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Abstract

Quantifying human mobility has significant consequences for studying physical activity, exposure to pathogens, and
generating more realistic infectious disease models. Location-aware technologies such as Global Positioning System (GPS)-
enabled devices are used increasingly as a gold standard for mobility research. The main goal of this observational study
was to compare and contrast the information obtained through GPS and semi-structured interviews (SSI) to assess issues
affecting data quality and, ultimately, our ability to measure fine-scale human mobility. A total of 160 individuals, ages 7 to
74, from Iquitos, Peru, were tracked using GPS data-loggers for 14 days and later interviewed using the SSI about places
they visited while tracked. A total of 2,047 and 886 places were reported in the SSI and identified by GPS, respectively.
Differences in the concordance between methods occurred by location type, distance threshold (within a given radius to be
considered a match) selected, GPS data collection frequency (i.e., 30, 90 or 150 seconds) and number of GPS points near the
SSI place considered to define a match. Both methods had perfect concordance identifying each participant’s house,
followed by 80–100% concordance for identifying schools and lodgings, and 50–80% concordance for residences and
commercial and religious locations. As the distance threshold selected increased, the concordance between SSI and raw
GPS data increased (beyond 20 meters most locations reached their maximum concordance). Processing raw GPS data
using a signal-clustering algorithm decreased overall concordance to 14.3%. The most common causes of discordance as
described by a sub-sample (n = 101) with whom we followed-up were GPS units being accidentally off (30%), forgetting or
purposely not taking the units when leaving home (24.8%), possible barriers to the signal (4.7%) and leaving units home to
recharge (4.6%). We provide a quantitative assessment of the strengths and weaknesses of both methods for capturing fine-
scale human mobility.
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Introduction

Knowledge of daily and routine individual human mobility

patterns within urban settings are important for urban planning

[1–3], developing transportation models [3], promoting healthy

lifestyles [4], and understanding infectious disease dynamics [5–

13]. Measuring mobility at fine spatial and temporal scales

through classic data collection methods (e.g., interviews, diaries,

direct observations) presents significant challenges, such as

marked heterogeneities in the ability of individuals to recall the

locations they visit, changes in people’s lives that affect their

daily mobility (e.g., new partners, change of jobs, school

vacation) as well as privacy issues [11,14]. These challenges

can be exacerbated in resource-poor settings [6,7,10,15,16],

such as our study site in Iquitos, Peru, due to the lack

of complete and updated address maps (affecting geo-coding of

self-reported addresses) and limitations in spatial literacy of

interviewed individuals [11]. There is an urgent need to develop
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and validate easily deployable and culturally-sensitive tools that

characterize a person’s routine mobility in order to link such

information to health outcomes [6,10,13,17,18]. This is of

particular relevance for understanding infectious disease dy-

namics, given the dominant role mobility has in driving

infectious contacts and thus pathogen transmission, emergence,

persistence and propagation [5,6,8–13,18–22].

The wide availability of emerging location-aware technologies

such as Global Positioning System (GPS)-phones or data-loggers

provides new opportunities to quantify human mobility at fine

spatial and temporal scales. Their use in research projects is

feasible: they have decreased in cost and size, the technology has

improved (i.e., GPS chipsets are more efficient in acquiring and

fixing a signal as well as in power consumption) and the units are

widely accepted by study populations [6,10,11,15–17,23–25].

Over the past ten years, GPS tracking (often coupled with other

sensors) has taken a prominent role in physical activity and

exposure research [17,26,27]. Their implementation, however, in

infectious disease research has been limited in part due to the

challenges in linking the positional data generated by such sensors

with temporally and spatially discrete locations (i.e., a person’s

home) where pathogen exposure occurred, and more importantly,

the complexities associated with the analysis of the vast amount of

data that these sensors can generate. A recent systematic review

[17] shows that most studies using GPS to track physical activity

involve few participants (,20), track individuals over short time

periods (,12 days) and are focused on specific age groups

(children vs. adults) or environmental correlates of activity (e.g.,

park vs. school movement) [17,27]. GPS-based tracking presents

enormous opportunities for improving our understanding of

individual space-time activities and how they influence health

outcomes, which has been done in various studies [6,7,10,11,

15,16,28].

GPS technology, however, also has limitations that need to be

addressed before considering it a ‘‘gold standard’’ for mobility

research [26]. Rates of GPS data loss can reach 92% due to signal

drop-outs, dead batteries, participants not wearing the units, signal

loss during the initialization period or misuse of the device [17]. In

Stothard et al.’s study in Uganda, the authors found that the track

logs of the small, wearable GPS units (i-gotU) were accurate

compared to a more sophisticated and costly unit (Garmin Oregon

550t) – discordance of ,7 m for the 15 households tested – but

there was GPS malfunction in units that was believed to be related

to ‘‘insufficiently robust hardware for field conditions’’ possibly

due to humidity or quality of the software [10].

As part of a larger study investigating risk for dengue (a human

disease caused by a mosquito transmitted virus) in Iquitos, Peru,

we simultaneously implemented two methods to capture fine-scale

human mobility patterns: GPS data-loggers and semi-structured

interviews (SSI). Dengue is a mosquito-transmitted viral disease of

humans in tropical and subtropical regions of the world that is a

rapidly growing public health problem [29,30]. The main goal of

this observational study was to compare and contrast the

information obtained through these two methods to assess the

issues affecting data quality, and identify strengths and weaknesses

of each approach. We used two methods to analyze GPS data, and

compared GPS results obtained via both methods with the results

from the SSI.

Methods

Study Setting
Our study took place in Iquitos, a large and geographically

isolated city in the Amazon Basin of northeastern Peru that is

accessible only by boat or plane [31], between September 2008

and August 2010. The city of Iquitos has a high population

density (,390,000 inhabitants), and a very informal and

dynamic economic structure (33.4% of those economically

active are either unemployed or informally employed) [31]. As

observed in other resource-poor cities, Iquitos lacks a unified

and updated address system. Car access and public transpor-

tation are limited and residents rely on personal motorcycles,

,20,000 motorized rickshaws [‘‘moto-taxis’’], and a few bus

lines to move throughout the city. The major industries in the

area are small commercial enterprises, fishing, oil, lumber,

tourism, and agriculture [7]. Iquitos is the home-base of an

extensive, ongoing, long-term project since 1999 led by the

University of California at Davis/U.S. Naval Medical Re-

search Unit 6-Iquitos group [5–7,15,16,32] studying the

environmental, entomologic, epidemiologic and behavioral

determinants of dengue virus transmission.

Instruments
Two methods for obtaining fine-scale human mobility data were

simultaneously implemented: (1) GPS data-loggers (‘‘i-gotU

GT120’’, Mobile Action Technology Inc.) and (2) semi-structured

interviews (SSIs).

Descriptions of GPS features, spatial accuracy, acceptance by

participants and device deployment associated to this study were

reported previously [11,12]. The main attributes of selected units

were: (1) data storage capacity and battery life capable of

recording at least 3 days of data; (2) high spatial accuracy (,4–

10 m); (3) durable, water resistant and tamper-proof; (4) light

weight (,50 g); (5) carrying mechanism (lanyard around neck)

widely accepted by participants of different ages/sex; (6) little to no

maintenance required by study participants; (7) low cost ($49); and

(8) password protection and a special socket for data download (to

protect participant’s confidentiality). The units are easily worn on

a neck strap or in a pocket, and have been used to track routine

movement patterns of Iquitos residents over the past three years

with a high level of acceptance (98%) [16].

Based on the known limitations of classic interview instruments

to capture overt behaviors in space and time [2,33–35], and

guided by findings from focus group discussions performed in

Iquitos [16], we designed a SSI for capturing positional and

temporal information of routine human mobility. Key findings

from the focus groups that guided the survey development

included [16]: (1) people could clearly identify many of the

routine locations they visited, although they sometimes needed

Author Summary

Being able to quantify human movement is important for
studying activity patterns, exposure to pathogens and
developing realistic infectious disease models. We com-
pared fine-scale human mobility data obtained by Global
Positioning System (GPS)-enabled devices and semi-struc-
tured interviews (SSI) from 160 individuals in Iquitos, Peru,
in order to assess the quality of data using these two
different approaches and our ability to measure fine-scale
human mobility patterns in a resource-poor urban
environment. Using various methods to process the GPS
data, we found the SSI identified more locations a person
had visited than GPS. Though the GPS gave more precise
data, there were behavioral, technical, and analytical
barriers. The SSI provided richer context and was easier
to process, but also had more false positives. SSI was the
only option for identifying locations retrospectively.

Capturing Fine-scale Human Mobility
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certain ‘‘triggers’’ for recall (and these were identified), (2) there

were marked differences in reported mobility routines by gender

and age groups; and (3) there were clear ‘‘common activity spaces’’

(markets, recreational spots, etc). The developed SSI contained

one section listing commonly visited locations, such as markets,

health facilities, and schools, and a section that used field-tested

triggers to help people recall ‘‘individual’’ locations visited (such as

relatives’ houses) in the last 14 days. Participants also gave

estimates of time spent in each location per week. High resolution

satellite (Quickbird, Digitalglobe, CO) and digitized street maps

were used during the interview to prompt recall and to mark the

position of the places mentioned.

Recruitment, Participants, and Study Design
Participant recruitment was not random: we used purposive

sampling and focused on two Iquitos neighborhoods participating

in an ongoing longitudinal study on dengue epidemiology

[32,36], seeking a balanced number of males and females

representing age ranges between 7 and 74 (see Table 1). We

only excluded those who planned to spend more than a day

outside of Iquitos during the following 14 days. Recruitment was

performed by trained local technicians who provided a descrip-

tion of the study together with a pamphlet with specific

information about the GPS units and the study in general [16].

In the first phase, conducted between September 2008 and

March 2009, 59 participants were asked to use the GPS units at

all times for a period of 14 days and respond to the SSI on day 15

asking for all the places they visited while GPS-tracked during

those 14 previous days. The research team scheduled an

exchange of the GPS units every three days to download data,

verify function, and recharge batteries. At the time of GPS unit

exchange, participants were asked about their experiences with

the GPS, whether they had used it, if it had been forgotten and, if

so, on what days. GPS units were programmed to track a person’s

position (latitude, longitude and time stamp) every 150 seconds.

The second phase was conducted in July and August of 2010 with

101 participants, who were asked to follow the same procedures

as before; use the GPS unit for 14 days and respond to the SSI on

day 15. One component was added in this phase: within 3 days of

data collection, survey data was entered into a database and

GPS-collected data was processed so that information on the

locations identified as visited by each method were overlaid in a

Geographic Information System (ArcGIS 10, ESRI). With a

series of maps noting the position of each place visited by either

method, field technicians returned to the participants within 4–5

days to ask them about any discordant information (i.e., locations

on the survey, but not registered on the GPS or vice versa). For

Phase 2, the GPS collection frequency was increased to every

15 seconds (45 participants) and 90 seconds (56 participants) to

assess the impact of data collection frequencies on GPS-SSI

concordance. Whereas with 150 second programming, we could

collect and recharge GPS units every 3 days, individuals wearing

GPS units programmed at 15 and 90 seconds were provided with

a charger and asked to charge the units daily because of the

reduction in battery life. Our sample size was sufficient for a

descriptive analysis and was limited due to intense participant

follow-up for ,20 days; i.e., recruiting and consenting, distrib-

uting GPS units, exchanging charged GPS units and collecting

ones losing power, interviewing participants with SSI at day 14,

geocoding locations immediately, inputting all data from GPS

and SSI to overlay in a GIS, returning to participants for follow

up interview. Considering these complexities, participant recruit-

ment was limited to what was logistically feasible for our field

teams.

Data Processing and Analysis
All locations reported on the SSI were identified in the Iquitos

GIS and received a unique location code with geographic

coordinates that link directly to a SQL database containing

participant information. If the location was not already in our

system or if there were doubts about the specific location, a

research team member went to the described place to assign a geo-

code. Based on geo-referenced city-block maps (courtesy of the

Peruvian Navy) and field sketch maps, geo-referenced aerial

photographs and high resolution satellite imagery (Quickbird,

Digitalglobe, CO), a total of 48,365 Iquitos lots were digitized

prior to initiation of this study. Given the lack of a formal and

consistent address system, we assigned a unique code to each lot. A

local GIS specialist on our research team updates the maps on a

regular basis, making the Iquitos GIS one of the most complete

and up to date geo-spatial databases generated for a resource-poor

city of its size.

Table 1. Demographic description of 160 participants for which concurrent semi-structured interviews and GPS tracking were
performed.

Number of participants

Phase 1 (n = 59) Phase 2 (n = 101) Total (n = 160)

Sex

Male 52.5 (31) 34.7 (35) 41.3 (66)

Female 47.5 (28) 65.3 (66) 58.8 (94)

Age structure

7–18 5.1 (3) 42.6 (43) 28.8 (46)

19–30 27.1 (16) 15.8 (16) 20.0 (32)

31–40 23.7 (14) 10.9 (11) 15.6 (25)

41–50 23.7 (14) 16.8 (17) 19.4 (31)

.50 20.3 (12) 13.9 (14) 16.3 (26)

Phase 1 included individuals who used the GPS units at all times for 14 days and responded (on day 15) to a retrospective SSI, whereas Phase 2 included the same
methods as Phase 1, but in addition individuals were interviewed on day 18 about any discordant information (i.e., locations on the SSI but not registered on the GPS, or
vice versa).
doi:10.1371/journal.pntd.0002888.t001
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To obtain locations recorded by GPS units, the raw data was

processed using an agglomerative algorithm (i-Cluster [15]). In

simple terms, when GPS raw data was plotted over a satellite

image of the city, we observed ‘‘clouds’’ over specific locations that

were frequented by an individual [15]. These ‘‘clouds’’ mark

locations that are the product of the frequency of going to that

place and the time spent there. This data reduction algorithm

works by aggregating consecutive GPS readings that are within a

spatial (d) and temporal (t) window, and estimating the total time a

participant spent within such a spatio-temporal buffer [15]. The

algorithm also allows for identification of locations intermittently

visited by applying a threshold time (tintv) in between visits. Based

on the inherent spatial error of GPS data (e.g., 5–10 m) we

determined the following configuration: d = 20 m, t = 15 min and

tintv = 30 min, for tracking Iquitos participants. The resulting place

derived from the i-Cluster algorithm was then manually assigned

the nearest location ID in the Iquitos GIS.

For the analysis, we directly compared the raw GPS data to the

SSI data. Because we know the exact GPS coordinates of every

location reported in the SSI data, we could test to see how

frequently the GPS unit reported that the individual was in the

vicinity of each location. Specifically, for every participant and

every location they visited, we calculated the distance from every

GPS point registered for that participant to that location. For

many locations, we have not just the location, but the footprint of

the structure as a polygon within the Iquitos GIS. As such, we

could calculate the distance from each GPS point to the boundary

of each location (taking GPS points that were within the polygon

to have distance zero from the structure). For both locations that

we have the footprint of the structure and those that we just have a

single GPS location representing the centroid of the building, we

consider the location ‘‘visited’’ if there are a sufficient number of

raw GPS points within a certain threshold distance of the location.

We then vary the number of raw GPS points deemed sufficient

(here we used 1, 5, and 10 points), as well as the distance threshold

selected (defined as the distance allowed for what constitutes a

‘‘match’’ between locations recorded in the SSI compared to a

nearby GPS point, in this study, ranging from 0 to 100 meters), to

investigate the sensitivity of visitation.

We quantified the concordance between SSI and GPS in

identifying places visited by participants by comparing the

interview locations with (1) i-Cluster-derived locations and (2)

raw GPS positions. To compare the interview with the i-Cluster

inferred locations we mapped the locations identified by each

method in a GIS (ArcMap 9.3; ESRI). Locations identified both

by the GPS and the SSI were considered ‘‘concordant’’ and did

not require follow up. All locations that were captured by either

GPS or the SSI, but not both, were considered ‘‘discordant’’ and a

research assistant was sent back to the participant’s home to ask

them about the potential causes of discordance. Before interview-

ing each participant, the research assistants checked the original

SSI to determine how the respondent had described the location

(e.g., ‘‘aunt’s house’’ or ‘‘internet cabin’’) or the GIS maps to

locate a nearby reference point that might help the participant

identify each discordant location (e.g., 2 blocks from market).

Research assistants (nurses and biologists) were native Iquitos

residents who received specific training on all steps of the interview

process to ensure they were aware of sensitive issues they might

encounter both when gathering initial SSI information, as well as

while following up with discordant locations.

Ethics Approval
Participants were given a 24–48 hour period to decide whether

to participate or not in the study. For children, verbal assent of the

minor and written consent of the parent or caretaker were

required, whereas for adults, a written consent was required. After

GPS data collection, a strict protocol for storage (in a secure

MySQL database) and management was followed. The proce-

dures for enrollment of participants and GPS data management

were approved by the Institutional Review Boards (IRB) of the

University of California at Davis (2007.15244), Emory University

(IRB9162) and Tulane University through an inter-institutional

IRB agreement with the United States Naval Medical Research

Center Unit No. 6 (NAMRU-6). The NAMRU-6 IRB, located in

Peru, also reviewed and approved the study (NMRCD

2007.0007). This IRB functions as a Peruvian IRB and is

registered with the Peruvian Regulatory Agency for Clinical

Trials with the number RCEI-78.

Results

More than half of the 160 enrolled participants were females

(58.5%) (Table 1). The lower number of males was due to the

difficulty in finding them at home during regular interviewing

hours. Recruitment was stratified by age; the age range sampled

was 7 to 74 years. Recruitment varied across age groups (range of

25–46 per age group), with 7–18 year olds accounting for 28% of

the tracked individuals (Table 1). Although not perfectly balanced

among sexes and age groups, the recruited population represents a

large and diverse demographic sample of the local population.

Of the 2,566 locations identified by SSI and/or i-Cluster

algorithm, 14.3% were concurrently identified by both (i.e.,

concordant). SSI identified 2.3 times more locations than the i-

Cluster algorithm, with residential (42.5%), commercial (26.4%)

and educational (10.8%) spaces accounting for the highest degree

of concordance between methods (Table 2). A total of 2,047 places

were reported in the SSI as visited by all participants over the 14-

day tracking period (of these 2047 places mentioned, 1057 were

unique places, see Table 2). Most (96.7%) places were located

within the urban and peri-urban areas of Iquitos (Figure 1A).

Participants reported visiting a median (Q1–Q3) of 12 (9–16)

places over the 14-day period, with the number of places not

differing significantly between sexes (Wilcoxon rank sum test with

continuity correction, W = 3140.5, P = 0.89). The most commonly

reported location types on SSI that were not visualized using the i-

Cluster algorithm (considering 1609 locations with land-use

information) were commercial locations (34.2%) followed by

residential (22.1%) and recreational (17.0%) locations (Table 2).

The i-Cluster algorithm identified a total of 886 places as visited by

participants while tracked (716 unique locations); 98.7% of which

were found within the urban and peri-urban areas of Iquitos

(Figure 1B). A significantly lower median (Q1–Q3) number of

places per participant was registered by the i-Cluster algorithm in

comparison to the SSI (7, 4.0–10.0; W = 11990, P,0.001).

Residential spaces represented 58.6% of the 454 i-Cluster-

identified locations with land-use information that were not

reported on the SSI, followed by commercial (11.4%), educational

(4.2%), and recreational (3.5%) locations (Table 2). Locations with

highest percentage of concordance (i.e., per type of location, the

number of concordant sites divided by the total number of sites

obtained for that type of location through SSI and/or GPS) were

educational settings (24%), followed by residential (19%), other

(18%), and religious or market spaces (both at 13%).

When the SSI-reported locations were compared to the raw

GPS data (Figure 1), differences in the concordance between

methods were observed based on the location type, distance

threshold selected, GPS collection frequency and number of GPS

points considered to define a visit (Figure 2). Both GPS and SSI

Capturing Fine-scale Human Mobility
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had perfect concordance in identifying each participant’s home

(see Figure 2) at either combination of collection frequency,

distance or number of points. There was more concordance for

residential sites than non-residential sites at 15 and 90 seconds

collection frequency; this difference was minimal at 150 sec-

onds (Figure 2). Not depicted due to the small numbers in each

category, there was much variation in concordance when

examining by type of location. For example, when examining

specific categories such as schools, ‘‘other’’ (ports, storage

buildings, empty lots) and lodging places (i.e., rustic ‘‘hostels’’

for visitors from outside Iquitos, or couples might go for a few

hours) there was a concordance of 80–100% between methods,

whereas other residential places (i.e., friends’ or relatives’

homes), commercial locations (i.e., shops, markets) and

religious buildings (i.e., churches) showed a concordance of

50–80%.

Figure 1. Locations inferred by (A) semi-structured interviews (SSI) and (B) GPS units. (A) Spatial distribution of all locations reported as
visited by 160 participants during a 14-day period. (B) Raw GPS tracks (yellow points) and locations inferred after the application of a data-reduction
algorithm (black dots) that assigns each track to a specific location code in the Iquitos GIS.
doi:10.1371/journal.pntd.0002888.g001

Table 2. Comparison of number of ‘‘concordant’’ locations identified by semi-structured interviews and GPS from both study
phases.

Type of location Concordant % (n) SSI+ GPS –a % (n) GPS+ SSI-b % (n) Total % (n)

Residential 42.5 (156) 22.1 (372) 58.6 (304) 32.4 (832)

Market/Shops 26.4 (97) 34.2 (575) 11.4 (59) 28.5 (731)

Recreational 10.1 (37) 17.0 (286) 3.5 (18) 13.3 (341)

Educational 10.8 (40) 6.3 (105) 4.2 (22) 6.5 (167)

Public Bldg. 0.8 (3) 4.1 (69) 1.7 (9) 3.2 (81)

Health 2.5 (9) 5.0 (84) 1.9 (10) 4.0 (103)

Church/religious 2.5 (9) 3.2 (53) 1.0 (5) 2.6 (67)

Cemetery 0.5 (2) 1.4 (23) 0 1.0 (25)

Lodging 0 0.7 (12) 1.9 (10) 0.9 (22)

Others 2.7 (10) 1.8 (30) 3.3 (17) 2.2 (57)

Missing land-use information 1.1 (4) 4.2 (71) 12.5 (65) 4.1 (106)

TOTAL 367 1680 519 2566

Concordance between methods occurred when both methods identified the same location as visited by the same participant. A clustering algorithm was used to
summarize raw GPS points into specific locations.
aLocations identified on the SSI, but not on the GPS.
bLocations identified on the GPS (using a clustering algorithm), but not on the SSI.
doi:10.1371/journal.pntd.0002888.t002
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Figure 2. Concordance between SSI locations and raw GPS positions at different distance buffer thresholds, GPS data collection
frequencies, and number of GPS points. Concordance was expressed as the percentage of locations for which a SSI-GPS match was found.
doi:10.1371/journal.pntd.0002888.g002

Figure 3. Concordance between SSI locations and raw GPS positions at 20 meters from a SSI location. Concordance is expressed as the
proportion of locations for which a SSI-GPS match was found. Panels show values for different location types, combinations of GPS data collection
frequencies (15, 90 and 150 seconds) and number of GPS points used to define a visit (1, 5 and 10 points).
doi:10.1371/journal.pntd.0002888.g003
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As distance from the SSI reported location increased, the

concordance between SSI and raw GPS data increased, indepen-

dently of the type of location (Figure 2). When at least one raw

GPS point was considered (solid lines in Figure 2), concordance

between methods was highest at up to 20 meters from each

location. Beyond that distance, no dramatic increases in concor-

dance were observed. There was less concordance when we

restricted our analysis to 5 GPS points (broken lines) or 10 points

(finely broken lines), but the pattern was similar to the line created

when 1 point was considered a match. Interestingly, increasing

frequency of GPS data collection from 150 to 15 seconds was not

associated with a proportional increase in concordance between

SSI and GPS (Figure 2). Battery power loss observed at 15 second

collection frequency may help explain such results: of the 508 GPS

exchanges performed, 56 (11%) of GPS units programmed to

collect data every 15 seconds had issues due to battery loss at the

time of data download in comparison to 2% (9/379) for GPS units

programmed to collect data every 150 sec.

At 20 meters from each SSI location, and when 1 GPS point

was considered to define a match, overall concordance averaged

72.6% (SD: 20.7%) for 15 seconds, 65.8% (30.8%) for 90 seconds

and 70.3% (23.3%) for 150 seconds (Figure 3). When ten points

were required to define a match, concordance was reduced to

59.1% (31.6%), 54.3% (31.0%), and 55.7% (30.7%) respectively

(Figure 3). Cemeteries, public buildings, recreational areas and

health centers were the location types that consistently showed the

lowest concordance values (Figure 3). Increasing the data

collection frequency from 15 to 150 seconds did not translate

into significant variation in the concordance between SSI and

GPS across all location types (average [min-max] variation across

locations, 2.3% [0.7%–9%]) (Figure 3).

In comparison to using the raw GPS points (Figure 2), the i-

Cluster algorithm evidenced much higher discordance rates for all

location types (Table 2). However, this method allowed identifying

a total of 519 locations not mentioned in the SSI and not able to

be inferred when the raw GPS positions were visualized (Table 2).

In Phase 2, with the subset of 101 participants, we further

explored the possible causes of discordance between GPS and

SSI. Specifically, within 2–3 days of administering the SSI, we

used GIS to develop maps identifying ‘‘discordant’’ SSI and i-

Cluster locations (Figure 4) (i.e., locations that were only

mentioned in the SSI or only visualized using the GPS data).

These maps were used when probing participants about

possible causes of discordance. In this phase, regarding

locations identified on the SSI, but not detected by GPS (total

of 656 locations, Table 3), the most common response to

Figure 4. Sample map to interview participants about possible causes of discordance between GPS-derived vs. semi-structured
interview locations. Given both types of locations were joined to the Iquitos GIS, the lot code was provided to ease identification of locations in
the database. Size of points was proportional to reported or calculated time spent at each location. Inset of map shows locations within the city of
Iquitos. GPS-derived locations were obtained using a clustering algorithm.
doi:10.1371/journal.pntd.0002888.g004
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questions about the discordance was an affirmation that these

locations had been visited (35.8%) – they could not explain the

discordance. The second most common response was that units

had ‘‘seemed to be turned off’’ (30%). Indeed, GPS units

initially deployed could accidentally be turned off, so respon-

dents who noticed the lack of a flashing blue light inferred

correctly. Once this problem was reported, we programmed

GPS units to not allow them to be turned off manually,

reducing this problem half-way through this study. Other

explanations for the discordance included those who admitted

forgetting to take units to some locations (12.5%; i.e., rushing

out and simply forgetting), not wearing the GPS units to

locations that were near their house (3.4%) or to locations

where they might get stolen (3.5%), and leaving units home to

recharge (4.6%). A small percentage (4.7%) affirmed having

the GPS unit in some locations, but questioned whether the

placement of the GPS unit in their purse might have impeded

the signal.

Regarding locations identified on the GPS unit but not

mentioned in the SSI (204 locations, Table 3), the most

common response was that they simply forgot to mention it in

the SSI (38.2%), and a few made the additional observation

that they had forgotten this location because it was not part of

the regular routine (15.2%). Some locations were not

mentioned (until probed directly about them) because they

were either transient or en route to another location (22.1%;

i.e., a path always taken, a bus stop) or because they were

outdoors (13.2%; i.e., outdoor food kiosk). After further

examination of the reasons for discordance between SSI and

GPS, we identified 75 locations as being affected by technical

failures in generating the maps (the locations were not properly

mapped or marked the location next door, 57.3% and 42.7%

respectively, and hence were incorrectly considered discordant

at the time of interview).

Discussion

GPS technology is increasingly used in behavioral research. Its

use has moved beyond feasibility tests [15,35,37,38] to the actual

use of GPS-enabled devices (often coupled with other sensors such

as accelerometers, air pollution sensors or cameras) in studies

quantifying various aspects of human mobility and spatial

behavior [7,10,11]. As the technology continues to be embraced

by researchers across disciplines, it is easy to assume that due to

the wealth and resolution of the data it provides, some might

consider GPS data to be a ‘‘gold standard’’ for mobility research

and a replacement of classic survey instruments [35]. By

performing a field validation study tracking 160 individuals, we

assessed both the limitations and possibilities of GPS technology

for mobility research, and provided evidence of multiple sources of

error/uncertainty that can affect quality of data in comparison to

survey methods. It is important to mention here that based on our

experience, we would expect different results with different GPS

units, different SSI and other methods of data analysis.

Under perfect conditions of satellite geometry and signal

strength, GPS provides very accurate information about the

position (latitude, longitude, elevation, time of day) of any

stationary object on earth. Wearable GPS devices provide all the

essential pieces of information to reconstruct and quantify human

movement: positions associated to places visited, time stamp for

Table 3. Reasons for discordance given by participants between locations from semi-structured interviews (SSI) and GPS data,
from Phase 2 (n = 101).

Reason given for discordance Number of locations (%)

Location on SSI, but not on GPS (SSI+GPS2) Total (locations): 656

Says used GPS, no explanation for missing point 235 (35.8)

Says used GPS, but unit might have been off 197 (30.0)

Admits did not use GPS: rushed out and forgot 82 (12.5)

Says used GPS, but describes possible ‘‘barrier’’ (i.e., unit in purse, under a lot of clothes) 31 (4.7)

Admits did not use GPS, but no explanation given 33 (5.0)

Admits did not use GPS: it was recharging at home 30 (4.6)

Admits did not use GPS: concerned about GPS safety (not getting it stolen) 23 (3.5)

Admits did not use GPS: was going to a location near house 22 (3.4)

Admits did not use GPS: concerned about personal safety if wearing it in this location 3 (0.5)

Location on GPS, but not on SSI (GPS+SSI2) Total: 204

Simply forgot to mention on SSI 78 (38.2)

Location on GPS was en route to another place 45 (22.1)

Forgot to mention on SSI because location not part of regular routine 31 (15.2)

Did not think to mention on SSI because location was outdoors 27 (13.2)

Doesn’t remember being there 12 (5.9)

Embarrassed to mention on SSI 6 (2.9)

GPS was used by someone else in household 5 (2.5)

Technical failures: no discordance Total: 75

Problem in merging methods 43 (57.3)

GPS marked location next door 32 (42.7)

A clustering algorithm was used to summarize raw GPS points into specific locations.
doi:10.1371/journal.pntd.0002888.t003
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each potential visit, and routes followed to connect visits. Given

technical (e.g., signal noise, multipath errors, signal obstruction

inside buildings, battery life) and human behavioral limitations

(e.g., compliance of use, individuals forgetting to take or charge

units), GPS signals are prone to error and estimates of mobility

parameters that they generate are considered uncertain. Signal

processing algorithms have been developed to reduce such errors

and improve interpretation of complex data [39–44]. In our study,

the application of a signal clustering algorithm (i-Cluster) allowed

identifying locations where individuals spent their time, but also

added significant uncertainty by flagging locations transiently

visited (e.g., a bus stop; 35.3%). Such errors were the main

contributor to the 85.7% discordance between methods observed

when i-Cluster inferred locations were considered. Because most

research describing automated algorithms rely on single (or few)

days of data or low sample sizes [39–44], the errors found by our

study are a likely outcome of the type of error those algorithms

may encounter if applied within the same context. Our results can

be used as a guide for the development of improved and more

accurate methods for GPS location extraction and human

movement quantification.

An interesting finding was that higher GPS collection

frequencies (e.g., 15 seconds) were not associated with a

proportional and significant increase in concordance between

methods. Issues of battery life, not securing the ‘‘off’’ option at

the start of the study (remedied quickly), and compliance of

participants in charging the units compromised the quality of

data collected. Similar issues were observed across multiple

studies quantifying physical activity [17,35]. Implementing

GPS-enabled smart-phones could have reduced the issue of

battery loss, because there is more motivation for individuals to

charge the phones overnight and to use them during the day.

Because Iquitos is slowly making its transition into smart-

phone technologies, different issues were pointed out by a

subset of 10 participants when asked about the possibility of

using GPS-phones instead of data-loggers: (a) older individuals

were intimidated by the technology and by the possibility of

having the units stolen (the latter was a concern shared by

individuals across all age groups), and (b) school age children

mentioned they are not allowed to take phones to elementary

or high school or locations where their phones could be taken

by older children [7]. When cell-phones can be properly

deployed they can provide valuable information. For instance,

in Canada a study comparing GPS data collected by cell-

phones and self-reported surveys reported (using rudimentary

indices of concordance such as convex hulls and kernel density

estimations) that 75% of questionnaire-reported activity

locations were located within 400 meters of an activity location

recorded on the GPS track [26]. In weighting the possibility of

adopting novel technologies, consideration of cultural and

local concerns will be key for both GPS and SSI instruments

[13,16,18].

Turning the large amounts of raw GPS positional data into

meaningful locations individuals visited is another challenge.

Unprocessed raw GPS data can be used to either describe zones or

areas in which individuals spend their time or to assess the

accuracy of the GPS in identifying precise locations against

information provided by another method (i.e., locations identified

by SSI). In our study we implemented a simple algorithm based on

an agglomerative clustering method (i-Cluster) to identify locations

visited by individuals carrying a GPS unit. Our analysis shows that

the algorithm presents low levels of sensitivity and specificity in

identifying places reported as visited by participants. This poor

performance could be due to: (a) the algorithm’s limited ability to

account for changes in accuracy of the GPS signal or to the

occurrence of intermittent positions as a consequence of GPS

signal loss and (b) the fact that not all reported locations were

actually visited by participants while tracked. More complex

methods of location extraction that account for signal errors, such

as hierarchical dynamic Bayesian network models [39,41,44], are

being currently developed and are viewed as a promising means of

reducing the uncertainty associated with the identification of

locations visited by participants [39,44]. Once those methods are

validated, their integration into health research applications will

increase our ability to accurately infer the location of potential

infectious disease exposure areas.

Classic methods (surveys, diaries) have long been considered too

limited to quantify behavior due to marked heterogeneities in the

ability of individuals to recall the locations they visit, interviewer

error, behavior changes and issues associated to privacy [35]. By

working with the local community, addressing potential cultural

barriers and concerns and adapting the language of interviews, we

developed a culturally-sensitive SSI to quantify movement (and

potential exposure to dengue). Our comparative analysis shows

that, for a 14-day recall period, interviews provide accurate

estimates of the locations visited by people (of a total of 892

locations for which we investigated causes of discordance, only 109

[12.2%] were visited and not reported). The SSI not only

identified places, but also characterized the context of visits (i.e.,

grandmother’s house), information impossible to obtain directly

from GPS. SSI data entry and processing are much more

straightforward and faster than of GPS: (a) maps with marked

locations were digitized in the Iquitos GIS and each premise

reported as visited was assigned a location code and (b) the

location code was then linked to the database containing all the

SSI information. We concluded that a validated survey instrument

that can be adapted to different contexts can be used to

understand the role of human mobility in infectious disease

dynamics.

We encountered several limitations in our study design.

Although our sample size was relatively large, the low numbers

of participants assigned to each age group precluded statistical

tests to look at different causes of discordance. Given that we

needed to obtain results quickly to ask participants about

possible causes of discordance, we relied on a single GPS data

reduction algorithm (i-Cluster). As observed on the survey

(Table 3), most of the discordant records occurred due to this

algorithm providing false positive or negative results. Since the

time this study was performed, new and more sophisticated

methods to process GPS data have been developed [39–44], as

well as more accurate and less error-prone GPS units have

likely become available. Future research will involve perform-

ing comparative studies to quantify sensitivity/specificity as

well as applicability to specific study questions. Also, we

considered that our concordance estimates could be, in part,

dependent on size and placement of houses in Iquitos. An

average household in this city measures 5 m in width, which is

within the mean error of a GPS (5–10 m). This could explain

the high percent (,60%) of residences identified by GPS that

were not reported on the SSI. Thus, accuracy in identifying

locations is not only dependent on the factors explained above,

but also on key attributes of the urban landscape (e.g.,

household size, prevailing building material, density of high-

rise buildings, vegetation cover). We did not test for differences

in the SSI results of participants with more contact with our

research team (i.e., those with more frequent GPS exchanges

due to differing data collection times) compared to those with

minimal contact. We do not expect differences, however,
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because contact was focused on the GPS exchange and SSI

questions about their movement and activities were only asked

at the end of the 14 day period. None of the participants,

therefore, had an advantage over others regarding the types of

questions they would be asked. We also did not estimate nor

compare the cost and technical expertise to apply and process

by these methods. Both the GPS and SSI capture very complex

data. GPS data is in digital form, but needs to be processed.

SSI data needs to be verified (i.e., in our study, someone might

go to a location described to geocode the location), entered and

mapped. There were costs associated to purchasing GPS units

(,$49/unit), training personnel to set and distribute units,

downloading and analyzing the GPS data. Similarly, there

were costs associated to developing, refining and improving the

SSI, training personnel to apply it, and entering the data in a

GIS system. Ultimately, decisions regarding using an SSI or

GPS units in a study depend strongly on the study question and

the urban context, because both SSI and GPS can provide

different but equally valuable information that need to be

carefully weighted at the planning stage.

For infectious diseases in general, and vector-borne diseases

in particular, the need to tie potential exposure to specific

locales requires the retrospective investigation of multiple

routes of pathogen transmission. Survey instruments like the

one we developed in this study not only provide accurate

information of places visited, but can also be used to

retrospectively infer the likely location where infection

occurred [5]. This need to tie exposure to a specific place(s)

has limited the use of GPS technology in infectious disease

research, but GPS technology could be used in prospective

movement studies or in studies obtaining information provided

by phone companies. As observed in our study, once locations

are identified, the raw GPS positions can be analyzed to

quantify temporal patterns of mobility (days and times a person

visits such locations, regularity of visits, overlap with other

tracked individuals) and to accurately quantify routines and

movement of a large segment of a population. This way, key

information about mobility and behavior can be inferred and

used to parameterize mathematical models that allow better

forecasting of disease transmission or design policies targeting

activities or segments of the population at greatest risk.

No gold standard exists for obtaining and analyzing human

mobility data, instead different errors may occur with different

methods. Despite the continually improving accuracy available

with GPS, barriers persist, including: behavioral aspects (i.e.,

people remembering to use the unit), technical aspects (i.e.,

accuracy of 5–10 meters in a location with houses averaging

5 meters width), and analytical aspects (i.e., differences in

concordance based on method of analyzing complex data as

reported in this article). The SSI is not a gold standard either.

Even with the possible drawback of more locations reported

than true (i.e., false positives), compared to GPS units, the SSI

provided more true locations, more context about locations,

and data were easier to process and analyze. For our study, in

which we needed to identify locations retrospectively for

possible exposure to dengue virus, the SSI was the only choice

because of the logistical and financial difficulty of fitting GPS

units on a large sample and, even if that had been possible,

being able to quickly identify locations recently visited within a

short enough time frame to initiate our possible exposure

investigations. For now, SSI remains the most comprehensive

method to identify such locations.

Supporting Information

Checklist S1 STROBE checklist.

(DOC)

Acknowledgments

This study required a lot of detailed work and follow up, helping study

participants with triggers that would remind them of specific locations

visited, and the arduous task of finding locations and geocoding each. It

would have been impossible to do without the careful work of the

NAMRU-6 movement and entomology teams. The movement team

consisted of Wendy Lorena Quiroz Flores, Esther Jennifer Rios Lopez,

Shirly M. Guedez Gonzales, and Wilder Carrasco Huaman. The

entomology team consisted of Jimmy Castillo Pizango, Fernando Chota

Ruiz, Victor Elespuru Hidalgo, Jose Espinoza Benavides, Rusbel Huiñapi
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Nacionales 2007: XI de Población y VI de Vivienda. Lima, Peru: Author,

http://desa.inei.gob.pe/censos2007/tabulados/.

32. Morrison AC, Minnick SL, Rocha C, Forshey BM, Stoddard ST, et al. (2010)

Epidemiology of dengue virus in Iquitos, Peru 1999 to 2005: interepidemic and

epidemic patterns of transmission. PLoS Negl Trop Dis 4(5): e670.

33. Stone AA, Shiffman S. (2002) Capturing momentary, self-report data: a proposal

for reporting guidelines. Ann Behav Med 24(3): 236–243.

34. Golledge RG, Stimson RJ. (1997) Spatial behavior: a geographic perspective.

New York: The Guilford Press.

35. Elgethun K, Yost MG, Fitzpatrick CT, Nyerges TL, Fenske RA. (2007)

Comparison of global positioning system (GPS) tracking and parent-report

diaries to characterize children’s time-location patterns. J Expo Sci Environ

Epidemiol 17(2): 196–206.

36. Getis A, Morrison AC, Gray K, Scott TW. (2003) Characteristics of the spatial

pattern of the dengue vector, Aedes aegypti, in Iquitos, Peru. Am J Trop Med Hyg

69(5): 494–505.

37. Schutz Y, Chambaz A. (1997) Could a satellite-based navigation system (GPS)

be used to assess the physical activity of individuals on earth? Eur J Clin Nutr

51(5): 338–339.

38. Wiehe SE, Carroll AE, Liu GC, Haberkorn KL, Hoch SC, et al. (2008) Using

GPS-enabled cell phones to track the travel patterns of adolescents. Int J Health

Geogr 7:22.

39. Liao L, Fox D, Kautz H. (2007) Extracting Places and Activities from GPS

Traces Using Hierarchical Conditional Random Fields. Int J Rob Res 26(1):

119–134.

40. Kim T, Lee K, Yang W, Yu SD. (2012) A new analytical method for the

classification of time-location data obtained from the global positioning system

(GPS). J Environ Monit 14(8): 2270–2274.

41. Fox D, Hightower J, Liao L, Schulz D, Borriello G. (2003) Bayesian filtering for

location estimation. IEEE Pervasive Computing Magazine (Special Issue on

Dealing with Uncertainty), 2(3), 24–33.

42. Kostakos V, O’Neill E, Penn A, Roussos G, Papadongonas D. (2010) Brief

encounters: Sensing, modeling and visualizing urban mobility and copresence

networks. ACM Trans Comput Hum Interact 17(1): 1–38.

43. Ashbrook D, Starner T. (2003) Using GPS to learn significant locations and

predict movement across multiple users. Pers Ubiquit Comput 7(5): 275–286.

44. Liao L, Patterson DJ, Fox D, Kautz H. (2007) Learning and inferring

transportation routines. Artif Intell 171(5–6): 311–331.

Capturing Fine-scale Human Mobility

PLOS Neglected Tropical Diseases | www.plosntds.org 11 June 2014 | Volume 8 | Issue 6 | e2888

http://desa.inei.gob.pe/censos2007/tabulados/

