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Abstract

With the rapidly increasing abundance and accessibility of genomic data, there is a growing

interest in using population genetic approaches to characterize fine-scale dispersal of organ-

isms, providing insight into biological processes across a broad range of fields including

ecology, evolution and epidemiology. For sexually recombining haploid organisms such as

the human malaria parasite P. falciparum, however, there have been no systematic assess-

ments of the type of data and methods required to resolve fine scale connectivity. This ana-

lytical gap hinders the use of genomics for understanding local transmission patterns, a

crucial goal for policy makers charged with eliminating this important human pathogen. Here

we use data collected from four clinics with a catchment area spanning approximately 120

km of the Thai-Myanmar border to compare the ability of divergence (FST) and relatedness

based on identity by descent (IBD) to resolve spatial connectivity between malaria parasites

collected from proximal clinics. We found no relationship between inter-clinic distance and

FST, likely due to sampling of highly related parasites within clinics, but a significant decline

in IBD-based relatedness with increasing inter-clinic distance. This association was contin-

gent upon the data set type and size. We estimated that approximately 147 single-infection

whole genome sequenced parasite samples or 222 single-infection parasite samples geno-

typed at 93 single nucleotide polymorphisms (SNPs) were sufficient to recover a robust spa-

tial trend estimate at this scale. In summary, surveillance efforts cannot rely on classical

measures of genetic divergence to measure P. falciparum transmission on a local scale.

Given adequate sampling, IBD-based relatedness provides a useful alternative, and robust

trends can be obtained from parasite samples genotyped at approximately 100 SNPs.
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Author summary

The spatiotemporal dispersal of organisms can inform efforts to conserve endangered spe-

cies, to contain the spread of drug resistance, and to eliminate disease. As genomic data

become increasingly more affordable and accessible via public depositories, the demand

for methods capable of extracting fine-scale population structure from genomic data

grows. However, to the best of our knowledge, there are no guidelines regarding the type

of data and methods required to resolve local spatial trends over sexually recombining

haploid organisms, such as the malaria parasite. The approach we present here compares

relatedness based on identity by descent, which accounts for recombination while distin-

guishing genetic identity due to inheritance from genetic identity due to chance, to a clas-

sic population genetic measure of divergence, using data from sexually recombining

malaria parasites. Using identity by descent, we uncover a significant decrease in highly

related malaria parasites collected from proximal clinics on the Thai-Myanmar border, a

region where human mobility is high. Our results demonstrate the power of analyses

based on identity by descent to detect recent and local trends. Similar analyses could be

used to inform the molecular epidemiology of other sexually recombining organisms.

Introduction

Molecular tools show great promise for helping us understand and contain the spatial spread

of pathogens, and the application of population genetic approaches to monitoring and control-

ling infectious diseases is becoming routine. Routes and volumes of non-sexually recombining

pathogens, such as the influenza and Ebola viruses, can be tracked using genomic surveillance

[1], enabling time-calibrated phylogenies [2], which can be spatially projected [3], and used to

jointly estimate transmission chains [4–7]. For sexually recombining pathogens such as the

human malaria parasite Plasmodium falciparum, however, these methods are not readily

applicable, especially on local spatial scales relevant for control and elimination strategies [8].

Furthermore, P. falciparum evolves more slowly than viral pathogens, and non-sampled

asymptomatic infections, complex within-host dynamics, and extensive within-host diversity

(multiple-genotype infections) obscure inference [5,7,9]. As a result, despite increasing efforts

to collect genomic data for epidemiological surveillance of malaria on local spatial scales,

methods for making sense of them, and guidelines for study design, are lacking.

On large or continental scales, or where recombination is limited, P. falciparum genetic

data have been usefully employed to identify spatial relationships between parasite populations

using standard approaches [10]. For example, microsatellite analyses have been used to infer

the origins of drug resistant genotypes [11–13] or outbreaks [14], to monitor population

dynamics [15,16] and to explore population structure in West Africa [17]; single nucleotide

polymorphisms (SNPs) in non-recombining mitochondrion and apicoplast genomes have

been used to infer the evolutionary trajectory of the parasite [18]; and whole genome data have

been used to interrogate population structure across continents and within Southeast Asia,

including Cambodia, the epicenter of drug resistant malaria [19–22]. Explicitly spatial meth-

ods applied to these data include tests and scans of spatial autocorrelation [23,24], which are

typically suited to highly resolved geo-referenced data. Non-spatial methods include principal

component and phylogenetic analyses, as well as many model-based Bayesian methods,

including STRUCTURE [25], ChomoPainter and fineSTRUCTURE [26].

Measuring connectivity among proximal populations of P. falciparum is more challenging,

however [27,28]. Classical measures include Wright’s fixation index (FST) [29,30], a measure of

Connectivity between local malaria parasite populations
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divergence between population pairs, which has been used to recover large-scale population

structure in malaria [17,21], but has been shown to be less reliable at smaller spatial scales [20].

More recent studies have investigated relatedness using identity by descent (IBD) and identity

by state (IBS), with some promise for smaller spatial scales. Henden and colleagues, for exam-

ple, constructed networks of related parasites within and across countries using IBD inferred

under a probabilistic model that accounts for recombination [31]. On a micro-geographic

scale, Omedo and colleagues reported trends in relatedness using IBS [32], which approxi-

mates IBD [33], and has been used elsewhere to infer relatedness between malaria parasites

[34]. These studies emphasize the need for tools on local scales that can account for transmis-

sion between local hotspots, particularly in areas considering or implementing elimination

programs, and suggest that IBD-based measures are promising approaches.

IBD is a fundamental concept in population genetics, relating ancestry to variability due

to recombination [35]. FST can also be interpreted as a measure of IBD stemming from

remote inbreeding [36], but unlike IBD, FST relies on allelic variation providing a traceable

history of co-ancestry. Since recombination works on shorter times scales than mutation and

genetic drift, estimates of IBD provide insight into more recent demographic events than FST

[35], and IBD-based analyses have been used extensively in human genetics (e.g. to impute

genotypes, to map disease loci, and to infer demographic histories [35,37]). Increasingly, it is

thought that much of the useful signal in the malaria genome lies in the pattern of recombi-

nation, rather than variation at any one locus, and IBD is gaining popularity in malaria

research and policy (e.g. to monitor disease transmission [38], relatedness within multiple-

genotype infections [39], to aid surveillance of antimalarial resistance [40], and to detect sig-

nals of selection [31]).

To explore the utility of IBD for estimating connectivity between very local parasite popu-

lations, we analyzed one of the largest joint data sets of both genotyping and sequencing data,

collected between 2001–2014 from four Shoklo Malaria Research Unit (SMRU) clinics on the

Thai-Myanmar border (Fig 1). The border is characterized by mobile migrant populations,

villagers, and refugees from Myanmar, and is an area of low and declining malaria transmis-

sion [41–43]. This region is therefore representative of many near-elimination settings where

remaining pockets of transmission are often found in border areas, and where human mobil-

ity is potentially difficult to measure for political or logistic reasons. Here, we focus specifi-

cally on measures that capture connectivity: FST between population pairs and relatedness

between parasite sample pairs. We show that, unlike FST, IBD-based relatedness decreases sig-

nificantly over inter-clinic distance. Importantly, where a tradeoff must be made between

sequencing effort and sample sizes, we show that robust spatial trends can be recovered using

93-SNP barcodes, providing a cheap and simple approach to implementing these analyses in

the field.

Results

The genomic data included 1173 single-infection parasite samples genotyped at 93 SNPs

[44,45], henceforth referred to as barcode data, and 178 single-infection parasite samples for

which whole genome sequences (WGS) were available, henceforth referred to as WGS data

[40]. The combined SMRU catchment area spans approximately 120 km of the border, with a

population that includes villagers, mobile migrant workers, and refugees entering Thailand

from Myanmar [41,44,46]. Previous analyses of these data have shown that despite a decrease

in P. falciparum multiple-genotype infections over the last decade, there has been no evidence

of a change in genetic diversity, geographic divergence or effective population size (see S1

Table), likely due to extensive human mobility [45].

Connectivity between local malaria parasite populations
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Divergence based on FST does not correlate with inter-clinic distance

First we explored spatial structure between parasites collected from different clinics on the

Thai-Myanmar border using FST, a standard measure of divergence between populations, and

one that has been applied frequently in the context of malaria. FST estimates were calculated

using Hudson’s estimator [47–49], which is recommended for small and unequal sample sizes

Fig 1. SMRU clinics on the Thai-Myanmar border. The border between Myanmar and Thailand (also the

Moei river) is depicted in blue. Grey edges are proportional to inter-clinic proportions of highly related barcode

parasite sample pairs (pairs with π̂ IBD > 0:5). Latitudes and longitudes, respectively, are: 17.128107,

98.382152 (Maela); 16.83014, 98.53737 (Wang Pha); 16.5781479, 98.5846176 (Mae Kon Ken); 16.3258896,

98.670166 (Mawker Thai).

https://doi.org/10.1371/journal.pgen.1007065.g001
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[49,50]. Estimates based on barcode and WGS data across all available years were statistically

different from zero with p-values < 0.001 (Tables A and B of S1 Text). Those based on barcode

data were low (Fig 2), indicative of migration between populations. Those based on WGS data

were an order of magnitude larger (Fig 3), but there was no evidence of spatial trends between

clinics based on either barcode or WGS data (Table 1). We observed a positive correlation

between FST estimates and within-clinic relatedness based on IBD (Fig G in S1 Text), and this

appears to explain not only the difference in estimates using barcode versus WGS, but also the

lack of spatial trend (S1 Text).

Relatedness based on IBD decreases with inter-clinic distance

We define relatedness using the expected fraction IBD, p̂IBD, a probabilistic measure of the

fraction of the genome that a pair of parasites inherited from a recent common ancestor [52].

For a given pair of clinics (e.g. Maela and Wang Pha) we obtained a single FST estimate versus

many p̂IBD (nMaela × nWang Pha, where n denotes the number of parasite samples per clinic). For

comparison with FST estimates, we plotted proportions of highly related parasite sample pairs

(those with p̂IBD > 0:5) within and across clinics (Figs 4 and 5 and Fig O and P of S2 Text).

However, to leverage the wealth of information across the many parasite sample pairs, spatial

trends were estimated using individual p̂IBD. Specifically, we regressed highly related parasite

sample pair labels (equal to one if p̂IBD > 0:5 and zero otherwise) onto spatial and temporal

predictors within a logistic regression framework (see Materials and methods).

Fig 2. FST estimates based on 2001–2014 barcode data plotted with respect to inter-clinic distance.

Annotations refer to site comparisons using abbreviated clinic names (MLA for Maela, 212 parasite samples;

WPA for Wang Pha, 457 parasite samples; MKK for Mae Kon Ken, 116 parasite samples; and MKT for

Mawker Thai, 388 parasite samples). All parasite samples were single-infection. For a clinic pair, A and B say,

the FST estimate was based on nA + nB parasite samples, where n denotes the number of parasite samples

per clinic. Error bars represent 95% confidence intervals based on bootstrapping over SNPs.

https://doi.org/10.1371/journal.pgen.1007065.g002
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Unlike FST, IBD-based relatedness decreased with inter-clinic distance (Figs 1, 4 and 5),

even after adjusting for heterogeneous temporal sampling within the regression model (Tables

2 and 3). Considering barcode data collected from 2001–2010, highly related parasite sample

pairs were negatively associated with distance (km) both before (βunadjusted ΔDistance = -0.026,

p-value = 0.002) and after (βadjusted ΔDistance = -0.023, p-value = 0.002) adjusting for temporal

differences between parasite sample collection dates (Table 2). The spatial trend was of the

Fig 3. FST estimates based on 2001–2014 WGS data plotted with respect to inter-clinic distance.

Annotations refer to site comparisons using abbreviated clinic names (MLA for Maela, 55 parasite samples;

WPA for Wang Pha, 103 parasite samples; MKK for Mae Kon Ken, 4 parasite samples; and MKT for Mawker

Thai, 16 parasite samples). All parasite samples were single-infection. For clinic pair, A and B say, the FST

estimate was based on nA + nB parasite samples, where n denotes the number of parasite samples per clinic.

Error bars represent 95% confidence intervals, based on boostrapping over SNPs.

https://doi.org/10.1371/journal.pgen.1007065.g003

Table 1. Spatial trends in FST estimates based on barcode data.

Data Year/s (no. of parasite samples) *β estimate (p-value) †β estimate (p-value) ‡β estimate (p-value)

Barcode 2001–2010 (1173) -6.16e-05 (0.443) -6.27e-05 (0.440) -3.46e-03 (0.376)

Barcode 2008 (410) -5.69e-05 (0.560) -5.90e-05 (0.558) -3.27e-03 (0.524)

Barcode 2009 (256) 1.27e-04 (0.443) 1.33e-04 (0.440) 5.18e-03 (0.575)

Barcode 2010 (152) 9.40e-06 (0.954) 7.92e-06 (0.957) -7.09e-04 (0.946)

WGS 2001–2010 (178) -6.16e-05 (0.443) -6.27e-05 (0.440) -3.46e-03 (0.376)

WGS 2014 (44) -5.69e-05 (0.560) -5.90e-05 (0.558) -3.27e-03 (0.524)

*β represent spatial trends based on untransformed variables;

†β and ‡β represent spatial trends based on transformations that are linearly related under one and two-dimensional models of isolation by distance,

respectively [51]. P-values are two-tailed and exact, based on all 6! = 720 permutations of the six inter-clinic FST estimates per trend.

https://doi.org/10.1371/journal.pgen.1007065.t001
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same order as the temporal trend (βadjusted ΔWeeks = -0.021, p-value = 0.002). The impact of

distance decreased with time, but the interaction was very small (βadjusted ΔWeeks × ΔDis-

tance = 0.0001, p-value = 0.002). Importantly, the spatial and temporal trends were also nega-

tive upon exclusion of repeat barcodes within clinics (Table C of S2 Text).

WGS data showed similarly negative spatial trends (Fig 5 and Table 3). Since contempora-

neous WGS data from all four clinics was only available in 2014, we excluded prior years in the

regression model, and found significant negative trends both before (βunadjusted ΔDistance =

-0.023, p-value = 0.002) and after (βadjusted ΔDistance = -0.026, p-value = 0.002) adjustment for

temporal differences between parasite sample collection dates. The trend based on data across

Fig 4. Logit-transformed proportions of highly related 2001–2014 barcode parasite sample pairs with

respect to inter-clinic distance. Annotations refer to site comparisons using abbreviated clinic names (MLA for

Maela, 212 parasite samples; WPA for Wang Pha, 457 parasite samples; MKK for Mae Kon Ken, 116 parasite

samples; and MKT for Mawker Thai, 388 parasite samples). All parasite samples were single-infection. For inter-

clinic pair A and B say, the proportion was based on nA × nB parasite sample pairs, where n denotes the number

of parasite samples per clinic. Error bars represent 95% confidence intervals based on bootstrapping over highly

related parasite sample pair labels (equal to 1 if π̂ IBD > 0:5 and 0 otherwise), and are therefore zero where there

are no π̂ IBD > 0:5.

https://doi.org/10.1371/journal.pgen.1007065.g004
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all years was also significant, but only after adjustment for an overall increase in highly related

parasite sample pairs in 2014 (βadjusted 2014 ΔDistance = -0.020, p-value = 0.035).

Independent evidence of spatial trends present in the data

IBD-based analyses recovered spatial and temporal trends where FST did not. Together with

evidence of phenotypic differences in parasites across SMRU clinics [44], our results suggest

IBD-based analyses are sensitive to local spatial genetic structure. To further validate these

findings, we used ChromoPainter [26] to estimate average numbers of segments donated and

received between parasites from different clinics, hereafter referred to as clinic-averaged co-

Fig 5. Logit-transformed proportions of highly related 2001–2014 WGS parasite sample pairs plotted

with respect to inter-clinic distance. Annotations refer to site comparisons using abbreviated clinic names

(MLA for Maela, 55 parasite samples; WPA for Wang Pha, 103 parasite samples; MKK for Mae Kon Ken, 4

parasite samples; and MKT for Mawker Thai, 16 parasite samples). All parasite samples were single-infection.

For inter-clinic pair A and B say, the proportion was based on nA × nB parasite sample pairs, where n denotes the

number of parasite samples per clinic. Error bars represent 95% confidence intervals based on bootstrapping

over highly related parasite sample pair labels (equal to 1 if π̂ IBD > 0:5 and 0 otherwise), and are therefore zero

where there are no π̂ IBD > 0:5.

https://doi.org/10.1371/journal.pgen.1007065.g005

Connectivity between local malaria parasite populations
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Table 2. Trends in highly related barcode parasite sample pairs.

Predictor Year 2001–2010

(1173 parasite samples)

Year 2008

(410 parasite samples)

Year 2009

(256 parasite samples)

Year 2010

(152 parasite samples)

βunadjusted

(p-value)

βadjusted

(p-value)

βunadjusted

(p-value)

βadjusted

(p-value)

βunadjusted

(p-value)

βadjusted

(p-value)

βunadjusted

(p-value)

βadjusted

(p-value)

Intercept -5.54e+00

(1.001)

-4.64e+00

(1.001)

-5.62e+00

(0.002)

-5.40e+00

(0.047)

-4.25e+00

(0.992)

-4.00e+00

(0.992)

-4.19e+00

(0.997)

-3.89e+00

(0.976)

ΔDistance -2.61e-02

(0.002)

-2.27e-02

(0.002)

-9.29e-03

(0.004)

-1.25e-02

(0.004)

-2.87e-02

(0.002)

-3.07e-02

(0.002)

-2.97e-02

(0.002)

-5.28e-02

(0.002)

Maela -4.63e-01

(0.008)

1.33e-01

(0.387)

1.08e+00

(0.090)

9.94e-01

(0.087)

-4.25e-01

(0.507)

-4.21e-01

(0.488)

-6.39e-01

(0.500)

-8.11e-01

(0.405)

Wang Pha 4.78e-01

(0.002)

2.71e-01

(0.011)

9.74e-01

(0.002)

9.56e-01

(0.002)

8.40e-02

(0.719)

3.83e-02

(0.877)

-4.83e-01

(0.326)

-9.41e-01

(0.067)

Mae Kon Ken 1.30e+00

(0.002)

1.04e+00

(0.002)

1.88e+00

(0.003)

1.88e+00

(0.003)

3.85e-01

(0.357)

3.98e-01

(0.372)

-1.44e+01

(0.098)

-1.47e+01

(0.052)

Mawker Thai 3.62e-01

(0.002)

9.34e-01

(0.002)

2.05e+00

(0.002)

2.08e+00

(0.002)

8.77e-01

(0.007)

9.31e-01

(0.004)

-2.17e-01

(0.729)

-5.44e-01

(0.444)

Season NA (NA) 2.22e-01

(0.003)

NA (NA) 1.18e-01

(0.506)

NA (NA) 8.22e-02

(0.696)

NA (NA) 1.25e+00

(0.007)

ΔWeeks NA (NA) -2.05e-02

(0.002)

NA (NA) -1.64e-02

(0.018)

NA (NA) -3.25e-02

(0.007)

NA (NA) -5.13e-02

(0.046)

ΔWeeks × Season NA (NA) -1.27e-03

(0.002)

NA (NA) -7.30e-03

(0.611)

NA (NA) 1.07e-02

(0.529)

NA (NA) -9.03e-02

(0.029)

ΔWeeks ×
ΔDistance

NA (NA) 1.17e-04

(0.002)

NA (NA) 2.19e-04

(0.134)

NA (NA) 2.22e-04

(0.314)

NA (NA) 1.60e-03

(0.002)

P-values are two-tailed Monte Carlo estimates based on 1000 permutations of highly related parasite sample pair labels (equal to 1 if p̂ IBD > 0:5 and 0

otherwise).

https://doi.org/10.1371/journal.pgen.1007065.t002

Table 3. Trends in highly related WGS parasite sample pairs.

Predictor Year 2001–2014

(178 parasite samples)

Year 2014

(44 parasite samples)

βunadjusted

(p-value)

βadjusted

(p-value)

βadjusted 2014

(p-value)

βunadjusted

(p-value)

βadjusted

(p-value)

(Intercept) -4.65e+00 (0.355) -3.90e+00 (0.936) -4.44e+00 (0.565) -1.05e+00 (1.000) -1.85e+01 (0.002)

ΔDistance (km) -8.60e-04 (0.885) -7.58e-03 (0.373) -2.00e-02 (0.035) -2.33e-02 (0.002) -2.64e-02 (0.002)

Maela -1.49e+01 (0.002) -1.56e+01 (0.002) -1.54e+01 (0.002) -1.55e+01 (0.012) -1.80e+01 (0.002)

Wang Pha 2.53e-01 (0.403) -7.68e-01 (0.027) -2.52e-01 (0.490) -4.40e-01 (0.321) -4.42e-01 (0.330)

Mae Kon Ken 4.65e+00 (0.950) 2.00e+00 (1.000) 1.05e+00 (1.001) 1.05e+00 (0.619) 1.07e+00 (0.638)

Mawker Thai 2.85e+00 (0.310) 1.84e-01 (0.809) -7.61e-01 (0.345) -7.47e-01 (0.102) -9.49e-01 (0.039)

Season NA (NA) 1.99e+00 (0.002) 1.48e+00 (0.002) NA (NA) 1.82e+01 (0.002)

ΔWeeks NA (NA) -1.48e-02 (0.002) -1.48e-02 (0.002) NA (NA) -1.38e-02 (0.779)

ΔWeeks × Season NA (NA) 6.61e-04 (0.514) 4.17e-03 (0.002) NA (NA) -1.11e-01 (0.066)

ΔWeeks × ΔDistance NA (NA) -1.26e-04 (0.002) 2.92e-05 (0.090) NA (NA) 5.95e-04 (0.218)

Year NA (NA) NA (NA) 1.97e+00 (0.005) NA (NA) NA (NA)

P-values are two-tailed Monte Carlo estimates based on 1000 permutations of highly related parasite sample pair labels (equal to 1 if p̂ IBD > 0:5 and 0

otherwise).

https://doi.org/10.1371/journal.pgen.1007065.t003
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ancestries (S3 Text). Like IBD-based analyses, ChromoPainter accounts for recombination

[26], and it has been used to study malaria parasite populations in Cambodia [20].

Clinic-averaged WGS co-ancestry estimates showed a similar pattern as proportions of

highly related parasite pairs, declining with inter-clinic distance (Fig B in S3 Text), and thereby

supporting the spatial genetic structure observed in our IBD-based analyses.

Clinic-averaged barcode co-ancestry estimates declined with distance only when consider-

ing both within-clinic and inter-clinic estimates (Fig D in S3 Text). Plots of pairwise estimates

suggest that differences between inter-clinic averaged barcode co-ancestry estimates were

unresolved because the range of estimates was narrow compared with p̂IBD (Fig E in S3 Text),

despite positive correlation with p̂IBD (Fig F in S3 Text). This is expected, however, since Chro-

moPainter is not intended for sparse barcode data.

Calculating sample sizes and sequencing effort required to recover

spatial trends

To assess the sample sizes required to measure connectivity between proximal sites using IBD,

we re-estimated trends using random subsets of the data across all years under temporally

adjusted logistic regression models. Subsets ranged in size from 50 to 1171 barcode parasite

samples, and from 50 to 176 WGS parasite samples. We also considered the impact of sequenc-

ing fewer SNPs, since many studies use a 24-SNP barcode (e.g. [38]). We use an ideal set of 24

SNPs with high minor allele frequency (Fig A in S4 Text), following the experimental design of

a molecular barcode [53]. Our 24-SNP barcode results therefore represent a best-case scenario;

“true” barcodes, which are constructed a priori, will almost surely deviate from this ideal due

to spatiotemporal variations in minor allele frequencies.

Fig 6 shows the relationship between sample size and significant negative spatial trends

observed for different sequencing approaches. We estimated that approximately 147 WGS par-

asite samples, 222 93-SNP barcode parasite samples, and 344 24-SNP barcode parasite samples

were sufficient to recover significant negative trends 95% of the time (Table 4). It is important

to note, however, that spatial trend estimates based on only 24-SNPs converged to -0.004,

whereas equivalent estimates based on 93 or more SNPs converged to -0.023 and -0.020,

respectively (Tables 2 and 3). The comparatively low spatial trend estimate based on only 24

SNPs was not unexpected. Previous studies have shown barcode size limits resolution of low

genome wide identity [38], while simulated data show rapidly decreasing accuracy in p̂IBD with

fewer SNPs [52]. Moreover, due to the bounded nature of p̂IBD, very wide error at low IBD is

liable to result in a bias towards 24-SNP p̂IBD that exceed genome-wide p̂IBD and the 0.5 thresh-

old for highly related parasite sample pairs (Fig B in S4 Text), leading to poor resolution of spa-

tiotemporal trends. We therefore do not recommend the use of 24 SNP barcodes for IBD-

based analyses.

The 93 SNP barcode provided a surprisingly robust estimate of geographic structuring,

however. Like chromosome painting methods [26], IBD-based analyses capture information

based on dependence between SNPs [35]. Although inter-SNP distances are large on the

93-SNP barcode, barcode SNPs are mostly dependent under hmmIBD because the recombina-

tion rate is low (Fig C in S4 Text).

Discussion

Despite the potential utility of genetic data for resolving fine-scale differences in connectivity

among proximal populations in P. falciparum and other species, there are minimal guidelines

about how to quantify gene flow between proximal locations. Here we show that IBD-based

relatedness provides a more robust measure of local spatial structure than FST. Moreover,
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where a trade-off must be made between sample size and sequencing effort, 93 SNPs were suf-

ficient to recover robust spatial trends using relatively few additional parasite samples com-

pared with WGS. This is an important practical insight given the wide availability of historical

barcode data, and the relative cost-effectiveness and ease of generating barcode data compared

to whole genome sequences. We therefore propose that IBD-based relatedness is not only a

useful metric of gene flow between proximal populations, but also that it can be efficiently esti-

mated using 93-SNP barcodes, which are inexpensive and can be generated from parasite

DNA extracted from dried blood spots on filter papers.

Table 4. Models fit to significant negative proportions of spatial trends.

Data type Parameter estimates, for proportions fit to sample

subset size x, f(x) = ecx−3.66/(d + ecx−3.66)

Correlation between data and

fitted points, f(x)

Predicted number of parasite samples† to recover a statistically

significant negative trend 95% of the time, f-1(0.95)

WGS c = 0.03, d = 0.22 0.98 147

93-SNP

Barcode

c = 0.02, d = 0.15 0.97 222

24-SNP

Barcode

c = 0.01, d = 0.17 0.98 344

†All parasite samples were single-infection.

https://doi.org/10.1371/journal.pgen.1007065.t004

Fig 6. Proportions of significant negative spatial trend estimates with respect to data subset sample

size. Spatial trend estimates were based on regression of highly related parasite sample pair labels (equal to

1 if p̂ IBD > 0:5 and 0 otherwise) onto distance, within temporally adjusted models (βadjusted ΔDistance (km) for

barcode data, and βadjusted 2014 ΔDistance (km) for WGS data).

https://doi.org/10.1371/journal.pgen.1007065.g006
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FST estimates were strongly affected by clinics characterized by highly related parasites, and

this association appeared to overwhelm spatial trends. With a view to monitoring malaria par-

asite populations, we consider this apparent sensitivity of FST potentially problematic for its

routine use. This is especially true of regions of declining transmission, where fewer infections

go together with the emergence of increasingly clonal hotspots. Although IBD-based analyses

were not completely impervious to high within-clinic relatedness, they retain their ability to

recover spatial trends. Furthermore, since IBD-based analyses allow explicit estimation of

within-clinic relatedness, its impact on relatedness across populations can be assessed.

We estimated that approximately 147 single-infection WGS parasite samples, or 222 single-

infection 93-SNP barcode parasite samples, were required to recover robust spatial trends. In

very low transmissions settings, such as those where the number of cases has dropped below

the World Health Organization’s pre-elimination threshold of 1 infection per 1000 persons

per year, the number of parasite samples required to estimate spatial trends would in many

cases exceed the number of cases. Here, p̂IBD could still be used to assess relatedness between

individual cases and suspected source populations, which may be critical given the World

Health Organization’s definition of elimination, which requires no local cases for 3 years, but

allows for imported ones. Although our analyses suggest 93-SNP barcodes are sufficient to

recover robust spatial trends at the population level, we do not recommend using 93-SNP bar-

codes for standalone analyses of individual parasite sample pairs due to large expected error in

that application ([52] and Fig B in S4 Text). In high transmission settings overall relatedness

will likely decrease due to increased recombination. To account for low population-level relat-

edness, one could genotype more SNPs and decrease the threshold for highly related sample

pairs. Ideally one would also use a model capable of estimating IBD from complex samples of

multiple-genotype infections, since these are liable to increase in abundance with transmission

[54]. Henden et al. recently proposed an IBD model that can support parasite samples with

one or two parasite strains [31], although it doesn’t currently output p̂IBD directly. Models

capable of supporting parasite samples with three or more strains are lacking.

Although this combined set of barcode and WGS data is one of the largest of its kind, the

sampling design was not intended for the question at hand. However, despite uneven sampling

in time and space we find evidence of spatial genetic structure on the Thai-Myanmar border,

which is consistent with earlier reports of phenotypic differences between parasites from dif-

ferent clinics [44]. Evidence of spatial structure is also supported by results from an indepen-

dent method ChromoPainter [26]. Akin to IBD-based analyses, ChromoPainter leverages the

wealth of haplotypic information in WGS data, but struggles to resolve variation in 93-SNP

barcode data, for which it was never intended. Regardless of the method used, evidence of spa-

tial structure calls for a better understanding of the drivers that sustain spatial trends. Epidemi-

ological models parameterized by human mobility data have been used to estimate the spatial

spread of pathogens in some cases [55–58], but data on human migration are difficult to

obtain, particularly in sparsely populated areas and in regions near international borders,

where there are political sensitivities around measuring migration.

Analyses of spatial genetic structure are common beyond malaria (e.g. studies of pollen dis-

persal [59–62]). Measures used are largely variants of IBS and therefore sensitive to the marker

system and reference population [62]. Unlike IBS-based methods, IBD-based methods explic-

itly account for the marker scheme by conditioning on allele frequencies. They could thus

prove useful as IBS surrogates in spatial studies of other recombining organisms [63–66].

In summary, we propose that IBD-based relatedness will prove useful in the malaria field

and in other infectious disease systems to compare data collected from local sites, from areas

with more complex topologies, and where data are available, to compare human and parasite
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movement. IBD-based relatedness could also prove useful beyond epidemiological applica-

tions to complement spatial analyses of other sexually recombining organisms.

Materials and methods

Data

The barcode data were generated as part of a longitudinal trial of artemisinin resistance and its

genetic heritability [44], then later reanalyzed to identify correlates of declining malaria trans-

mission [45]. Full details of sample collection and laboratory methods can be found in [44]

and [45]. Briefly, 1173 filter paper blood spots were collected between 2001 and 2010 from

hyper-parasitaemic patients (> 4% infected red blood cells) with uncomplicated P. falciparum
malaria presenting at four SMRU clinics on the Thai-Myanmar border (Fig 1). DNA extracted

using a two-step protocol was successfully genotyped at 93 SNPs using the Illumina Golden-

Gate platform. The 93 SNPs were distributed across the P. falciparum genome (Fig A in S4

Text), but not in regions likely under strong selection (supporting information of [45]). In

total, 558 parasite samples were considered multiple-infection (containing more than one

P. falciparum genotype), based on 6 or more heteroallelic genotyping outcomes [45], while

1173 were considered single-infection. Analyses in this study were based on single-infection

parasite samples only (S2 Table). The WGS data were generated from 178 parasite samples col-

lected between 2001–2014 from the same four clinics (S3 Table). Full details of sample collec-

tion and sequencing workflow can be found in [40]. Briefly, parasite samples collected prior to

2010 were derived from a single-infection subset of the aforementioned dried blood spots,

selected such that no two showed identical 93-SNP genotypes, and sequenced following hybrid

selection on an Illumina HiSeq 2500 platform. Parasite samples collected from 2010 onwards

were collected as venous blood and directly sequenced on an Illumina HiSeq 2500 platform

following leukocyte depletion. As described by Cerqueira and collegues [40], reads were

aligned to the P. falciparum 3D7 v3 reference genome, genotypes called and sites filtered.

Those removed included heterozygous sites, indels, sites with QUAL< 60, GQ< 30, polymor-

phic sites located in pericentromeric, subtelomeric and hypervariable regions, and sites occur-

ring in genes belonging to large antigenic gene families. In addition to the sites listed above,

we removed 121 sites with reference or alternative allele assignments indicating potential

indels, monomorphic sites, sites lacking genotype calls in 20% or more of the parasite samples,

and mitochondrial and apicoplast sites, leaving a total of 34911 polymorphic biallelic SNPs.

Data analyses

Aside from IBD estimates generated using hmmIBD (v2.0.0) [52], and co-ancestry estimates

generated by the ChromoPainter package within fineSTRUCTURE version 2 [26], all data

analyses were performed in R [67]. P-values less than 0.05 were considered significant and

were calculated by permutation. They were exact if the number of possible permutations was

less than 1000, otherwise they were Monte Carlo estimates [68]. Monte Carlo p-values can

overestimate true p-values [69]; however, overestimation is small when the number of ran-

domly sampled permutations, n, is large (at least 99 [68]). We use n = 100 when assessing the

sensitivity of spatial trends to sample size (see below) and in sensitivity tests (Fig Q in S2 Text),

otherwise n = 1000. All p-values were two-tailed, with the exception of those for FST estimates

(Tables 1 and 2 of S1 Text), since FST is non-negative. Two-tailed p-values were calculated by

summation over left and right-hand tails.

Estimates of divergence between population pairs. Pairwise divergence estimates were

based on Wright’s fixation index (FST) [29,30]. To estimate FST, we used Hudson’s estimator

[48], whose explicit formulation can be found in [47] and [49]. We chose this particular
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estimator because it is recommended for small and unequal sample sizes [49,50], and is asymp-

totically consistent in the number of loci [47,49]. The significance of each pairwise FST estimate

was tested by 1000 permutations of the clinic labels, thereby assuming FST = 0 under the null

hypothesis. Following [70], 95% confidence intervals were obtained by bootstrapping over

SNPs 1000 times.

Estimates of relatedness between parasite sample pairs. Relatedness estimates were

based on the expected fraction IBD, p̂IBD, a probabilistic measure of the fraction of the genome

inherited by a pair of parasites from a recent common ancestor. For all pairwise comparisons

of parasite samples in the barcode and WGS data sets, we estimated p̂IBD using hmmIBD [52].

Specifically to estimate p̂IBD, we calculated the posterior probability of the IBD state at the posi-

tion of each SNP (equation 38 in [71]) using the forward-backward algorithm as described in

[71], then averaged these probabilities over the T SNPs across the genome,

p̂IBD ¼
1

T

XT

t¼1
PðIBDatposition t jdata; modelÞ:

p̂IBD can be interpreted as the expected number of IBD state assignments over the genome,

divided by the number of SNPs, and is thus a measure of the fraction of the genome inherited

by a pair of parasites from a recent common ancestor. Unlike estimates based on the Viterbi

path [71], it is not dependent on a single sequence assignment. hmmIBD requires the position

of each SNP measured in base pairs, since the probability of transitioning between IBD and

non IBD states is considered a function of the distance between SNPs (S4 Text and [52]).

When inferring IBD, sequencing data are sometimes pruned to account for linkage disequilib-

rium [72]. We did not prune our WGS data, however. hmmIBD also requires point estimates

of allele frequencies in order to calculate the probability of observing concordance or discor-

dance between genotype calls across parasite sample pairs. Given little evidence of differences

in allele frequency point estimates across clinics or over years (S4 Table), we used allele fre-

quency estimates based on data across all years and clinics for both barcode and WGS data

respectively.

Highly related parasite sample pairs. To investigate spatial trends we focused on highly

related parasite sample pairs (those with p̂IBD > 0:5), since they were considered more likely

representative of recent migration (S2 Text). The 0.5 threshold was based on empirical density

plots of p̂IBD (Fig A to J in S2 Text). It is approximately equal to the mean relatedness between

progeny derived from experimental P. falciparum crosses [73]. Large translations around 0.5

recovered significant negative spatial trends (see section below for details) over highly related

barcode parasite sample pairs (Fig Q in S2 Text, top row), while only small translations around

0.5 recovered significant spatial trends in WGS parasite sample pairs (Fig Q in S2 Text, bottom

row).

Logit-transformed proportions of highly related parasite sample pairs were calculated

within and across clinics and plotted against inter-clinic distance (non-transformed equiva-

lents can be found in S2 Text). 95% confidence intervals were generated by bootstrapping over

highly related parasite sample pair labels (equal to 1 if p̂IBD > 0:5 and 0 otherwise) 1000 times,

and are thus zero where there are no p̂IBD > 0:5:

Clinic-averaged co-ancestry estimates. To support results based on highly related para-

site sample pairs, additional evidence of spatial structure in the data was sought. We used the

ChromoPainter package implemented within the standard pipeline of FineSTRUCTURE ver-

sion 2 (fs-2.1.1) [26], to estimate the co-ancestry matrix of the WGS and barcode data. Linked

analyses were performed using a uniform recombfile with recombination rate 7.4 × 10−7 Mor-

gans per base pair [74], while unlinked analyses were performed by omitting the recomfile.

For both linked and unlinked analyses, we set ploidy equal to one. The co-ancestry matrix
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contains estimated counts of DNA segments received and donated between parasites, where

each SNP is considered an independent segment under the unlinked analysis. To construct

clinic-averaged co-ancestry estimates, we averaged the received and donated counts within

and across clinics. To explore spatial structure and concordance with IBD-based analyses,

clinic-averaged co-ancestry estimates were regressed onto inter-clinic distance, and compared

with corresponding estimates based on IBD (S3 Text).

Spatial trends in divergence. Divergence trends were assessed by regressing FST estimates

onto inter-clinic great circle distance in kilometers (km), where great circle distance is the dis-

tance between two clinics on the earth’s surface. Specifically, we estimated spatial estimates

using untransformed variables following the regression model, FST = intercept + (�β × inter-

clinic distance) + ε, where �β represents the spatial trend, and ε is assumed to be normally dis-

tributed with mean zero and variance σ2. In addition, we explored trends in transformed vari-

ables following [51]. More specifically, we fit FST / (1- FST) = intercept + (†β × inter-clinic

distance) + ε, where †β represents the spatial trend under a one-dimensional model of isola-

tion by distance, and ε is defined above; and FST / (1- FST) = intercept + (‡β × log(inter-clinic

distance)) + ε, where ‡β represents the spatial trend under a two-dimensional model of isola-

tion by distance, and ε is defined above. Two-tailed exact p-values were generated using all

6! = 720 permutations of the FST estimates, thereby assuming no trend under the null

hypothesis.

Spatial trends in relatedness. IBD-based relatedness trends were assessed by regressing

highly related parasite sample pair labels (equal to 1 if p̂IBD > 0:5 and 0 otherwise) onto inter-

clinic distance (km) under a logistic model framework with and without temporal predictors

as outlined below and in S2 Text. Models fit without temporal predictors included an intercept

term, inter-clinic distance (ΔDistance, measured in km as defined above for FST), and a predic-

tor per clinic (equal to one if both parasite samples within a pair were collected in the corre-

sponding clinic and zero otherwise) to account for variance between clinics at ΔDistance = 0.

The structure of the temporally adjusted models was based on a preliminary analysis of eight

models fit to barcode data (full details can be found in S2 Text). The eight models were com-

pared using the Akaike information criterion (AIC), a model comparison score that favors

comparatively low values [75]. Temporal predictors included ΔTime between parasite sample

collection dates measured to the nearest day, week, month or year; Season, equal to one if two

parasite samples within a pair were collected in spring, summer or both; and interactions

between ΔTime, Season and ΔDistance. The chosen model included four temporal predictors:

Season, ΔTime measured in weeks (ΔWeeks), and two interaction terms (ΔWeeks × Season

and ΔWeeks × ΔDistance), allowing the impact of season and inter-clinic distance to vary with

weeks between parasite sample collection dates. To account for an increase in IBD in 2014 (Fig

N in S2 Text), we introduced an additional predictor to models fit to WGS data, year 2014,

true if both parasite samples within a pair were collected in 2014 and false otherwise. Regres-

sion coefficient estimates fit under models with and without temporal predictors were denoted

βadjusted and βunadjusted, respectively. Those fit under the model with the additional year 2014

predictor were denoted βadjusted 2014. Two-tailed Monte Carlo p-values of the regression coeffi-

cients were generated by 1000 permutations of highly related parasite sample pair labels (equal

to 1 if p̂IBD > 0:5 and 0 otherwise), thereby assuming non-intercept regression coefficients

equal to zero under the null hypothesis.

The sensitivity of spatial trends to the sample size. Sensitivity to sample size was

assessed by sequentially sampling random subsets of the data, and re-estimating spatial trends.

Spatial trend estimates were generated under the temporally adjusted logistic regression

framework, with the year 2014 predictor for WGS data, thereby accounting for fluctuations in

sample sizes over clinics and time induced by random sampling. Random subsets ranged from

Connectivity between local malaria parasite populations

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007065 October 27, 2017 15 / 20

https://doi.org/10.1371/journal.pgen.1007065


50 to 176 parasite samples for WGS data, and 50 to 1171 for barcode data. We also considered

a smaller barcode by reanalyzing the barcode data using 24 of the 93 SNPs with the highest

minor allele frequencies. For each subset size, subsampling was repeated 100 times. For each

random subset, two-tailed Monte Carlo p-values were generated by 100 permutations of the

highly related parasite sample pair labels (equal to one if p̂IBD > 0:5 and zero otherwise). We

then calculated the proportion of negative and significant spatial trend estimates for each sub-

set size, x, including only estimates generated from logistic regression analyses that successfully

converged, and fit logistic regression curves to the proportions using the nonlinear least

squares (Table 4). We added two artificial data points equal to 0.025 at x = 0, to constrain

curves to tend to 0.025 as x tends to 0. Finally, we found the sample sizes corresponding to

95% significant negative spatial trend estimates by inversion of the fitted nonlinear curves.
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