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Abstract
Chloroplast genomes in land plants contain approximately 100 genes, the majority of which

reside in polycistronic transcription units derived from cyanobacterial operons. The expres-

sion of chloroplast genes is integrated into developmental programs underlying the differen-

tiation of photosynthetic cells from non-photosynthetic progenitors. In C4 plants, the

partitioning of photosynthesis between two cell types, bundle sheath and mesophyll, adds

an additional layer of complexity. We used ribosome profiling and RNA-seq to generate a

comprehensive description of chloroplast gene expression at four stages of chloroplast dif-

ferentiation, as displayed along the maize seedling leaf blade. The rate of protein output of

most genes increases early in development and declines once the photosynthetic appara-

tus is mature. The developmental dynamics of protein output fall into several patterns. Pro-

grammed changes in mRNA abundance make a strong contribution to the developmental

shifts in protein output, but output is further adjusted by changes in translational efficiency.

RNAs with prioritized translation early in development are largely involved in chloroplast

gene expression, whereas those with prioritized translation in photosynthetic tissues are

generally involved in photosynthesis. Differential gene expression in bundle sheath and

mesophyll chloroplasts results primarily from differences in mRNA abundance, but differ-

ences in translational efficiency amplify mRNA-level effects in some instances. In most

cases, rates of protein output approximate steady-state protein stoichiometries, implying a

limited role for proteolysis in eliminating unassembled or damaged proteins under non-

stress conditions. Tuned protein output results from gene-specific trade-offs between trans-

lational efficiency and mRNA abundance, both of which span a large dynamic range. Analy-

sis of ribosome footprints at sites of RNA editing showed that the chloroplast translation

machinery does not generally discriminate between edited and unedited RNAs. However,

editing of ACG to AUG at the rpl2 start codon is essential for translation initiation, demon-

strating that ACG does not serve as a start codon in maize chloroplasts.

Author Summary

Chloroplasts are subcellular organelles in plants and algae that carry out the core reactions
of photosynthesis. Chloroplasts originated as cyanobacterial endosymbionts. Subsequent
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coevolution with their eukaryotic host resulted in a massive transfer of genes to the nuclear
genome, the acquisition of new gene expression mechanisms, and the integration of chlo-
roplast functions into host programs. Chloroplasts in multicellular plants develop from
non-photosynthetic proplastids, a process that involves a prodigious increase in the
expression of chloroplast genes encoding components of the photosynthetic apparatus.
We used RNA sequencing and ribosome profiling to generate a comprehensive description
of the dynamics of chloroplast gene expression during the transformation of proplastids
into the distinct chloroplast types found in bundle sheath and mesophyll cells in maize.
Genes encoding proteins that make up the chloroplast gene expression machinery peak in
protein output earlier in development than do those encoding proteins that function in
photosynthesis. Programmed changes in translational efficiencies superimpose on changes
in mRNA abundance to shift the balance of protein output as chloroplast development
proceeds. We also mined the data to gain insight into general features of chloroplast gene
expression, such as relative translational efficiencies, the impact of RNA editing on transla-
tion, and the identification of rate limiting steps in gene expression. The findings clarify
the parameters that dictate the abundance of chloroplast gene products and revealed
unanticipated phenomena to be addressed in future studies.

Introduction
The evolution of chloroplasts from a cyanobacterial endosymbiont was accompanied by a mas-
sive transfer of bacterial genes to the nuclear genome, and by the integration of chloroplast pro-
cesses into the host’s developmental and physiological programs [1]. In multicellular plants,
chloroplasts differentiate from non-photosynthetic proplastids in concert with the differentia-
tion of meristematic cells into photosynthetic leaf cells. This transformation is accompanied by
a prodigious increase in the abundance of the proteins that make up the photosynthetic appa-
ratus, which contribute more than half of the protein mass in photosynthetic leaf tissue [2].
Both nuclear and chloroplast genes contribute subunits to the multisubunit complexes that
participate in photosynthesis. The expression of these two physically separated gene sets is
coordinated by nucleus-encoded proteins that control chloroplast gene expression, and by sig-
nals emanating from chloroplasts that influence nuclear gene expression [1, 3]. Beyond these
general concepts, however, little is known about the mechanisms that coordinate chloroplast
and nuclear gene expression in the context of the proplastid to chloroplast transition. Further-
more, a thorough description of the dynamics of chloroplast gene expression during this pro-
cess is currently lacking.

Despite roughly one billion years of evolution, the bacterial ancestry of the chloroplast
genome is readily apparent in its gene organization and gene expression mechanisms. Most
chloroplast genes in land plants are grouped into polycistronic transcription units [4] that are
transcribed by a bacterial-type RNA polymerase [5] and translated by 70S ribosomes that
strongly resemble bacterial ribosomes [6]. As in bacteria, chloroplast ribosomes bind mRNA at
ribosome binding sites near start codons, sometimes with the assistance of a Shine-Dalgarno
element [6]. Superimposed on this ancient scaffold are numerous features that arose post-
endosymbiosis [7]. For example, a phage-type RNA polymerase collaborates with an RNA
polymerase of cyanobacterial origin [5], and chloroplast RNAs are modified by RNA editing,
RNA splicing, and other events that are either unusual or absent in bacteria [8].

Ribosome profiling data from E. coli revealed that the rate of protein output from genes
encoding subunits of multisubunit complexes is proportional to subunit stoichiometry, and
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that proportional synthesis is typically achieved by differences in the translational efficiency
of genes residing in the same operon [9, 10]. As the majority of chloroplast gene products are
components of multisubunit complexes, it is of interest to know whether similar themes
apply. Furthermore, the gene content of polycistronic transcription units in chloroplasts has
diverged from that in the cyanobacterial ancestor. Has “tuned” protein output been main-
tained in chloroplasts despite this disrupted operon organization? If so, what mechanisms
achieve this tuning in light of the new gene arrangements and the new features of mRNA
metabolism?

In this work, we used ribosome profiling to address these and other questions of chloroplast
gene regulation in the context of the proplastid to chloroplast transition. For this purpose, we
took advantage of the natural developmental gradient of the maize seedling leaf blade, where
cells and plastids at increasing stages of photosynthetic differentiation form a developmental
gradient from base to tip [11]. By using the normalized abundance of ribosome footprints as
a proxy for rates of protein synthesis, we show that the rate of protein output from many chlo-
roplast genes is tuned to protein stoichiometry, and that tuned protein output is achieved
through gene-specific balancing of mRNA abundance with translational efficiency. This com-
prehensive analysis revealed developmentally programmed changes in translational efficien-
cies, which superimpose on programmed changes in mRNA abundance to shift the balance of
protein output as chloroplast development proceeds.

Results

Experimental design
We analyzed tissues from the same genetic background and developmental stage as used in
previous proteome [2] and nuclear transcriptome [12, 13] studies of photosynthetic differentia-
tion in maize. Four leaf sections were harvested from the third leaf to emerge in 9-day old seed-
lings (Fig 1A): the leaf base (segment 1), which harbors non-photosynthetic proplastids; 3–4
cm above the base (segment 4), representing the sink-source transition and a region of active
chloroplast biogenesis; 8–9 cm above the base (segment 9), representing young chloroplasts;
and a section near the tip (segment 14) harboring mature bundle sheath and mesophyll chloro-
plasts [2, 12]. The developmental transitions represented by these fractions are illustrated in
the immunoblot assays shown in Fig 1B. The mitochondrial protein Atp6 is most abundant in
the two basal sections, subunits of photosynthetic complexes (AtpB, PetD, PsaD, PsbA, NdhH,
RbcL) are most abundant in the two apical sections, and a chloroplast ribosomal protein (Rpl2)
exhibits peak abundance in the two middle sections. These developmental profiles are consis-
tent with prior proteome data [2].

To explore the contribution of differential chloroplast gene expression to the distinct prote-
omes in bundle sheath and mesophyll cells, we also analyzed bundle sheath and mesophyll-
enriched fractions from the apical region of seedling leaves. Standard protocols for the separa-
tion of bundle sheath and mesophyll cells involve lengthy incubations that are likely to cause
changes in ribosome position. We used a rapid mechanical fractionation method that mini-
mizes the time between tissue disruption and the generation of ribosome footprints (see Mate-
rials and Methods). Markers for each cell type were enriched 5- to 10-fold in the corresponding
fraction (Fig 1C). This degree of enrichment is comparable to that of the fractions used to
define mesophyll and bundle sheath-enriched proteomes in maize [14].

We modified our previous method for preparing ribosome footprints from maize leaf tissue
[15] to reduce the amount of time and tissue required, and to reduce contamination by non-
ribosomal ribonucleoprotein particles (RNPs). In brief, leaf tissue was flash frozen and ground
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in liquid N2, thawed in a standard polysome extraction buffer, and treated with Ribonuclease I
to liberate monosomes. Ribosomes were purified by pelleting through a sucrose cushion under
conditions that leave chloroplast group II intron RNPs (~600 kDa) [16] in the supernatant
(S1A Fig). RNAs between approximately 20 and 35 nucleotides (nt) were gel purified and con-
verted to a sequencing library with a commercial small RNA library kit that has minimal
ligation bias [17]. rRNA contaminants were depleted after first strand cDNA synthesis by
hybridization to biotinylated oligonucleotides designed to match abundant contaminants
detected in pilot experiments (S1 Table). Approximately 35 million reads were obtained for
each “Ribo-seq” replicate, roughly 50% of which aligned to mRNA (S2 Table). RNA-seq data
was generated from RNA extracted from aliquots of each lysate taken prior to addition of
RNAse I. Replicate RNA-seq and Ribo-seq assays showed high reproducibility (Pearson corre-
lation of>0.98, S2 Fig). Almost all plastid genes were represented by at least 100 reads per
replicate in all datasets (S3 Fig). Several clusters of low abundance reads mapped to small unan-
notated ORFs, but further investigation is required to evaluate which, if any, of these are the
footprints of translating ribosomes.

Fig 1. Tissue samples used for ribosome profiling. (A) Leaf segments analyzed in this study. The
indicated segments were excised from leaf 3 of nine-day-old seedlings. The segments are numbered
according to the nomenclature of [13]. (B) Immunoblots showing abundance of marker proteins in the leaf
gradient tissue used for ribosome profiling. Replicate immunoblots were probed with antibodies to subunits of
the chloroplast ATP synthase (AtpB), cytochrome b6f complex (PetD), Photosystem I (PsaD), Photosystem II
(D1), the NDH-like complex NdhH), chloroplast ribosomes (Rpl2), and mitochondrial ATP synthase (Atp6).
Samples were loaded on the basis of equal protein. An image of one blot stained with Ponceau S (below)
serves as a loading control and illustrates the abundance of the large subunit of Rubisco (RbcL). PT, plastid
proteins; MT, mitochondrial protein. (C) Replicate immunoblots showing abundance of marker proteins in
mesophyll (M) and bundle sheath (BS) fractions used for ribosome profiling. Samples were loaded on the
basis of equal protein. An image of one blot stained with Ponceau S (below) illustrates the abundance of
several marker proteins. PEPC, phosphoenolpyruvate carboxylase; PPDK, pyruvate orthophosphate
dikinase; ME, NADP-dependent malic enzyme; other abbreviations as in panel (B).

doi:10.1371/journal.pgen.1006106.g001
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Characteristics of ribosome footprints in the chloroplast, mitochondrion,
and cytosol
Ribosomes in the cytosol, mitochondria, and chloroplasts have distinct genetic origins. Accord-
ingly, the ribosome footprints from each compartment displayed different size distributions
(Fig 2A). The cytosolic ribosome footprints showed a minor peak at 23 nucleotides and a
major peak at 31 nucleotides, similar to observations in yeast [18]. The mitochondrial data
showed a major peak at 28–29 nucleotides and a minor peak at 36 nucleotides, similar to the 27
and 33-nt peaks reported for human mitochondria [19]. The plastid ribosome footprints had a
broad size distribution suggestive of two populations, with peaks at approximately 30 and 35
nucleotides. A similar distribution was observed in pilot experiments involving the gel purifica-
tion of RNAs up to 40-nt (S1B Fig) indicating that the peak at 35-nt was not an artifact of our
gel purification strategy. A broad and bimodal size distribution was also observed for chloro-
plast ribosome footprints from the single-celled alga Chlamydomonas reinhardtii, albeit with
peaks at slightly different positions [20]. The two prior reports of ribosome footprint size
distributions in plants [21, 22] did not parse the data from the three compartments, but the
31-nucleotide modal size reported in those studies is consistent with our data. Our data show
the 3-nucleotide periodicity expected for ribosome footprints (Fig 2B and 2C). Interestingly,
the degree of periodicity varies with footprint size (S4 Fig). The reads are largely restricted to
open reading frames in the cytosol (Fig 2C) and chloroplast (Fig 2D). Taken together, these
results provide strong evidence that the vast majority of the Ribo-seq reads come from bona-
fide ribosome footprints.

The placement of ribosome P and A sites with respect to ribosome footprint termini has not
been reported for any organellar ribosomes or for cytosolic ribosomes in maize. A meta analy-
sis of our data showed that the position of the 3’ end of ribosome footprints from initiating and
terminating ribosomes in chloroplasts and mitochondria is constant with respect to start and
stop codons, respectively, regardless of footprint size; however, the position of the 5’ ends varies
with footprint size (Fig 2E, S4C Fig). Therefore, the positions of the A and P sites in organellar
ribosomes can be inferred based on the 3’-ends of their footprints, as is also true for bacterial
ribosomes [23, 24]. The modal distance between the start of the P site in chloroplast ribosomes
and the 3’-ends of chloroplast ribosome footprints is 7 nucleotides. By contrast, cytosolic ribo-
some footprints are approximately centered on the P site regardless of footprint size (S4B Fig).

The partitioning of ribosome footprints among the three genetic compartments shifts dra-
matically during the course of leaf development (Fig 2G). The contribution of cytosolic transla-
tion drops from 99% at the leaf base to 57% in the apical leaf sections due to the increasing
contribution of ribosome footprints from chloroplasts. This shift of cellular resources towards
chloroplast translation corresponds with the massive increase in the content of photosynthetic
complexes harboring plastid-encoded subunits (Rubisco, PSII, PSI, cytochrome b6f, ATP
synthase, NDH) (Fig 1). Ribosome footprints from mitochondria accounted for a very small
fraction of the total at all stages. However, our protocol was not optimized for the quantitative
recovery of mitochondrial ribosomes so these data may not reflect the total mitochondrial ribo-
some population.

The translational output of most chloroplast genes is tuned to the
stoichiometry of their products
In the discussion below we define the “translational output” of a gene as the abundance of ribo-
some footprints per kb per million reads mapped to nuclear coding sequences (RPKM), and
we use this value to compare rates of protein synthesis among genes on a molar basis. This is
a typical interpretation of Ribo-seq data, and it is based on evidence that the bulk rate of
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Fig 2. Characteristics of ribosome footprints from the cytosol (CYT), plastids (PT), andmitochondria (MT). (A)
Size distribution of ribosome footprints. Values are the mean ± Standard Error of the Mean (SEM) from the twelve leaf
segment datasets. (B) Three-nucleotide periodicity of Ribo-seq data. Histograms show the abundance of reads
representing P-site placement in each of the three reading frames. P-site placements were inferred based on the
footprint size and the size-dependent P-site positions inferred from our data (see panel E and S4 Fig). Values are the
mean ± SEM from the 12 leaf segment datasets. (C)Meta-analysis of cytosolic ribosome footprints mapping near the
start and stop codons of cytosolic ORFs in the leaf gradient datasets. Values show the number of 31-nt footprints with
5’ ends at each position. (D) Example of Ribo-seq and RNA-seq coverage in a chloroplast polycistronic transcription
unit. Reads are combined from the twelve leaf segment datasets. The group II intron in the atpF gene is marked. (E)
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translation elongation on all ORFs is similar under any particular condition, despite the fact
that ribosome pausing can lead to the over-representation of ribosomes at specific positions [9,
25]. Although this may be an over simplification in some instances, this interpretation of our
data produced results that are generally coherent with current understanding of chloroplast
biogenesis (see below). Group II introns interrupt eight protein-coding genes in maize chloro-
plasts. These present a challenge for data analysis because the unspliced transcripts make up a
substantial fraction of the RNA pool [16] and translation can initiate on unspliced RNAs and
terminate within introns [15]. We therefore calculated translational output based solely on
the last exon (normalized to exon length). Data summaries presented below include RNA-seq
data only for that subset of intron-containing genes for which multiple methods of analysis
provided consistent values for the abundance of spliced RNA isoforms (see Materials and
Methods).

Fig 3 summarizes the abundance of Ribo-seq and RNA-seq reads from protein-coding chlo-
roplast genes in each of the four leaf segments. To display the low values from Segment 1, they
are replotted with a smaller Y-axis scale in S5 Fig. The abundance of mRNA from genes in the
same transcription unit (Fig 3A and S5A Fig, bracketed arrows) is typically similar, but the pro-
tein output of co-transcribed genes varies considerably. Translational efficiency (translational
output /mRNA abundance) varies widely among genes (Fig 3A and S5A Fig, bottom). The
atpHmRNA is the most efficiently translated of any chloroplast mRNA at all four develop-
mental stages, surpassing even psbA, whose product is the most rapidly synthesized protein in
photosynthetic tissues [26]. Prodigious psbA expression results from very high mRNA abun-
dance in combination with a translational efficiency that is comparable to that of other photo-
system genes.

When the data are grouped according to gene function, correlations between function and
translational output become apparent (Fig 3B). For example, the translational output of genes
encoding subunits of ribosomes and the NDH complex are consistently very low, whereas the
translational output of genes encoding subunits of PSI, PSII, the ATP synthase, and the cyto-
chrome b6f complex are consistently much higher. These trends mirror the abundance of these
complexes as inferred from proteome data [27]. The data for complexes whose subunits are
not found in a 1:1 ratio show further that translational output is tuned to subunit stoichiome-
try. For example, the chloroplast-encoded subunits of the ATP synthase (AtpA, AtpB, AtpE,
AtpF, AtpH, AtpI) are found in a 3: 3: 1: 1: 14: 1 molar ratio in the complex [28, 29]. The trans-
lational output of their genes mirrors this stoichiometry quite well, whereas mRNA abundance
does not (Fig 4A). These genes are distributed between two transcription units (Fig 4A). A sin-
gle mRNA encodes AtpB and AtpE, whose rates of synthesis are tuned via differences in trans-
lational efficiency. The atpI-atpH-atpF-atpA primary transcript is processed to yield various
smaller isoforms [30] but the abundance of RNA from each gene is nonetheless quite similar
(Fig 4A). The translational output of the atpH gene is boosted relative to that of its neighbors
primarily through exceptionally high translational efficiency (Fig 4A bottom). In a second
example, the unequal stoichiometry of subunits of the plastid-encoded RNA polymerase (PEP)
(2 RpoA:1 RpoB:1 RpoC1:1 RpoC2) [5] is mirrored by the relative translational output of the

Meta-analysis of plastid ribosome footprints that map to start and stop codons. The data from the twelve leaf gradient
datasets are parsed by footprint size. (F) Placement of plastid ribosome footprints with respect to the E, P, and A sites
of the ribosome. The 5’-end placement varies with footprint size, while the 3’-end is constant at 7-nt downstream from
the start of the P site (see data in panel E). (G) Partitioning of translational output among the three genetic
compartments during photosynthetic differentiation. Values represent the average from three biological replicates.
Note that the footprints frommitochondrial ribosomesmay be under-represented due to the protocol used here.

doi:10.1371/journal.pgen.1006106.g002
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Fig 3. Genome-wide views of the plastid translatome and transcriptome during the proplastid to chloroplast transition. The data are expressed
as reads per kilobase per million reads mapping to nuclear genome coding sequences (RPKM). Translational output is defined as Ribo-seq RPKM.
mRNA level is defined as RNA-seq RPKM. Translational efficiency is calculated as the ratio of translational output to mRNA level. Values are the
mean ± SEM from three replicates. Intron-containing genes are marked with a superscript i. Genes for which RNA levels and translational efficiency were
not determined (n.d.) are marked (#). These include intron-containing genes for which the fraction of reads derived from spliced transcripts is uncertain,
and petN, whose short mRNA is not represented quantitatively in the RNA-seq data. Genes encoding assembly factors are marked with asterisks. Other
genes encode structural components of the complexes indicated in panel B. (A) Translational output, RNA abundance and translational efficiency
displayed according to native gene order. Co-transcribed genes are marked with arrows that indicate the direction of transcription. (B) Translational
output and RNA abundance displayed according to gene function. Genes encoding assembly factors are demarcated from the structural genes with
dashed lines. The data for each functional group are plotted separately in Fig 4 and S6 Fig using Y-axis scales suited for the relevant values. The data for
Segment 1 are displayed with a different Y-axis scale in S5 Fig.

doi:10.1371/journal.pgen.1006106.g003
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Fig 4. Comparison of protein stoichiometry, translational output andmRNA abundance for several complexes. Values represent the
mean ± SEM from three replicates. RNA-seq data are not provided for ycf3 due to uncertainty about the proportion of its transcripts that are fully
spliced. Genes with introns are marked with superscript i. Genes encoding assembly factors are marked with asterisks. n.d. not determined. (A)
Plastid genes encoding ATP synthase subunits. The Output Ratio values are averages of those in leaf segments 4, 9 and 14. The chloroplast
transcription units encoding ATP synthase subunits are shown below, and are annotated with translational efficiencies from leaf segment 9. (B)
Plastid genes encoding RNA polymerase subunits. The Output Ratio values are averages of those in leaf segments 1 and 4. The chloroplast
transcription units encoding RNA polymerase subunits are shown below, and are annotated with translational efficiencies from leaf segment 9.
Genes upstream of rpoA on the same polycistronic transcript are included to provide context. (C) Plastid genes encoding PSI subunits and assembly
factors. Two of the chloroplast transcription units encoding PSI-related proteins are diagrammed below and annotated with translational efficiencies
from leaf segment 9. (D) Plastid genes encoding PSII subunits and assembly factors.

doi:10.1371/journal.pgen.1006106.g004
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corresponding genes (Fig 4B). In this case, however, tuning occurs primarily at the level of
mRNA accumulation.

The plastid-encoded subunits of PSI, PSII, the cytochrome b6f complex, the NDH complex,
and chloroplast ribosomes are found in equal numbers in their respective complex. Genes
encoding subunits of each of these complexes are distributed across multiple transcription
units, many of which also encode subunits of other complexes. This gene organization some-
times results in considerable disparity in mRNA level among subunits of the same complex
(Fig 3B bottom). In general, such differences are buffered by opposing changes in translational
efficiency, such that translational outputs more closely reflect protein stoichiometry than does
mRNA abundance (see, for example, the NDH complex in S6B Fig). In the case of PSI (Fig
4C), the structural genes (psaA, psaB, psaC, psaJ, psaI) exhibit an approximately three-fold
range of translational output, but all of these genes vastly out produce two genes encoding PSI
assembly factors (ycf3 and ycf4) [31–33]. The psaI and ycf4 genes are adjacent in the same poly-
cistronic transcription unit (Fig 4C bottom), and their difference in translational output is pro-
grammed primarily by a difference in translational efficiency. The translational output of psbN,
which encodes a PSII assembly factor [34], is likewise much less than that of structural genes
for PSII (Fig 4D). Taken together, this body of data shows that the tuning of translational
output to protein stoichiometries is accomplished via trade-offs between mRNA level and
translational efficiency, with this balance differing from one gene to the next. Where mRNA
abundance closely matches protein stoichiometry, differences in translational efficiency make
only a small contribution (as observed for rpoA, rpoB, rpoC1 and rpoC2). Where mRNAs are
severely out of balance with protein stoichiometry, differences in translational efficiency
compensate.

The translational output of PSII structural genes is well matched, with the notable exception
of psbA (Fig 4D), whose output vastly exceeds that of other genes in photosynthetic leaf seg-
ments (segments 9 and 14). This behavior is consistent with the known properties of the psbA
gene product, whose damage and rapid turnover during active photosynthesis is compensated
by a high rate of synthesis to support PSII repair [26]. Setting psbA aside, the relative transla-
tional outputs of other genes only approximate the stoichiometries of their products: several-
fold differences between relative output and stoichiometry are common among subunits of a
particular complex, suggesting that proteolysis of unassembled subunits serves to fine-tune
protein stoichiometries. It is also possible that the calculated translational outputs do not per-
fectly reflect rates of protein synthesis due to differences in translation elongation rates among
mRNAs. That said, instances in which translational outputs are particularly discordant among
subunits of the same complex are worthy of note, as this may reflect physiologically relevant
behaviors. For example, the translational output of ndhK is balanced with other ndh genes in
non-photosynthetic leaf segments but ndhK substantially out produces the other ndh genes in
mature chloroplasts (S6B Fig). This behavior is reminiscent of psbA, and suggests that NdhK
may be damaged and replaced during active photosynthesis.

Developmental dynamics of the chloroplast transcriptome and
translatome
To explore the dynamics of chloroplast gene expression during the proplastid to chloroplast
transition, we calculated standardized values for translational output, mRNA abundance and
translational efficiency such that developmental shifts can be compared despite large differ-
ences in signal magnitude. This analysis shows that the developmental dynamics of transla-
tional output varies widely among genes (Fig 5A top). The standardized values were used as
the input for hierarchical clustering, which produced four clusters from the translational
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output data, four from the mRNA data, and five from the translational efficiency data (Fig 5B,
S7 Fig). The genes in each cluster are identified by color in Fig 5A. Although the transitions
between clusters are not marked by obvious distinctions, the distinct trends defining each
cluster are clear in the plots in Fig 5B. Genes whose translational output and mRNA abun-
dance peak early in development (segment 4) generally encode components of the chloroplast
gene expression machinery (rpl, rps, rpo,matK) (Fig 5A and 5C). Most genes encoding com-
ponents of the photosynthetic apparatus (psb, psa, atp, pet genes) have peak mRNA and trans-
lational output in young chloroplasts (segment 9). A handful of photosynthesis genes either

Fig 5. Dynamics of chloroplast gene expression during the proplastid to chloroplast transition. Values for each gene in the
four leaf segments were standardized to have a mean of 0 and a standard deviation of 1. Standardized values for translational
output, mRNA abundance, and translational efficiency were used for hierarchical clustering. Genes are color-coded according to the
cluster they reside in, as defined by the clustograms shown in S7 Fig. Values represent the mean from three replicates. (A) Genes
are ranked based on the clustograms shown in S7 Fig. Genes for which mRNA levels are uncertain (as explained above) are not
included in the plots of mRNA level and translational efficiency. Intron-containing genes are marked with superscript i. (B)
Developmental dynamics of each cluster derived from the data for translational output, mRNA abundance, or translational efficiency.
Each line represents data from one gene. (C) Developmental dynamics of translational output, mRNA level, and translational
efficiency color-coded according to gene function. Each line represents data from one gene. (D) Excerpts of the data for two
transcription units encoding proteins that function in both photosynthesis (psaI, petA, psaA, psaB) and biogenesis of the
photosynthetic apparatus (ycf4, rps14).

doi:10.1371/journal.pgen.1006106.g005
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maintain or increase translational output and mRNA in mature chloroplasts (segment 14)
(Fig 5A and 5C).

There is considerable similarity among the clusters produced from the translational output
and mRNA data (Fig 5A and 5B), implying that programmed changes in mRNA abundance
underlie the majority of developmental shifts in translational output. However, changes in
translational efficiency also influence the developmental shifts in translational output (Fig 5A
bottom). In general, ORFs encoding proteins involved in photosynthesis are more efficiently
translated later in development and those encoding gene expression factors are more efficiently
translated early in development, albeit with numerous exceptions (Fig 5A bottom, 5C right).
Transcription units that encode both photosynthesis and gene expression factors provide
revealing examples of distinct translational dynamics. In the psaA-psaB-rps14 transcription
unit, for example, rps14 is found in a translational output cluster with other genes involved in
gene expression, whereas psaA and psaB reside in a translational output cluster with other pho-
tosynthesis genes (Fig 5A top). This results from distinct developmental shifts in translational
efficiency: the rps14 ORF is translated more efficiently early in development whereas psaA and
psaB are more efficiently translated later in development (Fig 5D). The psaI-ycf4-cemA-petA
transcription unit provides a second example. The translational output of psaI, cemA, and petA
show similar developmental dynamics, but ycf4 clusters with different genes due to more effi-
cient translation earlier in development (Fig 5D). Again, these distinct patterns correlate with
function, as psaI and petA encode components of the photosynthetic apparatus, whereas ycf4
encodes an assembly factor for PSI [31, 32].

Many polycistronic RNAs in chloroplasts are processed to smaller isoforms. Although the
impact of processing on translational efficiencies remains unclear [35, 36], it is plausible that
programmed changes in the accumulation of processed isoforms could uncouple the expres-
sion of cotranscribed genes during development. To address this possibility, we used RNA gel
blot hybridization to analyze transcripts from two transcription units that include genes whose
translational efficiencies exhibit distinct developmental dynamics: psaI-ycf4-cemA-petA and
psaA-psaB-rps14 transcription units (S8 Fig). Processed rps14-specific transcripts accumulate
preferentially in immature chloroplasts (segment 4), correlating with the stage at which rps14
is most efficiently translated. Analogously, a monocistronic psaI isoform accumulates preferen-
tially in segments 4 and 9 where psaI is most efficiently translated. Various cause and effect
relationships may underlie these correlations, as is discussed below.

Differential gene expression in bundle sheath and mesophyll
chloroplasts
In maize and other C4 plants, photosynthesis is partitioned between mesophyll (M) and bundle
sheath (BS) cells. Three protein complexes that include plastid-encoded subunits accumulate
differentially in the two cell types: Rubisco and the NDH complex are enriched in BS cells
whereas PSII is enriched in M cells [2, 14]. Differential accumulation of several chloroplast
mRNAs in the two cell types has been reported [37–41], but a comprehensive comparison of
chloroplast gene expression in BS and M cells has been lacking. To address this issue we per-
formed RNA-seq and Ribo-seq analyses of BS- and M- enriched leaf fractions. The transla-
tional output of genes encoding subunits of Rubisco, PSII, and the NDH complex (Fig 6A)
correlated well with the relative abundance of subunits of these complexes in the same sample
preparations (Fig 1C), and with quantitative proteome data [2]. Cell-type specific differences
in mRNA accumulation (Fig 6B) can account for many of the differences in translational out-
put (Fig 6A), indicating that differences in transcription and/or RNA stability make a strong
contribution to preferential gene expression in one cell type or the other. However, the data
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suggest that differences in translational efficiency contribute in certain instances (Fig 6C). Four
genes encoding PSII core subunits (psbA, psbB, psbC, psbD) provide the most compelling
examples, as their translational output is considerably more biased toward M cells than are
their mRNA levels.

Translation of edited and unedited RNAs
Organellar RNAs in land plants are often modified by an editing process that converts specific
cytidine residues to uridine [42, 43]. Some sites are inefficiently edited, which raises the ques-
tion of whether the translation machinery discriminates between edited and unedited RNAs.
The protein products of several unedited mitochondrial RNAs have been detected in plants
[44, 45]. We used our Ribo-seq and RNA-seq data to examine this issue for chloroplast RNAs.
Fig 7 summarizes the data for those sites of editing that are represented by at least 100 reads in
both the Ribo-seq and RNA-seq data in at least two replicates (17 of the 28 edited sites in the

Fig 6. Differential gene expression in bundle sheath (BS) andmesophyll (M) chloroplasts. Values are the mean ± SEM from two replicates. The
horizontal lines show the average BS/M ratios for subunits of each complex determined from quantitative proteome data [27]. Immunoblots illustrating
the abundance of marker proteins in these samples are shown in Fig 1C. (A) Relative translational output in BS versus M fractions. (B) Relative mRNA
abundance in BS versus M fractions. (C) Relative translational efficiency in BS versus M fractions. The dashed line marks the average ratio of
translational efficiencies in BS versus M fractions.

doi:10.1371/journal.pgen.1006106.g006
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maize chloroplast transcriptome). In general, the percent editing was similar in the RNA-seq
and Ribo-seq data, implying little discrimination between edited and unedited RNAs by the
translation machinery. There were, however, two major exceptions: rpl2 (nt 2) and ndhA (nt
563). In these cases a large fraction of the RNA-seq reads came from unedited RNA, whereas
virtually all of the Ribo-seq reads came from edited sites. These two sites have unusual features
that can account for the preferential translation of the edited RNAs. Editing at the ndhA site is
linked to the splicing of the group II intron in the ndhA pre-mRNA: the site is not edited in
unspliced transcripts and it is fully edited in spliced transcripts [46–48]. Failure to edit
unspliced RNA is presumably due to the position of the intron between the edited site and the
cis-element that specifies it. Translation that initiates on unspliced ndhA RNA would terminate
at an in-frame stop codon within the intron. Thus, exon 2 is translated only from spliced
RNAs, and these are 100% edited. In the case of rpl2, the editing event creates an AUG start
codon from an ACG precursor; this is the only editing event in maize chloroplasts that creates
a canonical start codon. Although it has been reported that ACG can function as a start codon
in chloroplasts [49, 50], our data show that this particular ACG is strongly discriminated
against by initiating ribosomes.

The fact that the Ribo-seq data show the expected strong bias toward edited rpl2 and ndhA
(563) instills confidence that valid conclusions can be made from our data for other edited
sites. Approximately 40% of the petB and ndhA(nt 50) sequences are unedited in both the
RNA-seq and Ribo-seq data, indicating that these unedited sequences give rise to a consider-
able fraction of the translational output of the corresponding genes. Editing of the petB site is
essential for the function of its gene product (cytochrome b6) [51]. It seems likely that the prod-
uct of this unedited RNA is either unstable or selected against during complex assembly, as has
also been suggested for the products of two unedited transcripts in mitochondria [52, 53]. The
remaining sites show almost complete editing in the RNA-seq data and, as expected, in the
Ribo-seq data as well. That said, there is an overall trend toward less representation of unedited
sequences in the Ribo-seq data than in the RNA-seq data. This may simply be a kinetic effect
as would be expected if ribosome binding is slow in comparison to editing, such that ribosomes
generally translate older (and therefore more highly edited) mRNAs.

Discussion
Ribosome profiling has provided a wealth of new insights into translation and associated pro-
cesses in a wide variety of organisms [54], but its application to questions in organellar biology

Fig 7. Abundance of ribosome footprints representing edited and unedited mRNA positions.Data are
shown for the subset of editing sites that were represented by at least 100 reads in both the RNA-seq and
Ribo-seq data in at least two different samples from the leaf gradient analysis. Values are the mean ± SEM.

doi:10.1371/journal.pgen.1006106.g007
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is just beginning. The method has been used to analyze the effects of a disease-associated muta-
tion in mitochondria [19], to define targets of nucleus-encoded translational activators in chlo-
roplasts [15] and to characterize the cotranslational targeting of chloroplast-encoded proteins
to the thylakoid membrane [36]. The results reported here provide the first comprehensive
description of an organellar transcriptome and translatome in a developmental context. The
data revealed dynamic changes in RNA abundance and translational efficiency during the dif-
ferentiation of proplastids into chloroplasts, elucidated mechanisms that dictate the abundance
of chloroplast-encoded proteins, clarified the relationship between RNA editing and transla-
tion, and provided new insights that suggest hypotheses to be explored in future studies.

Tuning of protein synthesis to protein stoichiometry: Close but not quite
Ribosome profiling data from bacteria revealed a striking correspondence between the stoichi-
ometry of subunits of multisubunit complexes and their relative rates of synthesis [9, 10]. Our
results show that the relative translational outputs of chloroplast genes likewise approximate
the relative abundance of the gene products. This tuning is apparent when comparing sets of
genes encoding different complexes (e.g. compare genes encoding the low abundance NDH
complex to genes encoding the highly abundant PSI and PSII complexes) (Fig 3B), and when
comparing genes encoding subunits of the same complex (e.g. the PEP RNA polymerase and
the ATP synthase) (Fig 4A and 4B).

Our calculations of translational output rest on the assumption that the rate of translation
elongation on all mRNAs is similar under any particular condition. This same assumption
produced remarkable concordance between protein stoichiometry and inferred translational
output in bacteria [9, 10]. Although our results show a clear trend toward “proportional syn-
thesis”, they also suggest that the tuning of protein output to stoichiometry is less precise in
chloroplasts than it is in bacteria. Subunits of photosynthetic complexes are subject to proteoly-
sis when their assembly is disrupted [55], and a similar (albeit wasteful) mechanism could con-
tribute to balancing stoichiometries when proteins are synthesized in excess under normal
conditions. That said, instances in which inferred translational outputs are particularly incon-
gruent with protein stoichiometries may reflect physiologically informative behaviors. The
most prominent examples of “over-produced” proteins in our data are PsbA and PsbJ in PSII,
PsaC and PsaJ in PSI, NdhK in the NDH complex, Rps14 in ribosomes, and PetD, PetL and
PetN in the cytochrome b6f complex (Fig 4 and S6 Fig). Disproportionate synthesis of PsbA is
well known, and compensates for its damage and proteolysis during photosynthesis [26]. The
other proteins suggested by our data to be produced in excess may likewise be subject to more
rapid turnover than their partners in the assembled complex. A proteomic study in barley dem-
onstrated that subunits of each photosynthetic complex generally turn over at similar rates
[56], but data for these particular proteins were not reported.

Interestingly, the inferred rates of synthesis of PsbA, PetD, and NdhK are well matched to
those of their partner subunits early in development, but outpace those of their partners in
mature chloroplasts (Fig 4D,S6 Fig). This feature of psbA expression coincides with the need to
replace its gene product, D1, following photo-induced damage and proteolysis [26]. By exten-
sion, the developmental dynamics of petD and ndhK expression suggest that their gene products
may turn over more rapidly than their partners as a consequence of photosynthetic activity.

Varying contributions of mRNA abundance and translational efficiency to
the tuning of protein output
In bacteria, proportional synthesis of subunits within a complex is achieved largely through the
tuning of translational efficiencies among ORFs on the same mRNA [9, 10]. In chloroplasts,
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genes encoding subunits of the same complex are generally distributed among multiple tran-
scription units [4] and RNA segments within a transcription unit often accumulate to different
levels [8]. It is interesting to consider how this shift in the gene expression landscape is reflected
in the mechanisms that balance protein output among genes. In the case of the four genes
encoding the PEP RNA polymerase, relative translational outputs closely match the 2:1:1:1 pro-
tein stoichiometry, and this is programmed primarily at the level of mRNA abundance (Fig
4B). By contrast, widely varying translational efficiencies are superimposed on small variations
in mRNA abundance to tune translational output to protein stoichiometry in the ATP synthase
complex (Fig 4A). Genes for ribosomal proteins are distributed among ten transcription units,
several of which also encode proteins involved in photosynthesis (see Fig 3A). For example,
rps14 is cotranscribed with genes encoding the reaction center proteins of PSI (psaA/psaB), and
translational outputs within this transcription unit are balanced by large differences in transla-
tional efficiency (Fig 4C). Similarly, the psaI transcription unit encodes subunits of the abun-
dant PSI and cytochrome b6f complexes, a low abundance PSI assembly factor (Ycf4) and a
protein of unknown function (CemA); large differences in translational efficiency adjust the
translational outputs to meet these different needs (Fig 4C bottom). For complexes harboring
plastid-encoded subunits in equal stoichiometries (ribosomes, NDH, PSI, PSII, cytochrome
b6f), compensating differences in translational efficiency generally buffer differences in mRNA
level. Taken together, these results imply that mRNA abundance and translational efficiencies
have coevolved in chloroplasts to produce proteins in close to the optimal amounts. In some
instances, mRNA levels are sharply out of balance with protein stoichiometries, in which case
differential translational efficiencies compensate. In other instances, mRNA levels approximate
protein stoichiometries, and translational efficiencies are similar. These observations further
suggest that for most genes in maize chloroplasts, mRNA levels and translational efficiencies
are poised such that they limit the rate of protein synthesis to a similar extent. This view is fur-
ther supported by the developmental dynamics discussed below.

In Chlamydomonas chloroplasts, synthesis of subunits within the same photosynthetic
complex is coordinated through assembly-dependent auto-regulatory mechanisms [57]. By
contrast, current data for angiosperm chloroplasts suggest that translational efficiencies are
generally independent of the assembly status of the gene products [15, 58]. It seems likely that
translational efficiencies are dictated by the interplay between the sequence and structure of
RNA proximal to start codons and the proteins that bind this region. Translation initiation in
chloroplasts sometimes involves a Shine-Dalgarno interaction and is facilitated by an unstruc-
tured translation initiation region [6, 59]. Additionally, the translation of some chloroplast
ORFs requires the participation of gene-specific translation activators [15, 60–75]. Such pro-
teins provide a means for tuning protein synthesis within and between transcription units. The
atpH ORF and its nucleus-encoded translational activator PPR10 exemplify this mechanism.
The exceptionally high translational efficiency of atpH (Fig 3A) boosts its translational output
to match the high stoichiometry of AtpH in the ATP synthase complex (Fig 4A); this high
translational efficiency requires the binding of PPR10 adjacent to the atpH ribosome binding
site, an interaction that prevents the formation of inhibitory RNA structures involving the
translation initiation region [15, 30, 62].

Developmental dynamics of chloroplast gene expression
Our results provide a comprehensive view of the dynamics of chloroplast mRNA abundance
and translation during the proplastid to chloroplast transition. The majority of genes involved
in chloroplast gene expression exhibit peak mRNA abundance and translational output in
developing chloroplasts (segment 4) whereas the majority of genes encoding subunits of the
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photosynthetic apparatus exhibit peak mRNA abundance and translational output in young
chloroplasts (segment 9) (Fig 5C). That said, even in proplastids (segment 1), genes involved in
photosynthesis are generally represented by more mRNA and a higher translational output
than are those involved in chloroplast gene expression (S5 Fig). Our data show that pro-
grammed changes in translational efficiency combine with changes in mRNA abundance to
produce developmental shifts in translational output (Fig 5A). In general, translational effi-
ciency is lowest at the leaf base, reflecting the low ribosome content in proplastids. The transla-
tional efficiency of most ORFs peaks in young chloroplasts (segment 9). In this context, it is
intriguing that one subset of genes exhibit peak translational efficiency in the basal leaf seg-
ments (Fig 5A, bottom; Fig 5C, right), whereas another subset increases in translational effi-
ciency right out to the leaf tip (Fig 5A and 5C). The former group is strongly enriched for
“biogenesis” genes (RNA polymerase, ribosomes, assembly factors), and the latter for photo-
synthesis genes. Possible mechanisms underlying these distinct “translational regulons” are dis-
cussed below.

A study in Chlamydomonas showed that changes in chloroplast mRNA abundance are not
reflected by corresponding changes in rates of protein synthesis, leading to the conclusion that
translation is the primary rate-limiting step [76]. The data presented here suggest that this is
not the case in maize chloroplasts. The developmental shifts in mRNA abundance were largely
mirrored by shifts in translational output (Fig 5A and 5B), implying that mRNA abundance
has considerable impact on the output of most chloroplast genes in maize. Likewise, chloro-
plast DNA copy number limits gene expression in developing maize chloroplasts [77] but does
not limit gene expression in Chlamydomonas chloroplasts [76]. It is perhaps unsurprising that
mechanisms of gene regulation have diverged in the chloroplasts of vascular plants and single-
celled algae, given their very different developmental and ecological contexts.

Mechanisms underlying developmental shifts in the chloroplast
transcriptome and translatome
Our data revealed a strong correlation between gene function and the developmental dynamics
of mRNA abundance (Fig 5C middle): mRNAs encoding proteins involved in gene expression
generally peak in abundance earlier in development than do those encoding components of the
photosynthetic apparatus. This finding was foreshadowed by analyses of several chloroplast
mRNAs during leaf development in barley and Arabidopsis [78–80]. Land plant chloroplasts
harbor two types of RNA polymerase, a single-subunit nucleus-encoded polymerase (NEP)
and a bacterial-type plastid-encoded polymerase (PEP) [5]. The ratio of NEP to PEP drops pre-
cipitously during chloroplast development, and this likely makes a large contribution to the
changes in chloroplast mRNA pools [5, 78, 80, 81]. There is evidence that NEP plays an espe-
cially important role in the transcription of “house keeping” genes, and PEP in the transcrip-
tion of photosynthesis genes [5]; however, most chloroplast genes can be transcribed by both
NEP and PEP [82], and the degree to which each polymerase contributes to the transcription
of each gene during the course of chloroplast development remains unknown. Chloroplasts
harbor several nucleus-encoded sigma factors that target PEP to distinct promoters [83], and
these provide an additional means to tune transcription rates in a developmental context.

Changes in RNA stability combine with changes in transcription to modulate mRNA pools
during chloroplast development [78, 80, 81, 84, 85]. Determinants of chloroplast mRNA stabil-
ity include various ribonucleases, RNA structure, ribosome occupancy, and proteins that pro-
tect RNAs from nuclease attack [8]. Most mRNA termini in chloroplasts are protected by
helical repeat RNA binding proteins that provide a steric blockade to exoribonucleases [8, 61,
62, 86]. The majority of such proteins belong to the pentatricopeptide repeat (PPR) family, a
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large family of sequence-specific RNA binding proteins that influence virtually every post-tran-
scriptional step in gene expression in mitochondria and chloroplasts [87]. In addition, chloro-
plasts harbor abundant hnRNP-like proteins, and these have been shown to impact the
stability of several chloroplast mRNAs [88, 89]. Programmed changes in the abundance and/or
activities of PPR and hnRNP-like proteins might contribute to the shifting mRNA pools during
the proplastid to chloroplast transition.

Changes in translational efficiency superimpose on changes in mRNA abundance to modu-
late the output of plastid genes during the transformation of proplastids into chloroplasts.
ORFs encoding proteins involved in photosynthesis generally exhibit maximal translational
efficiency in young or mature chloroplasts (segments 9 and 14), whereas those that function in
gene expression generally peak in translational efficiency earlier in development (Fig 5C right).
Furthermore, our data suggest that mRNAs encoding PSII reaction center proteins are trans-
lated with higher efficiency in mesophyll chloroplasts than in bundle sheath chloroplasts (Fig
6C). It will be interesting to explore the mechanisms that underlie these differential effects on
translational efficiency. Some possibilities include shifts in stromal pH, Mg++, or the polymer-
ase generating the mRNA (NEP versus PEP), which might impact the formation of RNA struc-
tures at specific ribosome binding sites. Programmed changes in the activities of nucleus-
encoded gene-specific translational activators could modulate translational efficiencies in a
developmental context. Most such proteins in land plant chloroplasts are PPR (or PPR-like)
proteins, and several of these also stabilize processed mRNAs with a 5’ end at the 5’ boundary
of their binding site [15, 30, 60–62, 64–67, 90–93]. Indeed, many polycistronic transcripts in
chloroplasts are processed to smaller isoforms whose ends are defined and stabilized by PPR-
like proteins [7, 8, 86]. The impact of this type of RNA processing on translational efficiencies
in vivo remains unclear. The removal of upstream ORFs is not required for the translation of
several ORFs that are found on processed RNAs with a proximal 5’-terminus [35, 36]. Some
proteins have dual translation activation and RNA processing/stabilization functions, implying
that the two activities are coupled [15, 30, 60–62, 65, 66, 91–93]; however, the translation
activation and RNA processing/ stabilization effects of such proteins could be independent
consequences of their binding upstream of an ORF [62, 86]. We showed here that there is a
correlation between the accumulation of processed RNA isoforms and changes in relative
translational efficiencies in two polycistronic transcription units (S8 Fig). Deciphering the
cause and effect relationships underling these correlations presents a challenge for the future.

The data presented here lead to numerous new questions for future exploration. Is the syn-
thesis of nucleus-encoded subunits of photosynthetic complexes tuned to that of their chloro-
plast-encoded partners? What is the mechanistic basis for the preferential translation of some
mRNAs in developing chloroplasts and others in photosynthetic chloroplasts? To what extent
do environmental inputs such as light and temperature modify the developmental dynamics of
chloroplast mRNA abundance and translation? The use of ribosome profiling can be antici-
pated to accelerate progress in addressing these and many other long-standing questions relat-
ing to the biology of organelles.

Materials and Methods

Plant material
For the developmental analysis, Zea mays (inbred line B73) was grown under diurnal cycles for
9 days and harvested as described [12]. Leaf sections from twelve plants were pooled for each
of three replicates; each pool contained between 0.15 g and 0.3 g tissue. Plants used to prepare
mesophyll and bundle sheath fractions were grown similarly, except the light was set at
300 μmol�m-2�s-1 and the tissues were harvested 13 days after planting, 2 hours into the light
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cycle. The apical one-third of leaf two and three were pooled from fifteen seedlings for each
replicate, and the bundle sheath and mesophyll-enriched fractions were obtained with a rapid
mechanical procedure. The tissue was cut into ~ 1 cm-sections, placed in a pre-chilled mortar
and pestle, and lightly ground for 2 min in 5 ml of ice-cold modified polysome extraction
buffer lacking detergents (0.2 M sucrose, 0.2 M KCl, 50 mM Tris-acetate, pH 8.0, 15 mM
MgCl2, 20 mM 2-mercaptoethanol, 2 μg/ml pepstatin A, 2 μg/ml leupeptin, 2 mM phenyl-
methanesulfonyl fluoride, 100 μg/ml chloramphenicol, 100 μg/ml cycloheximide). The material
that was released into solution constituted the mesophyll cell-enriched fraction. A portion of
this was frozen in liquid N2 for RNA isolation, and the remainder was stored on ice while bun-
dle sheath strands were purified from the tissue remaining in the mortar. The tissue was subject
to four additional rounds of light grinding (2 min), each time in a fresh aliquot of 5-ml modi-
fied polysome extraction buffer. The light green fibers remaining constituted the bundle sheath
enriched fraction; these cells were broken by hard grinding in 5 ml of modified polysome
extraction buffer. A portion of this material was flash frozen for future RNA isolation and the
remainder was used immediately for ribosome footprint isolation. Polyoxyethylene (10) tride-
cyl ether and Triton X-100 were added to the mesophyll and bundle sheath fractions retained
for ribosome profiling (final concentrations of 2% and 1%, respectively), and the material
was filtered through glass wool. The isolation of ribosome footprints and total RNA were per-
formed as described below.

Preparation of ribosome footprints
Ribosome footprints were prepared using a protocol similar to that described in [15], but with
two key modifications: (i) RNAse I rather than micrococcal nuclease was used to generate
monosomes, and (ii) the centrifugation time used to pellet ribosomes through the sucrose
cushion was shortened to reduce contamination by other RNPs. Tissues were pulverized in liq-
uid N2 with a mortar and pestle, and thawed in 5 ml of polysome extraction buffer (0.2 M
sucrose, 0.2 M KCl, 50 mM Tris-acetate, pH 8.0, 15 mMMgCl2, 20 mM 2-mercaptoethanol,
2% polyoxyethylene (10) tridecyl ether, 1% Triton X-100, 100 μg/ml chloramphenicol, 100 μg/
ml cycloheximide). A 2.4-ml aliquot was removed and frozen in liquid N2 for total RNA isola-
tion. The remaining suspension was filtered through glass wool and centrifuged at 15,000xg for
10 min. The supernatant was digested with 3,500 units of RNAse I (Ambion) at 23°C for 30
min. 2.5 ml lysate was layered on a 2 ml sucrose cushion (1 M sucrose, 0.1 M KCl, 40 mM Tris-
acetate, pH 8.0, 15 mMMgCl2, 10 mM 2-mercaptoethanol, 100 μg/ml chloramphenicol, and
100 μg/ml cycloheximide) in a 16 x 76 mm tube and centrifuged in a Type 80 Ti rotor for 1.5 h
at 55,000 rpm. The pellet was dissolved in 0.7 mL of ribosome dissociation buffer (10 mM Tris-
Cl, pH 8.0, 10 mM EDTA, 5 mM EGTA, 100 mMNaCl, 1% SDS). RNA was isolated with Tri
reagent (Molecular Research Center). RNAs between ~20 and ~35 nt were purified on a dena-
turing polyacrylamide gel, eluted, extracted with phenol/chloroform, precipitated with ethanol,
and suspended in water. We have subsequently modified our protocol to purify RNAs between
20 and 40 nt; this results in a small shift in the size distribution of the reads (S1B Fig).

Preparation of sequencing libraries
The ribosome footprint preparation was treated with T4 polynucleotide kinase. Twenty ng of the
kinased RNA was converted to a sequencing library using the NEXTflex Small RNA Sequencing
Kit v2 (Bioo Scientific), which minimizes ligation bias by introducing four randomized bases at
the 3’ ends of the adapters [17]. rRNA fragments were depleted by subtractive hybridization after
first-strand cDNA synthesis, using 54 biotinylated DNA oligonucleotides corresponding to the
most abundant rRNA fragments detected in pilot experiments (see S1 Table). 10 μl of the
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oligonucleotide mixture (concentrations as in S1 Table) was added to 40-μl of the first-strand
synthesis reaction and heated to 95°C for 2 min. A 50-μl aliquot of pre-warmed 2X hybridization
buffer (10 mM Tris-Cl pH 7.5, 1 mM EDTA, 2 M NaCl) was added and incubated at 55°C for 30
min. The solution was transferred to a new tube containing 1 mg of prewashed Dynabeads M-
270 Streptavidin (Invitrogen) and incubated at room temperature for 15 min with frequent agita-
tion. The tube was placed on a magnet for 5 min and the supernatant was collected and desalted
using Sephadex G-25 Fine (GE Healthcare). The sample was concentrated to 18 μl and used as
input for the PCR amplification step in the library construction protocol. After 14 cycles, PCR
products were separated by electrophoresis through a 5% polyacrylamide gel and a gel slice cor-
responding to DNA fragments between markers at 147 and 180 bp (representing insert sizes of
20–53 bp) was excised. The DNA was eluted overnight, phenol/chloroform extracted, precipi-
tated with ethanol, suspended in water, and stored at -20°C.

For RNA-seq, rRNA was depleted from the RNA samples using the Ribo-Zero rRNA
Removal Kit (Plant Leaf) (Epicentre). One hundred ng of the rRNA-depleted RNA was used
for library construction using the NEXTflex Rapid Directional qRNA-Seq Kit (Bioo Scientific)
according the manufacturer’s instructions. The adapters provided with the kit include 8-nt
molecular labels that were used during data processing to remove PCR bias. The libraries were
combined and sequenced using a HiSeq 2500 or NextSeq 500 instrument (Illumina). The read
lengths were 50 or 75 nt for Ribo-seq and 75 nt for mRNA-seq.

Sequence read processing, alignment, and analysis
Adapter sequences were trimmed using cutadapt [94]. Ribo-seq reads between 18 and 40 nt
were used as input for alignments. Alignments were performed using Bowtie 2 with default
parameters [95], which permits up to 2 mismatches, thereby allowing edited sequences to
align. Reads were aligned to the following gene sets, with unaligned reads from each step used
as input for the next round of alignment: (i) chloroplast tRNA and rRNA; (ii) chloroplast
genome; (iii) mitochondrial tRNA and rRNA; (iv) mitochondrial genome (B73 AGP v3); (v)
nuclear tRNA and rRNA; nuclear genome (B73 AGP v3).

Maize genome annotation 6a (phytozome.jgi.doe.gov) was reduced to the gene set anno-
tated in 5b+ (60,211 transcripts) (gramene.org). For metagene analysis, all coding sequence
(CDS) coordinates from all transcript variants were combined to make a union CDS coordi-
nate. Custom Perl scripts extracted mapping information using SAMtools [96] and analyzed
mapped reads as follows. The distribution of ribosome footprint lengths and the RPKM for
both the Ribo-seq and RNA-seq data were calculated based only on reads mapping to CDS
regions. For RPKM calculations, we defined the total number of mapped reads as the number
of reads mapping to nuclear CDSs. Translation efficiency was calculated from the division of
ribosome footprint RPKM by RNA-seq RPKM.

Because unspliced RNAs constitute a substantial fraction of the RNA pool from intron-con-
taining genes in chloroplasts, these genes require special treatment to infer the abundance of
spliced (functional) mRNA. The fraction spliced at each intron was calculated in several ways.
(i) RNA-seq reads were aligned to the chloroplast genome with splicing-aware software
TopHat 2.0.11 [97]. The number of reads spanning each exon-exon junction (spliced) was
divided by the sum of spliced (exon-exon) and unspliced (exon 1-intron or intron-exon 2)
reads; (ii) RNA-seq reads were aligned with Bowtie2 to a reference gene set that included both
spliced and unspliced forms (100-nt on each side of each junction). The fraction of spliced
RNA was calculated as for method (i); (iii) RNA-seq reads were aligned with TopHat to the
genome and the spliced fraction was calculated from (exon RPKM—intron RPKM)/exon
RPKM. Values calculated by each method are provided in S3 Table. Summary plots report
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mRNA abundance and translational efficiencies only for genes for which all of these methods
gave similar results. We cannot confidently infer the amount of fully spliced RNAs from genes
with two introns (ycf3 and rps12), so these are also excluded.

Hierarchical clustering was performed using the Bioinformatic Toolbox of MATLAB soft-
ware (Mathworks) using standardized values as input: values from the four leaf segments for
each gene were standardized to have a mean of 0 and a standard deviation of 1 such that devel-
opmental shifts can be compared among genes despite differences in signal magnitude. Hierar-
chical clustering was performed using Pearson correlation coefficient values and unweighted
average distance.

Antibodies
Antibodies to AtpB, D1 and PetD were raised by our group and have been described previously
[30]. Antibodies to Atp6, NdhH, PPDK, and Rpl2 were generously provided by Christine
Chase (University of Florida), Tsuyoshi Endo (Kyoto University), Kazuko Aoyagi (UC Berke-
ley), and Alap Subramanian (University of Arizona), respectively. Antibodies to PEPC, malic
enzyme, and RbcL were generous gifts of William Taylor (University of California, Berkeley).

Accession numbers
Illumina read sequences were deposited at the NCBI Sequence Read Archive with accession
number SRP070787. Alignments of reads to the maize chloroplast genome used Genbank
accession X86563.

Supporting Information
S1 Fig. Optimized ribosome purification reduces contamination by non-ribosomal ribonu-
cleoprotein particles (RNPs). (A) Immunoblots showing that a marker for chloroplast ribo-
somes (Rpl2) was highly enriched in the pellet after sedimentation of nuclease-treated extract
through a sucrose cushion, whereas a subunit of a ~600 kDa group II intron RNP (CFM2) [16]
remained in the supernatant. An equal proportion of the starting material, the supernatant
above the sucrose cushion, and the pellet fraction was analyzed. (B) Comparison of size distri-
bution of chloroplast ribosome footprints resulting from two different size selection strategies.
The experiments in this study used gel purified RNA fragments between approximately 20 and
35-nt (green). A pilot experiment used gel-purified RNA fragments between approximately 20
and 40-nt (blue). The size distribution of the sequence reads was nonetheless similar.
(TIF)

S2 Fig. Correlation of data among biological replicates. Pearson correlation coefficients for
each sample pair combination were calculated using log10 of RPKM values for each protein-
coding gene in the chloroplast genome. The correlation coefficients were used as the input for
hierarchical clustering. The replicate number of each leaf segment sample is indicated after the
hyphen. (A) Leaf segment data. (B) Bundle sheath (BS) and mesophyll (M) data.
(TIF)

S3 Fig. Summary of read counts per chloroplast gene. The values displayed are the mean
from replicate assays. The identities of genes with low read counts are indicated. The petN
mRNA is under represented in the RNA-seq data due to its small size, which is below the cut-
off used for library preparation. (A) Read counts/gene for leaf gradient samples. (B) Read
counts/gene for bundle sheath (BS) and mesophyll (M) samples.
(TIF)
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S4 Fig. Characteristics of ribosome footprints in each compartment. The data plotted come
from the twelve leaf gradient samples. (A) Three-nucleotide periodicity of P site position as a
function of ribosome footprint length in the plastid, cytosol, and mitochondrion. Values
shown are the mean ± SEM. The position of the P site in each footprint was inferred from the
footprint size distributions at start/stop codons (Fig 2E and S4B-C). (B) Placement of cytosolic
ribosome footprints with respect to the A and P sites of the ribosome based on reads aligning
to start and stop codons. A diagram of the placement of 31-nucleotide cytosolic ribosome foot-
prints is shown below. (C) Placement of mitochondrial ribosome footprints with respect to the
A and P sites of the ribosome based on reads aligning to start and stop codons. A diagram of
the placement of 28-nucleotide mitochondrial ribosome footprints is shown below.
(TIF)

S5 Fig. Genome-wide views of the plastid translatome and transcriptome in Segments 1
and 14 displayed using different Y-axis scales. The data are expressed as reads per kilobase
per million reads mapping to nuclear genome coding sequences (RPKM). Values are the
mean ± SEM from three replicates. Intron-containing genes are marked with a superscript i.
Genes for which RNA levels and translational efficiency were not determined (n.d.) are marked
(#). These include intron-containing genes for which the fraction of reads derived from spliced
transcripts is uncertain, and petN, whose short mRNA is not represented quantitatively in the
RNA-seq data. Genes encoding assembly factors are marked with asterisks. (A) Translational
output, RNA abundance and translational efficiency displayed according to native gene order.
Co-transcribed genes are marked with arrows that indicate the direction of transcription. (B)
Translational output and RNA abundance displayed according to gene function. Genes encod-
ing assembly factors are demarcated from the structural genes with dashed lines.
(TIF)

S6 Fig. Data for translational output, mRNA abundance and translational efficiency parsed
according to gene function. The data are expressed as reads per kilobase per million reads
mapping to nuclear coding sequences (RPKM). Values represent the mean ± SEM from three
replicates. Intron-containing genes are marked with a superscript i. Genes for which RNA
levels and translational efficiency were not calculated are marked with a hashtag (#). These
include intron-containing genes for which the fraction of reads derived from spliced transcripts
is uncertain, and petN whose very short mRNA is not represented quantitatively in the RNA-
seq data due to the library protocol. n.d., not determined. (A) Genes related to cytochrome b6f
function. The pet genes encode cytochrome b6f subunits and the ccsA gene encodes a protein
involved in heme attachment [98]. (B) Genes encoding subunits of the NDH complex. (C)
Genes encoding ribosomal proteins.
(TIF)

S7 Fig. Heat map representation of the results of hierarchical clustering of plastid genes
according to their developmental dynamics. Clusters were generated independently from the
data for translational output, mRNA level, and translational efficiency. The genes in each clus-
ter are shown in Fig 5A.
(TIF)

S8 Fig. Developmental dynamics of processed mRNA isoforms from two polycistronic
transcription units whose genes exhibit distinct developmental shifts in translational effi-
ciency. The transcription units and probes used for RNA gel blot hybridizations are shown at
top. Lanes contain an equal mass of total RNA, as illustrated by the methylene blue-stained
blots shown below. RNAs were extracted from aliquots of the leaf lysates used for the ribosome
footprint preparation prior to RNAse I addition, and therefore suffered slight degradation. The
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rps14 gene is represented by several small transcripts that are over-represented with respect to
the precursor at early developmental stages. The psaI gene is represented on a monocistronic
mRNA that accumulates preferentially in segments 4 and 9 and on the polycistronic primary
transcript.
(TIF)

S1 Table. List of DNA oligonucleotides used in the rRNA depletion step of Ribo-seq library
preparation.
(XLSX)

S2 Table. Mapping statistics of leaf segment data.
(XLSX)

S3 Table. RNA-seq data at splice junctions of plastid genes.
(XLSX)

S4 Table. Values for translational output, mRNA level and translational efficiency from the
leaf segment data.
(XLSX)

S5 Table. Hierarchical clustering of the leaf segment data.
(XLSX)

S6 Table. Values for translational output, mRNA level and translational efficiency from the
mesophyll and bundle sheath data.
(XLSX)

S7 Table. Ribo-seq and RNA-seq data at sites of plastid RNA editing.
(XLSX)
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