1, 13, 14]. The development of effective vaccines to prevent invasive salmo-

nellosis is therefore an important global health priority [1, 15]

Accurate diagnosis of salmonellosis remains a challenge in endemic settings. Clinically, ini-

tial presentation with typhoid or NTS disease is usually with non-differentiating fever alone,

and often without symptoms of gastroenteritis that would indicate a Salmonella infection [7].

Bacterial culture is the gold standard for diagnosis of both typhoid and iNTS disease. However,

culture suffers from poor sensitivity, and culture facilities are very limited in resource poor set-

tings such as Nigeria and other countries in Africa. Even when such facilities are available, the

time to a laboratory diagnosis is around 48 hours, and is often unaffordable for most patients.

An inactivated-Salmonella agglutination test, developed by Widal >100 years ago, is a rapid

and affordable single-step test. It remains the mainstay of diagnosis in many developing coun-

tries, even when culture facilities are available. However, the Widal’s test has poor specificity,

thought to be caused by antigens shared between S. enterica serovars, and between other spe-

cies of bacteria, such as Brucella melitnesis [16]. The Widal’s test also fails to discriminate
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between current and previous exposure, thus requiring two samples to be taken 7–10 days

apart to monitor for an increase in titer. In practice, the decision to treat with antibiotics has to

be made on the basis of the first test, and confirmatory convalescent testing is often not practi-

cable or irrelevant for immediate patient management. It is also less sensitive in the acute stage

of infection when IgG titers are lower.

The lack of accurate tests for surveillance also has resulted in only limited understanding of

epidemiology of salmonellosis in Africa. The high mortality, particularly in children with iNTS

infections, and the recent emergence of drug resistance, emphasize the need for a better under-

standing of the epidemiology before the rational design and implementation of control mea-

sures, including vaccines, can be effectively deployed.

In this study we have addressed the development of improved serodiagnostics with well-

defined serum samples collected from febrile children in Nigeria. Based on proteome microar-

ray screening data published recently [17], we hypothesized that LPS and/or the hemolysin E

(HylE, t1477) antigen may have diagnostic utility for TF. However, it was unknown from the

original study if these antigens were cross-reactive for other bacteremias. Here we have evalu-

ated IgG, IgM and IgA ELISAs using purified S. Typhi LPS and HlyE using culture-confirmed

pediatric bacteremias, including typhoid, iNTS disease, and ‘other’ febrile diseases, as well as

healthy Nigerian children, and healthy adults from the U.S. We find LPS-specific IgA and IgA

+M ELISA, in particular, are sensitive in diagnosing acute typhoid in these children, and

descriminate well between typhoid and healthy, and other febrile bacteremias commonly

encountered in Nigeria.

Results

Pilot study with multi-LPS microarray

In a previous study [17] we confirmed the potential utility of S. Typhi LPS-specific IgA for the

diagnosis of acute typhoid in sera from Nigerian children. Before pursuing this further, we

wished to investigate potential cross-recognition of LPS by antibodies from other acute infec-

tions that might lead to a false-positive diagnosis of typhoid. For this we conducted a pilot

study using a microarray displaying LPS from 7 different bacterial pathogens (S. Typhi, S.

Typhimurium, F. tularensis, B. pseudomallei, B. melitensis, V. cholerae and E. coli), and probed

it with sera from Nigerian pediatric samples and adult samples available from other febrile dis-

eases, and controls. The data for IgA and IgG reactivity are summarized in the box plots in

Figs 1 and 2, respectively. Panels A-D show Nigerian pediatric samples. As reported previ-

ously, IgA reactivity for S. Typhi LPS was strongest in typhoid cases (N = 16; Fig 1A), largely

absent from ‘No Growth’ (N = 16; Fig 1C) and healthy control (N = 16; Fig 1D) samples, while

present in a few individuals with culture-confirmed NTS (N = 16; Fig 1B) presumably owing

to the antigenic similarities between LPS from related Salmonella serovars. Although there is a

range of signals from the typhoid cases, only one sample was negative. We then examined the

reactivity of sera from other bacteremias for other locations outside Nigeria, as follows: tulare-

mia from Spain (N = 12; Fig 1E), melioidosis from Thailand (N = 7 acute, and N = 7 conva-

lescent; Fig 1F), brucellosis from Peru (N = 12 acute, and N = 16 convalescent; Fig 1G),

cholera from Bangladesh (N = 7 acute, and N = 7 convalescent; Fig 1H), and C. difficile infec-

tions (CDI) from the UK (N = 16; Fig 1I). Also probed were malaria samples from Mali, PNG

and Kenya (N = 16; Fig 1J) and healthy controls from the U.S. (N = 20; Fig 1K). With the

exception of two melioidosis cases and two malaria cases, IgA from these other infections did

not cross-react with S. Typhi or S. Typhimurium LPS in this study.

Of note, IgA from other gram negative bacteremias did recognize the LPS appropriate to

the infecting organism. Thus, IgA in individuals with acute tularemia specifically recognized F.
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tularensis LPS (Fig 1E), melioidosis IgA specifically recognized B. pseudomallei LPS (Fig 1F),

brucellosis IgA specifically recognized LPS from B. melitensis (Fig 1G) and cholera IgA specifi-

cally recognized V. cholerae LPS (Fig 1H). This shows the lack of cross-reactivity for S. Typhi

LPS was not due to a lack of anti-LPS antibodies in these other infections. In several cases, the

signal intensity of the LPS-specific IgA response correlated with stage of infection. For exam-

ple, of the 12 tularemia samples, the six 2nd time-point samples after MA seroconversion (late

acute stage) gave maximal signals against F. tularensis LPS, while the remaining samples were

the 1st time point prior to seroconversion (early acute).

For IgG, the most robust signals against S. Typhi and S. Typhimurium LPS were from the

Nigerian acute typhoid cases. However, IgG was not a reliable marker of acute typhoid in

Nigerian children in this array study. IgG against these antigens were particularly common

among all the samples tested, but particularly in the Thai melioidosis, Peruvian brucellosis,

malaria samples from various locations (Fig 2F, 2G and 2J, respectively), and the US negative

controls (Fig 2K), consistent with the exposure to Salmonella species being widespread glob-

ally. These data are consistent with IgG being associated with both acute and convalescent

Fig 1. Pilot study with LPS microarray, IgA data. Box plots of IgA antibody signals (y-axis, mean pixel intensity x103) from different

groups reacting to LPS from different organisms (listed along x-axis). Dots represent individual serum samples. (A) Nigerian pediatric

culture-positive typhoid. (B) Nigerian pediatric culture-positive NTS. (C) Nigerian pediatric febrile cases, culture negative. (D)

Nigerian pediatric healthy controls. (E) Spanish adult tularemia. (F) Thai adult melioidosis. (G) Peruvian adult brucellosis. (H)

Bangladeshi adult cholera. (I) British adult C. difficile infections (CDI). (J) Kenian, Malian and Papua New Guinean adult malaria. (K)

U.S. healthy adult controls. NTS, non-typhoid Salmonella; nd, not done.

https://doi.org/10.1371/journal.pntd.0005679.g001
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(previous) exposure. Indeed, most individuals tested had IgG to multiple LPS species. For

example, many of the Nigerian individuals in panels A-D also have LPS-specific IgG to E. coli
and B. pseudomallei, which may indicate a previous exposure to these organisms and/or cross-

reactivity from other infections. Antibodies against F. tularenisis are also quite common

among different populations where tularemia is non-endemic (e.g., U.S), and may reflect

cross-recognition of antibodies to other non-pathogenic Francisella species [18].

Optimization of ELISAs

The data from the pilot study described above indicated that LPS-specific IgA may have utility

for discriminating between acute and convalescent typhoid or other acute infections. While a

more deployable array format is currently under development [19], in parallel we decided to

develop an ELISA test for typhoid. The ELISA is inexpensive, robust and provides results more

quickly than blood culture. Two batches of HlyE were used in the course of this study which,

when compared by ELISA using all 349 Nigerian samples correlated with an r2 = 0.922 and a

slope = 1.05 using Spearmann’s rank correlation (S1 Fig). The optimal conditions for ELISAs

were initially determined using individual serum samples from three Nigerian typhoid patients

and a healthy control. The optimized concentrations of the coating antigens were determined

Fig 2. Pilot study with LPS microarray, IgG data. Box plots of IgG antibody signals (y-axis, mean pixel intensity x103) from

different groups reacting to LPS from different organisms (listed along x-axis). Dots represent individual serum samples. Panels (A) to

(K) as Fig 1. NTS, non-typhoid Salmonella; nd, not done.

https://doi.org/10.1371/journal.pntd.0005679.g002
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by titration to be 1.25μg/ml for LPS, and 2.5μg/ml for HlyE (t1477). Two serum dilutions, 1/

100 and 1/200, were evaluated for the highest ratio when comparing heathy controls and cul-

ture-confirmed typhoid. For t1477 ELISA, 1/100 was selected, while for LPS ELISA, 1/200 was

found to give the higher ratio and selected for subsequent studies. Two secondary antibody

dilutions recommended by the manufacturer, 1/12,500 and 1/25,000, were evaluated for opti-

mal signal to background ratio. For IgA and IgM ELISA, 1/12500 dilution was selected, while

for IgG ELISA 1/25000 dilution was used. Once established, a standard operating procedure

was used throughout the study. Batches of ELISA plates were prepared by pre-coating plates

with antigen, blocking, and then storing dried at 4˚C in desiccated pouches until required for

use.

Detection of LPS-specific antibodies in serum samples by ELISA

A total of 495 serum samples were used (Table 1) and tested for LPS-specific IgG, IgA, IgM

and IgA+IgM in separate ELISAs. The samples comprised 369 Nigerian pediatric samples,

consisting of culture-confirmed typhoid (“S. Typhi”, n = 86), non-typhoid Salmonella (“NTS”)

disease (n = 29) or other bacteremias (“Other”, n = 28; listed in Table 2), as well as febrile cases

that were blood culture-negative for any bacteria (“No Growth”, n = 178), and healthy Nige-

rian control children (“Healthy”, n = 48). Also tested by ELISA were well-defined sera from

tularemia, brucellosis, and malaria cases, as well as U.S. controls.

Results of all ELISAs are summarized as box plots in Fig 3; the same data are also presented

as bar charts in Supporting Information S2 Fig. In IgA ELISAs, the median OD value of the

typhoid group was statistically different from all other groups when tested by the Wilcoxon

method. Of these other groups, the NTS disease group showed the highest reactivity, due pre-

sumably to antibodies to LPS from NTS serovars cross-reacting with LPS from S. Typhi. While

the difference between the medians of the S. Typhi and “No Growth” groups were highly sig-

nificant (P< 0.0001), the latter group contained a large number of outliers that may corre-

spond to blood culture false-negatives. Significantly, none of the 48 healthy Nigerian controls

or 28 Nigerian “other” infections were seropositive for LPS IgA. Reactivity by non-Nigerian

other infection groups was generally very low, although some Peruvian brucellosis cases had

reactivity or cross-reactivity to S. Typhi LPS. There were two outliers in the malaria group

(N = 48) with an LPS-IgA response. Although it is not known whether these individuals had a

co-infection with Salmonella, association of malaria with salmonellosis is well known to the

medical community. The IgG response to LPS (Fig 3B) was elevated in all groups, consistent

with widespread previous exposure to Salmonella sp. The P-values for NTS, tularemia and bru-

cellosis were larger than for IgA, with brucellosis failing to reach significance. Overall, the pat-

tern of reactivity by IgM to LPS (Fig 3C) was similar to that of IgA, with the notable exception

of NTS which was not significantly different to typhoid cases. As for IgA, IgM reactivity in

healthy Nigerian children was very low, whereas IgM reactivity by the ‘other’ infections from

Nigeria and elsewhere were overall higher than for IgA. Overall, the data indicate that the LPS-

specific IgA has the best potential of the three isotypes for the diagnosis of acute typhoid from

other febrile diseases.

Detection of t1477-specific antibodies in serum samples by ELISA

Previous experiments using a S. Typhi full proteome array [17] revealed very few protein anti-

gens with utility for diagnosing typhoid fever in Nigerian children. However, the hemolysin E

protein (HylE, t1477) did emerge as a potential candidate, and is examined further here and in

the following section for sensitivity and specificity using the full serum collection (N = 495 as

described for LPS above) by ELISA for IgA, IgG and IgM (Fig 4). The same data are also
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presented as bar charts in Supporting Information S3 Fig. Overall, IgA reactivity was low

among all the groups. Nevertheless, the ‘S. Typhi’ and ‘No Growth’ groups had the largest

number of seropositive individuals (Fig 4A). IgA-responses to t1477 provided better discrimi-

nation between ‘S. Typhi’ and ‘NTS’ groups, although sensitivity of detection in both groups

was low (detailed in the next section). By comparison, the IgG response to t1477 was elevated

in all groups (Fig 4B). The highest median IgG signal was seen in the pediatric typhoid group,

with the ‘No growth’ and ‘NTS’ groups having the next highest signals overall. Interestingly

the Nigerian healthy children were the lowest of the Nigerian groups, although there were a

Table 1. Sera samples used to probe LPS array and ELISAs.

Samples probed Country LPS array (sample

N)

ELISA (sample

N)

Nigerian

children

Febrile, Growth, S. Typhi (Salmonella Typhi) Nigeria 16 86

Febrile, Growth, NTS a Nigeria 16 29

Febrile, Growth, Other (see Table 2) Nigeria nd b 28

Febrile, No Growth Nigeria 16 178

Healthy Nigerian controls Nigeria 16 48

Other

bacteremia

Tularemia (Francisella tularensis), early acute and late

acute

Spain 6 each 12

Brucellosis (Brucella melitensis), acute and convalescent Peru 12 and 16 16

Melioidosis (Burkholderia pseudomallei), acute and

convalescent

Thailand 7 each nd b

Cholera (Vibrio cholerae), acute and convalescent Bangladesh 7 each nd b

CDI colitis (Clostridium difficile), acute UK 16 nd b

Other infections Malaria parasitemia (Plasmodium falciparum) Papua New Guinea, Mali,

Kenya

16 48

Other controls Healthy US adults USA 20 50

a Non-typhoidal Salmonella
bnd, not done

https://doi.org/10.1371/journal.pntd.0005679.t001

Table 2. List of non-Salmonella Nigerian bacteremias confirmed by blood culture assayed by ELISA.

number samples

Streptococcus pneumoniae 1

Staphylococcus aureus 4

Pseudomonas sp. 3

Pseudomonas aeruginosa 3

Neisseria meningitidis 1

Klebsiella terrigena 1

Klebsiella pneumoniae 1

Haemophilus influenzae 1

Escherichia coli 2

Enterococcus faecalis 4

Enterobacter cloacae 2

Coagulate negative Staphylococcus 2

Alpha haemolytic Streptococcus 2

Acinetobacter sp. 1

https://doi.org/10.1371/journal.pntd.0005679.t002
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number of outliers with IgG signals. IgG alone does not allow discrimination between ongoing

or previous episodes of typhoid, although the negligible reactivity by this group to LPS by Ig of

any isotype tested (seen in Fig 3) would support the notion the outliers with IgG responses to

t1477 are convalescent cases. The IgM reactivity against t1477 reflected the IgA response. A

notable exception was broadly similar levels of IgM reactivity by ‘S. Typhi’, and ‘No Growth’

groups. This contrasts with the highly significant difference seen when LPS-specific IgM was

measured (Fig 3C). This appears to be caused by the reduced sensitivity for detection of

typhoid by t1477-specific IgM, rather than any increase in sensitivity for detection of potential

typhoid cases among the ‘No Growth’ group. As with LPS-specific IgM, t1477-specific IgM did

not discriminate well between typhoid and ‘NTS’ groups, although again, this appears to be

caused by the reduced sensitivity for detection of typhoid.

Fig 3. Reactivity of different groups to LPS. Box plots of LPS ELISA data using sera from different pediatric groups from Nigeria,

‘other’ infections, and healthy US controls (see Methods for details). The plots show OD 450 nm for (A) IgA, (B) IgG, and (C) IgM.

Sample size N shown below the x-axis. Box plots represent 3rd and 1st quartiles with the median line within the box; the whiskers

indicate + and − 1.5*(interquartile range), and dots show outliers. Asterisks above box plots represent P-values of nonparametric

comparisons between the S. Typhi group and each of the other groups according to the key, using the Wilcoxon method; ns, not

significant.

https://doi.org/10.1371/journal.pntd.0005679.g003
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Discrimination between groups by Receiver Operating Characteristics

(ROC) analysis

The accuracy of LPS and t1477 ELISAs to discriminate between Nigerian pediatric S. Typhi

patients and controls were determined by ROC analysis. Plots of true positive rate (sensitivity)

and false positive rate (1-specificity) for discriminating between typhoid cases and healthy chil-

dren are shown for LPS and t1477 in Fig 5A and 5B, respectively. Table 3 shows corresponding

percent specificity and sensitivity with either set at 90%, and areas under the curve (AUC).

With LPS, IgA and IgM both gave 94% sensitivity (at fixed specificity) when used alone, which

was increased slightly (to 95%) by combining the detection of IgA and IgM in the assay. Com-

bining IgA and IgM could also be achieved in silico by summing the OD450nm data for IgA

and IgM ELISAs performed individually (S4 Fig). LPS-specific IgA and IgM also give identical

specificity when used alone (98% at fixed sensitivity) which was unchanged by combining

Fig 4. Reactivity of different groups to hemolysin E (t1477). Box plots of t1477 ELISA data using sera from different pediatric

groups from Nigeria, ‘other’ infections, and healthy US controls (see Methods for details). The plots show OD 450 nm for (A) IgA, (B)

IgG, and (C) IgM. Sample size N shown below the x-axis. Box plots represent 3rd and 1st quartiles with the median line within the

box; the whiskers indicate + and − 1.5*(interquartile range), and dots show outliers. Asterisks above box plots represent P-values of

nonparametric comparisons between the S. Typhi group and each of the other groups according to the key, using the Wilcoxon

method; ns, not significant.

https://doi.org/10.1371/journal.pntd.0005679.g004
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both isotypes. The AUC of IgA and IgM were very similar (0.963 and 0.968, respectively) and

increased slightly (0.978) after combining. Despite similar performance of IgA and IgM in the

ROC analysis, the IgA ELISAs were characterized by lower backgrounds in the control groups

compared to IgM, as can be seen from the raw data in S2 Fig. In contrast, LPS-specific IgG

provided the lowest accuracy for distinguishing typhoid cases from healthy controls.

Fig 5. Discrimination between Nigerian pediatric typhoid and healthy controls or other febrile cases by

LPS and HylE (t1477). (A) ROC plot of Nigerian pediatric typhoid (N = 86) vs. Nigerian pediatric healthy

controls (N = 48) by LPS. (B) As panel A, instead using HylE. (C) ROC plot of Nigerian pediatric typhoid

(N = 86) vs. Nigerian pediatric ‘other’ infections (N = 28) by LPS. (D) As panel C, instead using HylE.

Corresponding values for % sensitivity, % specificity, and AUC are shown in Table 3 for panels A and B, and

Table 4 for panels C and D. LPS, lipopolysaccharide; HylE, hemolysin E (t1477); ROC, receiver operator

characteristic; AUC, area under the curve.

https://doi.org/10.1371/journal.pntd.0005679.g005
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In the t1477 ELISAs, although AUC values of IgA and IgM were identical (0.968), IgA pro-

vided superior sensitivity than IgM (94% and 86%, respectively, at fixed specificity) and speci-

ficity (96% and 88%, respectively, at fixed sensitivity). Multiplexing IgA and IgM did not

increase sensitivity or specificity over IgA alone, although there was a modest increase in AUC

(to 0.976). As with LPS, t1477-specific IgG also gave lower accuracy than IgA or IgM for diag-

nosing acute typhoid. These data indicate both LPS and t1477-specific IgA and IgM provide

good discrimination between healthy Nigerian children and those with acute typhoid fever,

which is improved by detection of both IgA and IgM isotypes together.

We then compared acute typhoid with 28 Nigerian ‘other’ (non-Salmonella) infections

(listed in Table 2), since this is more relevant to the diagnosis of typhoid in the clinical setting.

ROC Plots are shown in Fig 5C and 5D, with corresponding AUC, and percent sensitivity and

specificity given in Table 4. Here, LPS-specific IgA and IgM give comparable sensitivity when

used alone (86% and 87%, respectively, at fixed specificity), which is increased to 90% when

IgA and IgM are combined. LPS-specific IgM provided considerably greater specificity than

IgA when used alone (82% and 75%, respectively, at fixed sensitivity), which is dramatically

increased (to 96%) when combined. The AUC is also increased slightly by combining IgA and

IgM to 0.938. LPS-specific IgG provides the lowest sensitivity and specificity of all three

Table 3. ROC analysis of Nigerian S. Typhi (N = 86) vs. Nigerian healthy controls (N = 48).

Antigen Isotype Fixed specificity Fixed sensitivity AUC

Sensitivity Specificity Sensitivity Specificity

LPS IgA 94% 90% 90% 98% 0.963

IgG 84% 90% 90% 71% 0.928

IgM 94% 90% 90% 98% 0.968

IgA+IgM 95% 90% 90% 98% 0.978

t1477 IgA 94% 90% 90% 96% 0.968

IgG 81% 90% 90% 83% 0.932

IgM 86% 90% 90% 88% 0.968

IgA+IgM 93% 90% 90% 94% 0.976

Values correspond to ROC analysis shown in Fig 5A and 5B. Columns show % sensitivity and % specificity when either was fixed at 90%, and AUC. ROC,

Receiver operator characteristic; AUC, area under the ROC curve.

https://doi.org/10.1371/journal.pntd.0005679.t003

Table 4. ROC analysis of Nigerian S. Typhi (N = 86) vs. Nigerian ‘other’ infections (N = 28).

Antigen Isotype Fixed specificity Fixed sensitivity AUC

Sensitivity Specificity Sensitivity Specificity

LPS IgA 86% 90% 90% 75% 0.903

IgG 73% 90% 90% 68% 0.909

IgM 87% 90% 90% 82% 0.934

IgA+M 90% 90% 90% 96% 0.938

t1477 IgA 64% 90% 90% 0% 0.740

IgG 84% 90% 90% 68% 0.914

IgM 43% 90% 90% 46% 0.824

IgA+M 53% 90% 90% 46% 0.826

Values correspond to ROC analysis shown in Fig 5C and 5D. Columns show % sensitivity and % specificity when either was fixed at 90%, and AUC. ROC,

Receiver operator characteristic; AUC, area under the ROC curve.

https://doi.org/10.1371/journal.pntd.0005679.t004
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isotypes. By comparison, the relative accuracy of t1477 in ELISAs for diagnosing acute typhoid

was lower for all three Ig isotypes compared to LPS, and also reduced relative to discrimination

of typhoid vs. healthy controls. Unexpectedly IgG emerged as the isotype with the highest sen-

sitivity and specificity of t1477-specific Igs. It is possible this is restricted to childhood, where

there is relatively less lifetime exposure to Salmonella than older children and adults, combined

with a robust IgG response during typhoid fever.

We also compared the ability of LPS and t1477 to discriminate between Nigerian pediatric

typhoid and additional samples from ‘other’ non-Salmonella infections obtained from loca-

tions outside Nigeria, namely tularemia (Spain, N = 12), brucellosis (Peru, N = 16) and malaria

(various sources, N = 48). ROC plots are shown in Fig 6A (LPS) and 6B (t1477), with corre-

sponding AUC and percent sensitivity and specificity given in Table 5. Data were broadly sim-

ilar to that seen with Nigerian ‘other’ infections, with combined IgA+IgM providing the most

accurate test when using LPS, and IgG providing the most accurate test when using t1477. As

noted earlier, brucellosis samples were prominent among the ‘other’ infections for cross-reac-

tivity to S. Typhi LPS. If these samples were removed from the analysis (Fig 6C and 6D) there

was a slight increase in sensitivity and specificity in almost all situations, with the exception of

t1477-specific IgG (Table 5, values in parenthesis).

Finally we explored the effect of multiplexing LPS and t1477 antigens on the accuracy of the

test for typhoid compared to each antigen alone (Fig 7 and Table 6). Multiplexing LPS IgA

with t1477IgG in silico increased accuracy compared to either alone, while multiplexing LPS

IgA+IgM (as mixed secondary antibodies) with t1477 IgG in silico increased the accuracy

further.

Discussion

In countries in Sub-Saharan Africa, where typhoid and non-typhoidal salmonellosis are major

causes of bacterial sepsis in children, accurate and rapid point-of-care tests are urgently needed

to replace existing diagnostic methods. Culture of S. Typhi organisms from bone marrow is

the gold standard, but because it is invasive, blood culture is often a more practical, albeit less

sensitive, alternative. Blood or bone marrow culture is also slow (2–3 days to arrive at a diag-

nosis), and empiric broad-spectrum antibiotic treatment is often initiated without a diagnosis

being made.

The traditional Widal’s test, which is based on the agglutination of inactivated Salmonella
Typhi and Paratyphi A organisms by antibodies to flagellin and LPS (H and O antigens,

respectively) is rapid, inexpensive and requires no instrumentation. However, interpretation

of the results must be made with caution. Sensitivity of the Widal’s test is lower in the early

stage of infection when antibody titers are low. The test also fails to discriminate between

acute from convalescent infection, leading to reduced sensitivity in endemic settings [20].

Although sensitivity can be improved if a follow-up sample is tested [21], this is not an option

for rapid diagnosis. The test also lacks specificity owing to cross-reactivity with antibodies

against closely-related NTS serovars [22] and other bacteria, notably Brucella [16]. Misuse of

the Widal’s test has contributed to over-diagnosis of Salmonella infection, inappropriate anti-

biotic use, and the emergence of drug resistance [23].

Recent alternatives for serodiagnosis of typhoid include the Tubex test for LPS-specific IgM

and the Typhidot test for IgG or IgM against a 50kDa outer membrane protein [24]. The

Tubex test format is based on the interference by patient serum antibodies with the agglutina-

tion of latex beads coated with O9-specific monoclonal antibody and S. Typhi LPS-coated

magnetic beads. The Typhidot test is a pre-dotted antigen strip. Neither test is currently con-

figured for detection of IgA. Both have been evaluated in several Asian and African study sites;
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Tubex and Typhidot show comparable performance and were more specific although less sen-

sitive than the Widal test (http://www.who.int/bulletin/volumes/89/9/11-087627/en/).

In this study we have focused on the use of LPS and t1477 (hemolysin E) as antigens to dis-

criminate between S. Typhi infection and other bacterial infections, including commonly-

encountered bacteremia seen in Nigeria. LPS has long been recognized as dominant in the

response to Salmonella, while the identity of t1477 has come from studies using proteome-

wide serological screens using microrrays [17, 25, 26]. Although the microarray has the poten-

tial to diagnose multiple infectious diseases on a single chip, it is currently unsuitable as a

Fig 6. Discrimination between Nigerian pediatric typhoid and non-Nigerian other infections by LPS

and HylE. (A) ROC plots of Nigerian pediatric typhoid (N = 86) vs. non-Nigerian “other” infections comprising

Spanish tularemia (N = 12), Peruvian brucellosis (N = 16) and malaria from Kenya, Mali and Papua New

Guinea (N = 49) by LPS. (B) As panel A, instead using HylE. (C) As panel A, except for removal of brucellosis

cases. (D) As panel B, except for removal of brucellosis cases. Corresponding values for % sensitivity, %

specificity, and AUC are shown in Table 5. LPS, lipopolysaccharide; HylE, hemolysin E (t1477); ROC,

receiver operator characteristic; AUC, area under the curve.

https://doi.org/10.1371/journal.pntd.0005679.g006
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point-of-care test for many clinics in its current format. An accurate, more deployable test,

particularly if configured into a format able to provide a result in<30 minutes, could help

curb the inappropriate use of antibiotics and stem the rise in antibiotic resistance in Nigeria.

The data presented here indicate LPS-specific IgA (or IgA+M combined) discriminate well

between Nigerian children with typhoid and healthy Nigerian children (AUC = 0.963 and

0.978, respectively; Table 3). More importantly for the clinical setting, LPS-specific IgA (or IgA

+M combined) also discriminates between Nigerian children with typhoid and children with

‘other’ (non-Salmonella) infections (AUC = 0.903 and 0.938, respectively; Table 4). Similarly,

discrimination between typhoid cases and healthy children using t1477-specific IgA (Table 3)

was comparable to that obtained with LPS-specific IgA, although discrimination between

typhoid and ‘other’ cases using t1477-specific IgA (Table 4) was far less accurate than for LPS-

specific IgA. One possibility is proteins antigenically related to S. Typhi t1477 hemolysin E are

found in one or more of the other bacterial infections represented in the collection (see

Table 2). Such potential cross-reactivity would reduce the diagnostic utility of the antigen for

typhoid.

LPS-specific IgG provided less accuracy for discriminating between Nigerian pediatric

typhoid and healthy Nigerian children (Table 3), which was reduced further when discriminat-

ing typhoid with ‘other’ infections (Table 4). It is possible that IgG titers remain elevated for

longer than IgA, thereby making it more difficult to discriminate between acute and previous

or convalescent infections using IgG. This may be less of an issue in children where lifetime

exposure to Salmonella species will likely be less than in adults. Although we have not exam-

ined Nigerian adults in this study, the expectation is they will have higher and more durable

IgG titers to both LPS and t1477 than in children. This notion is supported for LPS by the pilot

LPS array (Fig 2) in which all the non-Nigerian samples (i.e., panels E through K) were from

adults. Thus, the median IgG signal of the healthy Nigerian children was lowest among all the

groups tested, including adults from two non-endemic sites, the US (Fig 2K) and UK (Fig 2I).

It remains to be determined whether LPS- and/or t1477-specific IgA has any utility for diag-

nosing typhoid in adults.

Unexpectedly, t1477-specific IgG performed better than LPS-specific IgG for discriminat-

ing between Nigerian pediatric typhoid and healthy Nigerian children (Table 3), and between

Nigerian pediatric typhoid with ‘other’ infections (Table 4). Indeed, t1477-specific IgG also

Table 5. ROC analysis of Nigerian S. Typhi (N = 86) vs. non-Nigerian “other” infections combined (N = 76).

Antigen Isotype Fixed specificity Fixed sensitivity AUC

Sensitivity Specificity Sensitivity Specificity

LPS IgA 70(78)% 90% 90% 16(20)% 0.822(0.837)

IgG 45(63)% 90% 90% 33(44)% 0.740(0.784)

IgM 81(83)% 90% 90% 57(65)% 0.879(0.887)

IgA+M 86(88)% 90% 90% 71(80)% 0.892(0.897)

t1477 IgA 51(52)% 90% 90% 0(0)% 0.663(0.676)

IgG 72(70)% 90% 90% 54(48)% 0.865(0.855)

IgM 7(5)% 90% 90% 14(17)% 0.516(0.531)

IgA+M 21(21)% 90% 90% 4(5)% 0.559(0.579)

Values correspond to ROC analysis shown in Fig 6A and 6B, with values in parenthesis show values after removal of brucellosis samples from the analysis

shown in Fig 6C and 6D. The non-Nigerian “other” infections comprise Spanish tularemia (N = 12), Peruvian brucellosis (N = 16) and malaria from Kenya,

Mali and Papua New Guinea (N = 48). Columns show % sensitivity and % specificity when either was fixed at 90%, and AUC. ROC, Receiver operator

characteristic; AUC, area under the ROC curve.

https://doi.org/10.1371/journal.pntd.0005679.t005
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Fig 7. Discrimination between Nigerian pediatric typhoid and Nigerian other febrile cases by data

multiplexed in silico. ROC plots of Nigerian typhoid patients (N = 86) vs. Nigerian ‘other’ infections (N = 28).

Corresponding values for % sensitivity, % specificity and AUC are shown in Table 6. Antigens are ranked in

ascending AUC. LPS, lipopolysaccharide; t1477, (hemolysin E, HylE); ROC, receiver operator characteristic;

AUC, area under the curve.

https://doi.org/10.1371/journal.pntd.0005679.g007

Table 6. Discrimination between Nigerian pediatric typhoid and Nigerian other febrile cases by data multiplexed in silico.

Antigen and Isotype Fixed specificity Fixed sensitivity AUC

Sensitivity Specificity Sensitivity Specificity

LPS IgA 86% 90% 90% 75% 0.903

LPS IgA+M 90% 90% 90% 96% 0.929

t1477 IgG 84% 90% 90% 68% 0.914

LPS IgA + t1477 IgG 87% 90% 90% 82% 0.939

LPS IgA+M + t1477 IgG 92% 90% 90% 93% 0.950

Values correspond to ROC analysis shown in Fig 7. Columns show % sensitivity and % specificity when either was fixed at 90%, and AUC. ROC, Receiver

operator characteristic; AUC, area under the ROC curve.

https://doi.org/10.1371/journal.pntd.0005679.t006
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performed better than t1477-specific IgA and IgM for discriminating between typhoid and

‘other’ infections in Nigerian children. It is possible this diagnostic performance occurs only in

children, where there is less lifetime exposure to Salmonella. It is anticipated that t1477-specific

IgG will have less utility for diagnosing acute typhoid in older children and adults where the

IgG titers from convalescent infections are likely to be much higher.

Finally we also compared the ability of LPS and t1477 to discriminate between typhoid and

non-Nigerian ‘other’ infections from other locations around the world. In the ELISA, LPS-spe-

cific IgA+M provided excellent sensitivity and specificity, although we did notice detection of

some Peruvian brucellosis cases using S. Typhi LPS (Fig 3 and Table 5). There are accounts in

the literature of antigenic cross-reactivity between Brucella sp. and S. enterica serotype Urbana

[16, 27, 28] which raises the possibility of cross-reactivity between antibodies generated during

human brucellosis and Salmonella antigens. Although brucellosis is rare in Nigeria, if discrimi-

nation between acute typhoid and brucellosis is necessary, one option might be to utilize sero-

diagnostic B. melitensis antigens discovered previously [29–32] or B. melitensis LPS (Fig 1G) to

assist in positive identification of brucellosis cases. The accuracy of t1477-specific IgA (or IgA

+M) was lower than for LPS, consistent with its performance in discriminating between

typhoid and Nigerian “other” infections.

LPS has received considerable interest as a potential diagnostic antigen for typhoid and for

the basis of alternative assays to the Widal’s test. In one longitudinal study [33], anti-LPS IgA

and IgM titers were seen to peak around d11-21 and decline thereafter, whereas IgG titers

remained elevated and did not decline as rapidly. Other studies have also shown the transient

nature of anti-LPS IgA in typhoid in saliva samples [34, 35] as well as in sera of gastroenteritis

caused by non-typhoidal Salmonella serovars [36]. Thus, LPS-specific IgA appears to be a use-

ful marker of acute Salmonellosis owing to its transient appearance after infection. The tran-

sient nature of IgA appears to be a peculiarity of LPS, and possibly other T-independent

antigens, since serum and mucosal IgA responses to bacteria are generally long-lived [37–39].

In the present study, the LPS molecule did not discriminate well between typhoid and NTS,

presumably because of the presence of shared epitopes present in the conserved lipid A and

core oligosaccharide regions [40]. However, the more variant O-polysaccarides where serovar-

specific epitopes of the O-antigen are located may discriminate between antibodies engen-

dered by typhoid and NTS serovars. Salmonella O-polysaccharides have been produced from

bacterial extracts and conjugated to protein carriers for use as subunit vaccines [41–43],

although their utility as specific diagnostics is less well explored. In one such study, the S.

Typhi O-polysaccharide O:1,9,12 performs well in IgG dot blots as a discriminator between

typhoid and other acute infections or healthy controls, although IgA and the ability to discrim-

inate between typhoid and NTS were not examined [44]. Neither the use of LPS nor measure-

ment of IgA for diagnosis of typhoid is novel, but when used together appear to represent a

good marker for acute infection in Nigerian children.

The t1477/hemolysin E (HylE, also known as cytolysin A or CylA) protein is a known dom-

inant antigen in the antibody response to S. Typhi infection [17, 25, 26, 45]. Its utility as a

potential serodiagnostic for typhoid has been demonstrated independently in a study of differ-

ent Ig isotypes in 50 culture-confirmed typhoid cases [46]. In that study, IgA was the most sen-

sitive, detecting 28/50 cases using a cut-off defined by the isotype-matched responses by

healthy controls and other febrile infections. IgG was second most sensitive (19/50), and IgM

least sensitive (3/50). A subsequent pilot study has demonstrated the utility of anti-HylE IgA in

saliva as a biomarker for acute typhoid fever [47]. S. Typhi HylE is a 302 amino-acid long

transmembrane protein with a helix hydrophobic segment located between residues 179 and

199. Along with homologs in other bacteria, such as the prototypic ClyA in E. coli, S. Typhi

HylE belongs to a family of important pore-forming virulence factors of bacterial pathogens

ELISA for typhoid serodiagnosis

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0005679 June 22, 2017 16 / 24

https://doi.org/10.1371/journal.pntd.0005679


that assemble in cell membranes [48]. The HylE gene (t1477) is present in human-specific

typhoid serovars (Typhi and Paratyphi) but absent from others (e.g., S. Typhimurium). In Fig

4, IgA reactivity by the 29 Nigerian children with invasive NTS (iNTS) is negligible with the

exception of two outliers with low reactivity. However, sensitivity of t1477-specific IgA for

detection of typhoid is also low, indicating this antigen is unlikely to have utility for discrimi-

nating iNTS and typhoid.

Methods

Ethics statement

This study was conducted with informed consent and approved by the Ethics Committees of

the Federal Capital Territory of Nigeria, Federal Medical Center Keffi, Aminu Kano Teaching

Hospital and University of Nebraska Medical Center (UNMC), Omaha Institutional Review

Board (IRB). We used written consent provided by parent or guardian of each child. The pro-

cess was approved by both local IRB and UNMC IRB.

Sera from Spanish tularemia cases were provided by Drs. Raquel Escudero and Pedro

Anda, Instituto de Salud Carlos III, Madrid, Spain. Human subjects approval from Comité de

Bioética y Bienestar Animal, Instituto de Salud Carlos III (approval no. PI 33). Sera from Thai

melioidosis cases were provided by Direk Limmathurotsakul and Narisara Chantratita, Mahi-

dol University, Thailand. Ethical approval for the study was from the Ministry of Public

Health, Royal Government of Thailand, and the Oxford Tropical Research Ethics Committee.

Sera from Peruvian brucellosis cases were collected with human subjects approval from the

Human Research Protection Committee of the University of California San Diego, the Comite

de Ética of Universidad Peruana Cayetano Heredia, Lima, Peru, and the Comite de Ética of

Asociación Benéfica PRISMA, Lima, Peru. Sera from Bangladeshi cholera cases were provided

by Drs. Edward Ryan, Richelle Charles and Firdausi Qadri, Massachusetts General Hospital,

Boston, MA. Human subjects approval by IRB protocol # 1999P009116 and International Cen-

tre for Diarrhoeal Disease Research, Bangladesh (ICDDRB) #PR-11041. Sera from Clostridium
difficile infections were collected with ethical approval from the University of Liverpool

Research Ethics Committee (#08/H1005/32), and each patient provided written informed con-

sent prior to recruitment. Malaria sera were collected with human subjects approvals from

Institutional Review Boards at University Hospitals Case Medical Center and the Kenya Medi-

cal Research Institute Ethical Review Committee [49], the Medical Research Advisory Council,

PNG [50], and the Ethics Committee of the Faculty of Medicine, Pharmacy, and Odonto-Sto-

matology and the Institutional Review Board at the National Institute of Allergy and Infectious

Diseases, National Institutes of Health [51]. Sera from healthy US adults were collected under

UCI IRB protocol #2007–5896. Sera were provided to the University of California Irvine

(UCI) for assay without patient identifiers and were classified as exempt status by the UCI

Institutional Review Board.

Sera

A retrospective study was designed using a convenience series of sera samples from Nigerian

pediatric febrile cases and healthy controls, as well as other infectious diseases from other loca-

tions outside Nigeria, which were assayed by ELISA and/or LPS microarray (Table 1). The

Nigerian samples were collected between 2009 and 2014 from children aged 8 months—13

years (median approximately 4 years) who presented to primary or secondary health centers in

central and northwest Nigeria with an acute febrile illness and other symptoms that were sug-

gestive of bacteremia. The duration of symptoms ranged from about 3–10 days with a median

of 5 days, as documented in the clinical data captured during enrollment. S. Typhi is the
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leading cause of childhood bacteremia in this area [52]. Baseline demographics of this popula-

tion have been described previously [52, 53]. Following informed consent from the parent or

guardian, blood was obtained aseptically from a peripheral vein for blood culture and simulta-

neously an aliquot for serum separation was saved. Blood sampling and processing were as

previously described [52, 53]. Briefly, only aerobic blood culture bottles were used and held in

a Bactec 9050 incubator (Becton Dickinson, Temse, Belgium) for a maximum of 5 days. Bacte-

ria were identified by morphology, and for Enterobacteriacae, by use of an API 20 E rapid

identification system (BioMerieux, Marcy-l’Étoile, France). Bacterial isolates were stored in

skimmed milk at -70˚C, and further characterized at the Clinical Microbiology laboratory,

University of Nebraska Medical Center. Bacteremia was defined as the isolation of at least 1

noncontaminant bacteria from the admission blood culture. These samples comprised chil-

dren with typhoid (N = 86), non-typhoid Salmonella (NTS) infections (N = 29), other bacter-

emias (N = 28), and febrile cases that were culture negative (‘No Growth’, N = 178). Samples

sizes were determined by availability during the collection period. No samples with missing or

indeterminate culture test results were used in this study. In addition, we also obtained sera

from healthy Nigerian children enrolled from immunization clinics in the same facilities as

controls (N = 48). These children present for routine immunizations and typically are in a sta-

ble state of health. Only children who were asymptomatic and did not have a history of a

febrile illness in the past month, or had taken any antibiotic during the same period, were eligi-

ble. No blood cultures were performed on the healthy controls.

For the pilot LPS array (detailed below), an expanded collection of samples from “other”

control infections from other countries were tested in addition to Nigerian samples discussed

above, as follows. 1) Tularemia sera (N = 12) from a 2007 Spanish outbreak of Francisella tular-
ensis subsp. holarctica. These consisted of paired samples from 6 acute cases that were seronega-

tive by microagglutination (MA) test at the 1st time point at presentation and which

seroconverted by the 2nd time point approximately 2 weeks later. These samples were found

previously to be seropositive for F. tularensis subsp. tularensis (FTT) strain Schu S4 antigens at

both time points using a proteome microarray [18]. 2) Melioidosis sera from Thailand

(N = 14). Samples were collected in 2004 from patients presenting with symptoms of melioido-

sis, and were diagnosed by indirect hemagglutination assay (IHA) and blood and throat swab

culture, as described previously [54]. 3) Brucellosis sera collected prior to 2008 from an endemic

region of Peru (N = 28), previously shown to be seropositive using a Brucella melitensis prote-

ome microarray [31, 32]. Samples probed were culture positive/Rose-Bengal positive (N = 12)

and culture negative/Rose Bengal positive (N = 16). These correspond to samples taken on the

first day (acute infection) and within 6 weeks after obtaining the first sample (convalescent

infection).4) Cholera sera from Bangladesh collected between 2008 and 2010 presenting to the

International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDRB) hospital with

acute watery and stool culture confirmed V. cholerae O1 infection. Following informed consent,

venous blood was collected from adults (age 18–55 years) at the acute phase of infection (N = 7)

after clinical stabilization (day 2), and again at convalescent phases of infection (d7 and 30;

N = 7). 5) Sera from Clostridium difficile infections (CDI) from diagnosed acute cases in the UK

collected between 2008 and 2012 (N = 16) [55]. Each patient was followed-up for minimum

period of 30 days initially and then for 1 year from notes for the collection of additional demo-

graphics clinical outcome information. 6) Symptomatic malaria cases from Kenya, Papua New

Guinea and Mali (N = 48). These were diagnosed with Plasmodium falciparum parasitemia, and

all defined as seropositive using different iterations of P. falciparum protein arrays derived from

strain 3D7 [56]. 7) Healthy US adults from a non-endemic area (Orange County, CA), Adher-

ence to Standards for Reporting of Diagnostic Accuracy Studies (STARD) is shown by the flow-

chart (S5 Fig) and checklist (S1 Text) in the Supporting Information.
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LPS microarray

Lipopolysaccharides (LPS) were obtained as follows: 1) LPS from S. Typhosa (= S. Typhi) was

purchased from Sigma-Aldrich (Cat. #L2387); 2) LPS from S. Typhimurium was purchased

from Sigma-Aldrich (Cat. #L6511); 3) LPS from Francisella tularensis Subsp. novicida was puri-

fied from the live vaccine strain (LVS) (DSTL batch #B07/3564), as described [57]; 4) LPS

from Burkholderia pseudomallei was purified from strain K96243 (DSTL batch #B07/3558), as

described [58]; 5) LPS from Brucella melitensis was purified from strain 16M, as described

[31]; 6) LPS from V. cholerae O1 was purified from Ogawa (strain X-25049) and Inaba (strain

T19479) serotypes, as described [59]; 7) Escherichia coli 055:B5 LPS was purchased from

Sigma-Aldrich (Cat. #L2880). Each LPS species was diluted in PBS buffer, pH 7.3–7.5 (EMD

Millipore Corp., Billerica, MA; Cat. #6506-OP) and printed on nitrocellulose-coated glass

slides (Oncyte Avid from Grace Bio-Labs, Bend, OR) using a GeneMachines Omnigrid 100

array printer, and printed at a concentration of 0.1 μg/ml. This concentration was determined

previously in titration experiments to be the lowest concentration able to provide near maxi-

mal signals. Performers of the LPS microarray assays were blinded to the identity of the sam-

ples until after the assays were completed. LPS arrays were probed for 18h at 4˚C with sera

diluted 1/100 in protein microarray blocking buffer (Maine Manufacturing, GVS North Amer-

ica, Sanford, ME) supplemented with E. coli lysate (Antigen Discovery Inc, Irvine, CA). Bound

IgG and IgA were then detected using secondary antibodies conjugated to biotin followed by

streptavidin conjugated to quantum dots, and then visualized in an ArrayCAMarray imager,

as described previously [19].

ELISA

Hemolysin E protein (HylE, gene t1477 from S. Typhi Ty2 strain) was expressed in E. coli and

purified as described previously [17]. LPS from S. Typhi was as described above for microar-

rays. ELISAs were performed as described [60]. Briefly, antigens were coated onto microtiter

plates (ThermoScientific, Walham, MA) at concentrations 1.25 μg/ml (LPS) and 2.5 μg/ml

(HylE) in TBS (100μl/well) overnight at 4˚C. The coating concentrations were determined pre-

viously for each antigen by serial dilution experiments. The following day, plates were washed

4 times in 1x TBS containing 0.05% Tween20 (T-TBS; ThermoScientific) and blocked with

casein/TBS blocking buffer (ThermoScientific) for 1-2h (300 μl/well). Blocking buffer was then

decanted, and the plates air-dried and stored in desiccated foil pouches at 4˚C until required

for use. Performers of the ELISAs were blinded to the identity of the samples until after the

assays were completed. For ELISA assay, sera were diluted to 1/200 (LPS) and 1/100 (HylE) in

casein/TBS blocking buffer containing E. coli lysate (GenScript, Piscataway, NJ) at 1.5 mg/ml

final concentration, and incubated for 30 min prior to placing into the plates. Plates were incu-

bated for 45 min with gentle rocking at room temperature (RT). After washing with T-TBS

goat anti-human IgG-, IgA- or IgM-HRP conjugates (Bethyl Laboratories, Inc., Montgomery,

TX) diluted 1/25,000 (IgG) or 1/12,500 (IgA, IgM) in Guardian Stabilizer (ThermoScientific)

were added to wells (100 μl /well) and incubated for 45 min at RT (100 μl/well). After washing

with T-TBS, plates were developed by adding 100 μl/well SureBlueReserve TMB developer

(Kirkegaard and Perry Laboratories, Inc., Gaithersburg, MD) for 10 min in the dark. Develop-

ment was stopped by addition of 100 μl/well of 0.2M H2SO4 and OD read at 450 nm in a Mul-

tiskan FC plate reader.

Statistical methods

ELISA data were collected at OD450nm and data were corrected by the positive control

between runs. Dot plots and comparisons between medians of different groups using the
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Wilcoxon method, were produced in JMP (SAS Institute, Inc., Cary, NC, USA). Receiver oper-

ator characteristic (ROC) analyses were performed between patient groups for each antigen

with a varying threshold cut off in the R statistical environment using ROCR. Plots of false pos-

itive vs. true positive plots were made, from which areas under the curve (AUC) and sensitivity

and 1-specificity values were calculated for each antigen(s).

Supporting information

S1 Fig. Scatter plot comparison of IgG ELISA data using two different batches of hemoly-

sin E antigen (HylE, t1477) each assayed using the same 349 Nigerian samples; r2 = 0.922

and slope = 1.05 using Spearmann’s rank correlation.

(BMP)

S2 Fig. Bar chart of LPS ELISA data; data provided in file “S2 DATA_ELISA”.

(BMP)

S3 Fig. Bar chart of hemolysin E (HylE, t1477) ELISA data; data provided in file “S2

DATA_ELISA”.

(BMP)

S4 Fig. Scatter plot of IgA+IgM multiplex ELISAs using Nigerian typhoid and healthy

pediatric samples obtained by either combining secondary antibodies in the assay

(“combo”, x-axis) or by combining data of IgA and IgM obtained individually (“in silico”,

y-axis); data provided in file “S2 DATA_ELISA”.

(BMP)

S5 Fig. STARD flow chart.

(BMP)

S1 Text. STARD checklist.

(DOCX)

S1 DATA_LPS_ARRAY. LPS microarray data, Excel file.

(XLSX)

S2 DATA_ELISA. ELISA data, Excel file.

(XLSX)
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