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Abstract
To date, most genetic analyses of phenotypes have focused on analyzing single traits or

analyzing each phenotype independently. However, joint epistasis analysis of multiple com-

plementary traits will increase statistical power and improve our understanding of the com-

plicated genetic structure of the complex diseases. Despite their importance in uncovering

the genetic structure of complex traits, the statistical methods for identifying epistasis in mul-

tiple phenotypes remains fundamentally unexplored. To fill this gap, we formulate a test for

interaction between two genes in multiple quantitative trait analysis as a multiple functional

regression (MFRG) in which the genotype functions (genetic variant profiles) are defined as

a function of the genomic position of the genetic variants. We use large-scale simulations to

calculate Type I error rates for testing interaction between two genes with multiple pheno-

types and to compare the power with multivariate pairwise interaction analysis and single

trait interaction analysis by a single variate functional regression model. To further evaluate

performance, the MFRG for epistasis analysis is applied to five phenotypes of exome

sequence data from the NHLBI’s Exome Sequencing Project (ESP) to detect pleiotropic

epistasis. A total of 267 pairs of genes that formed a genetic interaction network showed sig-

nificant evidence of epistasis influencing five traits. The results demonstrate that the joint

interaction analysis of multiple phenotypes has a much higher power to detect interaction

than the interaction analysis of a single trait and may open a new direction to fully uncover-

ing the genetic structure of multiple phenotypes.

Author Summary

The widely used statistical methods test interaction for single phenotype. However, we
often observe pleotropic genetic interaction effects. The simultaneous gene-gene (GxG)
interaction analysis of multiple complementary traits will increase statistical power to
detect GxG interactions. Although GxG interactions play an important role in uncovering
the genetic structure of complex traits, the statistical methods for detecting GxG interac-
tions in multiple phenotypes remains less developed owing to its potential complexity.
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Therefore, we extend functional regression model from single variate to multivariate for
simultaneous GxG interaction analysis of multiple correlated phenotypes. Large-scale simu-
lations are conducted to evaluate Type I error rates for testing interaction between two genes
with multiple phenotypes and to compare power with traditional multivariate pair-wise
interaction analysis and single trait interaction analysis by a single variate functional regres-
sion model. To further evaluate performance, the MFRG for interaction analysis is applied
to five phenotypes of exome sequence data from the NHLBI’s Exome Sequencing Project
(ESP) to detect pleiotropic GxG interactions. 267 pairs of genes that formed a genetic inter-
action network showed significant evidence of interactions influencing five traits.

Introduction
In the past several years, we have witnessed remarkable progresses in the development of meth-
odologies for identification of epistasis that detect deviation from summation of genetic addi-
tive effects for a quantitative trait [1]. The classical approach to epistasis analysis is a single
variant test. The epistasis is typically evaluated by testing interaction between a pair of variants
one at a time. The classical methods for epistasis tests are originally designed to detect epistasis
for common variants and are difficult applied to rare variants due to multiple testing problems
and the low power to detect interaction. To overcome the critical barrier in interaction analysis
for rare variants, instead of testing each pair of variants individually, group interaction tests
that evaluate cumulative interaction effects of multiple genetic variants in a region or gene have
recently been developed. Regression-based methods [2–8], haplotype-based methods [9–15],
and machine learning-based methods [16–20] are proposed for epistasis analysis.

The classical statistical methods for interaction analysis have mainly tested association with
single traits, one time analyzing one trait [21]. However, multiple phenotypes are highly corre-
lated. More than 4.6% of the SNPs and 16.9% of the genes in previous genome-wide association
studies (GWAS) are reported to be significantly associated with more than one trait [22]. These
results demonstrate that genetic pleiotropic effects likely play a crucial role in the molecular basis
of correlated phenotypes [23–26]. Joint epistasis analysis of multiple complementary traits will
increase statistical power to unravel the interaction structure of multiple phenotypes [27, 28].
Despite their importance in understanding genetic mechanism underlying the complex diseases,
the statistical methods for identifying epistasis in multiple phenotypes have been less developed
[1]. The interaction analyses for multiple phenotypes have been limited to common variants in
carefully controlled experimental crosses [29, 30]. Simultaneously analyzing interactions for mul-
tiple phenotypes in humans poses enormous challenges for methodologies and computations.

Purpose of this paper is to develop a general analytic framework and novel statistical meth-
ods for simultaneous epistasis analysis of multiple correlated phenotypes. To unify the
approach to epistasis analysis for both common and rare variants, we take a genome region (or
gene) as a basic unit of interaction analysis and use all the information that can be accessed to
collectively test interaction between all possible pairs of SNPs within two genome regions (or
genes). Functional data analysis is used to reduce the dimension of next-generation sequencing
data. Specifically, genetic variant profiles that will recognize information contained in the phys-
ical location of the SNP are used as a major data form. The densely typed genetic variants in a
genomic region for each individual are so close that these genetic variant profiles can be treated
as observed data taken from curves [8, 31]. Since standard multivariate statistical analyses
often fail with functional data [32] we formulate a test for interaction between two genomic
regions in multiple quantitative trait analysis as a multiple functional regression (MFRG)
model [33] with scalar response. In the MFRGmodel the genotype functions (genetic variant
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profiles) are defined as a function of the genomic position of the genetic variants rather than a set
of discrete genotype values and the quantitative trait is predicted by genotype functions with
their interaction terms. By functional principal component analysis, the genotype functions are
expanded as a few functional principal components (FPC) and the MFRGmodel is transformed
to the classical multivariate regression model (MRG) in which FPC scores are taken as variates.
Statistics are developed in this publication which can be applied to pairwise interaction tests and
gene-based interaction tests for multiple phenotypes. By investigating SNP-SNP interactions or
gene-gene interactions that are shared across multiple traits, pleiotropic epistasis can be studied.

To evaluate performance for multiple traits epistasis analysis, large scale simulations are
used to calculate the Type I error rates of the MFRG for testing interaction between two geno-
mic regions with multiple phenotypes and to compare power with multivariate pair-wise inter-
action analysis and single trait interaction analysis by functional regression (FRG) model. To
further evaluate performance, the MFRG for epistasis analysis is applied to five traits: high den-
sity lipoprotein (HDL), low density lipoprotein (LDL), total cholesterol, systolic blood pressure
(SBP), and diastolic blood pressure (DBP), from exome sequence data from the NHLBI’s
Exome Sequencing Project (ESP) to detect pleiotropic epistasis.

Methods
Assume that n individuals are sampled. Let yik, k = 1,2,. . .,K, be the k-th trait values of the i-th
individual. Consider two genomic regions [a1, b1] and [a2, b2]. Let xi(t) and xi(s) be genotypic
functions of the i-th individual defined in the regions [a1, b1] and [a2, b2], respectively. Let yi =
[yi1,. . .,yiK]

T be the vector of the trait values measured on the i-th individual. Let t and s be a
genomic position in the first and second genomic regions, respectively. Define a genotype pro-
file xi(t) of the i-th individual as

XiðtÞ ¼

(
0; mm

1; Mm

2; MM

;

where M and m are two alleles of the marker at the genomic position t. Recall that a regression
model for interaction analysis with the k-th trait is defined as

yik ¼ μk þ
XD

d¼1
νidτkd þ

XJ1
j¼1

xijαkj þ
XJ2
l¼1

zilβkl þ
XJ1
j¼1

XJ2
l¼1

xijzilγkjl þ εik; ð1Þ

where μk is an overall mean of the k-th trait, zkd is the coefficient associated with the covariate νd,
αkj is the main genetic additive effect of the j-th SNP in the first genomic region for the k-th trait,
βkl is the main genetic additive effect of the l-th SNP in the second genomic region for the k-th
trait, γkjl is an additive × additive interaction effect between the j-th SNP in the first genomic
region and the l-th SNP in the second genomic region for the k-th trait; xij and zil are indicator
variableS for the genotypes at the j-th SNP and the l-th SNP, respectively; εik, k = 1,..,K are inde-
pendent and identically distributed normal variables with mean of zero and covariance matrix S.

Similar to the multiple regression models for interaction analysis with multiple quantitative
traits, the functional regression model for a quantitative trait can be defined as

yik ¼ α0k þ
XD

d¼1
νidτkd þ

Z
T

αkðtÞxiðtÞdt þ
Z
S

βkðsÞxiðsÞdsþ
Z
T

Z
S

γkðt; sÞxiðtÞxiðsÞdtdsþ εik; ð2Þ

where α0k is an overall mean, zkd is defined as before, αk(t) and βk(s) are genetic additive effects of two
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putative QTLs located at the genomic positions t and s, respectively; γk(t,s) is the interaction effect

between two putative QTLs located at the genomic positions t and s for the k-th trait, k = 1,. . .,K, xi(t)

and xi(s) are genotype profiles, and εik are independent and identically distributed normal variables

with mean of zero and covariance matrix S. Consider covariates in the model (2) allows incorporating

PCA scores for population stratification, sex, age, BMI and other biomarkers into the model.

Estimation of Interaction Effects
We assume that both phenotypes and genotype profiles are centered. The genotype profiles
xi(t) and xi(s) are expanded in terms of the orthonormal basis function as:

xiðtÞ ¼
X1
j¼1

xij�jðtÞ and

xiðsÞ ¼
X1
l¼1

ZilclðsÞ; ð3Þ

where ϕj(t) and ψl(s) are sequences of the orthonormal basis functions. The more number of
variants in the genes the more accurate the eigenfunction expansion. If the number of variants
is less than 3 the eigenfunction expansion of the genotypic profiles is impossible. MFRG can
only be used for gene with more than 3 variants.

In practice, numerical methods for the integral will be used to calculate the expansion coeffi-
cients. Substituting Eq (3) into Eq (2), we obtain (Appendix)

yik ¼ α0k þ
XD

d¼1
νidτkd þ

X1
j¼1

ξijαkj þ
X1
l¼1

ηilβkl þ
X1
j¼1

X1
l¼1

ξijηilγkjl þ εik; i ¼ 1; . . . ; n; k ¼ 1; . . . ;K; ð4Þ

The parameters αkj, βkl and γkjl are referred to as genetic additive and additive × additive
effect scores for the k-th trait. These scores can also be viewed as the expansion coefficients of
the genetic effect functions with respect to orthonormal basis functions.

Then, Eq (4) can be approximated by (Appendix)

Y ¼ eα0 þ ντ þ ξα þ ηβþ Γγ þ ε

¼ WBþ ε;
ð5Þ

whereW ¼ ½ e ν x η Γ � and B ¼

α0

τ

α

β

γ

2
666666664

3
777777775
.

Therefore, we transform the original functional regression interaction model into the classi-
cal multivariate regression interaction model by eigenfunction expansions. All methods for
multivariate regression interaction analysis can directly be used for solving problem (5).

The standard least square estimators of B and the variance covariance matrix S are, respec-
tively, given by

B̂ ¼ ðWTWÞ�1WTY ; ð6Þ

Ŝ ¼ 1

n
ðY �WBÞTðY �WBÞ: ð7Þ
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Denote the last JL row of the matrix (WTW)−1WT by A. Then, the estimator of the parame-
ter γ is given by

γ̂ ¼ AY : ð8Þ

The vector of the matrix γ can be written as

vecðγ̂Þ ¼ ðI � AÞvecðYÞ: ð9Þ

By the assumption of the variance matrix of Y, we obtain the variance matrix of vec(Y):

varðvecðYÞÞ ¼ S� I: ð10Þ

Thus, it follows from Eqs (9) and (10) that

Λ ¼ varðvecðγ̂ÞÞ ¼ ðI � AÞðS� IÞðI � ATÞ
¼ S� ðAATÞ: ð11Þ

Test Statistics
An essential problem in genetic interaction studies of the quantitative traits is to test the inter-
action between two genomic regions (or genes). Formally, we investigate the problem of testing
the following hypothesis:

γkðt; sÞ ¼ 0; 8t 2 ½a1; b1�; s 2 ½a2; b2�; k ¼ 1; . . . ;K;

which is equivalent to testing the hypothesis:

H0 : g ¼ 0:

Define the test statistic for testing the interaction between two genomic regions [a1, b1] and
[a2, b2] with K quantitative traits as

TI ¼ ðvecðγ̂ÞÞT Λ�1vecðγ̂Þ: ð12Þ

Then, under the null hypothesis H0: γ = 0, TI is asymptotically distributed as a central w2ðKJLÞ dis-

tribution if JL components are taken in the expansion Eq (3).
Group tests often make implicit homogeneity assumptions where all putatively functional

variants within the same genomic region are assumed to have the same direction of effects.
However, in practice, the variants with opposite directions of effects will be simultaneously pre-
sented in the same genomic region. MFRG can efficiently use information of both risk and pro-
tective variants and allow for sign and size heterogeneity of genetic variants. In general, the
trait increasing and decreasing variants will be present in different locations in the genomic
region. Information of trait increasing and decreasing variants usually will be reflected in dif-
ferent eigenfunctions and hence will be included in different functional principal component
scores. The MFRG test statistic is essentially to summarize the square of the functional princi-
pal component scores. Therefore, the opposite effects of trait increasing and decreasing vari-
ants on the phenotype will not compromise each other in the MFRG test statistics. The MFRG
statistics automatically take the opposite effects of the trait increasing and decreasing variants
on the phenotype into account and do not require additional computations. MFRG will take
the sign and size heterogeneity of the variants into account and be less sensitive to the presence
of variants with opposite directions of effect.

We can also develop likelihood ratio-based statistics for testing interaction.
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SettingW ¼ ½W1 W2 �, we can write the model as

E½Y � ¼ W1

a

b

" #
þW2g:

Under H0: γ = 0, we have the model:

Y ¼ W1

a

b

" #
þ ε:

The estimators will be

â

b̂

" #
¼ ðWT

1 W1Þ�1WT
1 Y and Ŝ1 ¼

1

n
ðY �W1

â

b̂

" #
ÞTðY �W1

â

b̂

" #
Þ:

The likelihood for the full model and reduced model are, respectively, given by

Lðâ; b̂; ĝ; ŜÞ ¼ e�nK=2

ð2pÞnK=2jŜjn=2 and

Lðâ; b̂; Ŝ1Þ ¼
e�nK=2

ð2pÞnK=2jŜ1jn=2
:

The likelihood-ratio-based statistic for testing interaction between two genomic regions
with multivariate traits is defined as

TIL ¼ �n log
jŜj
jŜ1j

 !
: ð13Þ

Under the null hypothesis H0: γ = 0, TIΛ is asymptotically distributed as a central w2ðKJLÞ dis-

tribution if JL components are taken in the expansion Eq (3).

Simulation Model for Type 1 Error Rate Calculation
The genetic models for simulations to calculate Type 1 error rates of the tests are briefly given
below. We first assume the model with no marginal effects for all traits:

Yi ¼ mþ εi; i ¼ 1; . . . ; n;

where Yi = [yi1,. . .,yik], μ = [μ1,. . .,μk], and εi is distributed as

½ ε1 . . . εk � � N ½ 0 . . . 0 �;

1 � � � 0:5

..

. . .
. ..

.

0:5 � � � 1

0
BBBBBB@

1
CCCCCCA

0
BBBBBB@

1
CCCCCCA
:

Then, we considered the model with marginal genetic effect (additive model) at one gene:

yik ¼ mk þ
XJ

j¼1
xijakj þ εik;
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where

xij ¼

(
2ð1� PjÞ AjAj

1� 2Pj Ajaj

�2Pj ajaj

; ak ¼ ðrk � 1Þf0;

where Pj is a frequency of the allele Aj, rk is a risk parameter of the k-th trait which was randomly
selected from 1.1 to 1.6. The risk parameter affect the genetic effects and is used to control the
contribution effort by genotype to the phenotype. The risk parameter influences the relative mag-
nitude of the genetic effects. f0 is a baseline penetrance and set to 1 and ε are defined as before.

Finally, we consider the model with marginal genetic effects (additive model) at both genes:

yik ¼ mk þ
XJ

j¼1
xijakj þ

XL

l¼1
zilbkl þ εik;

where

xij ¼
2ð1� PjÞ AjAj

1� 2Pj Ajaj

�2Pj ajaj

; zil ¼

(
2ð1� qlÞ BlBl

1� 2ql Blbl

�2ql blbl

; akj ¼ ak ¼ ðrpk � 1Þf0;bkl ¼ bk ¼ ðrqk � 1Þf0;

8>>>><
>>>>:

Pj and ql are frequencies of the alleles Aj and Bl, respectively, rpk and rqk are risk parameters
of the k-th trait for the SNPs in the first and second genes, respectively, and randomly selected
from 1.1 to 1.6, f0 is a baseline penetrance and set to 1 and ε are defined as before.

Results

Null Distribution of Test Statistics
To examine the null distribution of test statistics, we performed a series of simulation studies
to compare their empirical levels with the nominal ones. We calculated the Type I error rates
for rare alleles, and common alleles. To make simulations more close to real whole exome
sequencing data, we generated 50,000 datasets consisting of 1,000,000 chromosomes randomly
sampled from the NHLBI’s Exome Sequencing Project (ESP) with 2,016 individuals and 18,587
genes. Each dataset included randomly selected a pair of genes from sequenced 18,587 genes.
We randomly selected 20% of SNPs from each gene as causal variants. The number of sampled
individuals from populations of 1,000,000 chromosomes ranged from 1,000 to 5,000. For each
dataset, we repeated 5,000 simulations. We presented average type I error rates over 50,000
randomly selected pairs of genes from whole exome sequencing ESP dataset.

Table 1 and S1 and S2 Tables summarized the average Type I error rates of the test statistics
for testing the interaction between two genes with no marginal effect and consisting of only rare
variants with 5 traits, 2 traits and 10 traits, respectively, over 50,000 pairs of genes at the nominal
levels α = 0.05, α = 0.01 and α = 0.001. Table 2 and S3 and S4 Tables summarized the average
Type I error rates of the test statistics for testing the interaction between two genes with marginal
effect at one gene consisting of only rare variants with 5 traits, 2 traits and 10 traits, respectively,
over 50,000 pairs of genes at the nominal levels α = 0.05, α = 0.01 and α = 0.001. Table 3 and S5
and S6 Tables summarized the average Type I error rates of the test statistics for testing the inter-
action between two genes with marginal effect at both genes consisting of only rare variants with 5
traits, 2 traits and 10 traits, respectively, over 50,000 pairs of genes at the nominal levels α = 0.05,
α = 0.01 and α = 0.001. For common variants, we summarized the average Type I error rates of
the test statistics for testing the interaction between two genes with marginal effect at both genes
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consisting of only common variants with 5 traits, 2 and 10 traits, respectively, over 10 pairs of
genes at the nominal levels α = 0.05, α = 0.01 and α = 0.001, in Table 4 and S7 and S8 Tables,
respectively. The statistics for testing interaction between two genomic regions with only common
variants have the similar Type 1 error rates in the other two scenarios: with marginal genetic
effects at one gene or without marginal genetic effects at two genes. These results clearly showed
that the Type I error rates of theMFRG-based test statistics for testing interaction between two
genes with multiple traits and common variants with or without marginal effects were not appre-
ciably different from the nominal α levels. For the rare variants when the sample sizes increased to
5,000, the Type 1 error rates were still not appreciably different from the nominal levels.

Power Evaluation
To evaluate the performance of the MFRGmodels for interaction analysis of multiple traits, we
used simulated data to estimate their power to detect interaction between two genes for two,
four, five, six and ten quantitative traits. A true multiple quantitative genetic model is given as fol-
lows. ConsiderH pairs of quantitative trait loci (QTL) from two genes (genomic regions). LetQh1

and qh1 be two alleles at the first QTL, andQh2
and qh2 be two alleles at the second QTL, for theH

pair of QTLs. Let uijkl be the genotypes of the u-th individual with ij ¼ Qh1
Qh1

;Qh1
qh1 ; qh1qh1 and

kl ¼ Qh2
Qh2

;Qh2
qh2 ; qh2qh2 , and gmuijkl

be its genotypic value for them-th trait. The following mul-

tiple regression is used as a genetic model for them-th quantitative trait:

ymu ¼
XH
h¼1

ghmuijkl
þ εmu ; u ¼ 1; 2; . . . ; n;m ¼ 1; . . . ;M;

where ghmuijkl
is a genotypic value of the h-th pair of QTLs for them-th quantitative trait and εmu

are distributed as ½ ε1 . . . εm � � N ½ 0 . . . 0 �;

1 � � � 0:5

..

. . .
. ..

.

0:5 � � � 1

0
BBBBBB@

1
CCCCCCA

0
BBBBBB@

1
CCCCCCA
.

Table 1. Average type 1 error rates of the statistic for testing interaction between two genes with no
marginal effect consisting only rare variants with 5 traits over random selected 50,000 pairs of genes
fromwhole exome.

Sample Size 0.05 0.01 0.001

1000 0.0784 0.0188 0.0019

2000 0.0693 0.0097 0.0016

3000 0.0617 0.0135 0.0010

4000 0.0591 0.0126 0.0014

5000 0.0546 0.0095 0.0012

doi:10.1371/journal.pgen.1005965.t001

Table 2. Average type 1 error rates of the statistic for testing interaction between two genes with mar-
ginal effect at one gene consisting only rare variants with 5 traits over randomly selected 50,000 pairs
of genes from the whole exome.

Sample Size 0.05 0.01 0.001

1000 0.0785 0.0177 0.0018

2000 0.0672 0.0154 0.0017

3000 0.0604 0.0149 0.0010

4000 0.0555 0.0120 0.0012

5000 0.0510 0.0132 0.0009

doi:10.1371/journal.pgen.1005965.t002
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Four models of interactions are considered: (1) Dominant OR Dominant, (2) Dominant
ANDDominant, (3) Recessive OR Recessive and (4) Threshold model (S9 Table). We assume
that the genotypes at two loci affect a complex trait. Intuitively, Dominant OR Dominant model
means that presence of risk allele at least one locus will cause the phenotype variation. Dominant
ANDDominant model means that only when risk alleles at both loci are present the phenotype
variation can be affected. Recessive OR recessive model indicates that when both risk alleles are
at least present at one locus the phenotype variation can be observed. Threshold model implies
that when two risk alleles at one locus and at least one risk allele at another locus are present, the
phenotype variation will be observed. Recessive AND Recessive model is excluded due to low fre-
quency of that condition with rare variants. The risk parameter r varies from 0 to 1.

We generated 2,000,000 chromosomes by resampling from 2,016 individuals of European
origin with variants in random two genes selected from the NHLBI’s Exome Sequencing Proj-
ect (ESP). Two haplotypes were randomly sampled from the population and assigned to an
individual. We randomly selected 20% of the variants as causal variants. A total of 2,000 indi-
viduals for the four interaction models were sampled from the populations. A total of 1,000
simulations were repeated for the power calculation.

The power of the proposed MFRGmodel is compared with the single trait functional regres-
sion (SFRG) model, the multi-trait pair-wise interaction test and the regression on principal
components (PCs). For SNPs genotypes in each genomic region principal component analysis
(PCA) were performed. The number of principal components for each individual which can
explain 80% of the total genetic variation in the genomic region will be selected as the variables.
Specifically, the principal component score of the i-th individual in the first and second geno-
mic regions are denoted by xi1; . . . ; xik1 and zi1; . . . zik2 , respectively. The regression model for

detection of interaction for the m-th trait is then given by

ymi ¼ mm þ
Xk1
j¼1

xijamj þ
Xk2
l¼1

zilbml þ
Xk1
j¼1

Xk2
l¼1

xijzilgmjl þ εmi:

Table 3. Average type 1 error rates of the statistic for testing interaction between two genes with mar-
ginal effects at two genes consisting only rare variants with 5 traits over randomly selected 50,000
pairs of genes from the whole exome.

Sample Size 0.05 0.01 0.001

1000 0.0715 0.0152 0.0018

2000 0.0664 0.0133 0.0013

3000 0.0596 0.0105 0.0014

4000 0.0508 0.0098 0.0010

5000 0.0511 0.0106 0.0012

doi:10.1371/journal.pgen.1005965.t003

Table 4. Average type 1 error rates of the statistic for testing interaction between two genes with mar-
ginal effects at two genes consisting only common variants with 5 traits over randomly selected
50,000 pairs of genes from the whole exome.

Sample Size 0.05 0.01 0.001

1000 0.0529 0.0112 0.0011

2000 0.0513 0.0098 0.0013

3000 0.0499 0.0101 0.0009

4000 0.0471 0.0094 0.0010

5000 0.0469 0.0102 0.0008

doi:10.1371/journal.pgen.1005965.t004
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The power of the MFRG is compared with the traditional point-wise interaction test which
takes the following model:

ymi ¼ mm þ xi1am1 þ xi2am2 þ xi1xi2gm þ εmi; i ¼ 1; . . . ; n;m ¼ 1; . . . ;M:

For a pair of genes, we assume that the first gene has k1 SNPs, and the second gene has k2
SNPs, then, the total number of all possible pairs is k = k1 × k2. For each pair of SNPs, we calcu-
lated a statistic for testing pair-wise interaction Tmjpair. Finally, the maximum of Tmjpair: Tmax =
max(T1,1pair,T1,2pair,. . .,T1,kpair,. . .,TM,1pair,. . .,TM,kpair) is computed.

Figs 1 and 2, S1 Fig and S2 Fig plotted the power curves of the two-trait FRG, single trait
FRG, two-trait regression on PCs and two-trait pair-wise interaction tests for a quantitative
trait under Dominant OR Dominant, Dominant AND Dominant, Threshold, and Recessive
OR Recessive models, respectively. Only two genes include rare variants. These power curves
are a function of the risk parameter at the significance level α = 0.05. Permutations in the
point-wise interaction tests were used to adjust for multiple testing. In all cases, the two-trait
FRG had the highest power to detect epistasis. We observed two remarkable features. First,
two-trait test had higher power than the one-trait test. Second, the two-trait FRG had the high-
est power among all two-trait tests.

Figs 3 and 4, S3 Fig and S4 Fig plotted the power curves of the two-trait FRG, single trait
FRG, two-trait regression on PCs and two-trait pair-wise interaction tests for a quantitative
trait under Dominant OR Dominant, Dominant AND Dominant, Threshold and Recessive
OR Recessive models, respectively. Only two genes include common variants. These power
curves are a function of the risk parameter at the significance level α = 0.05. Permutations in
the point-wise interaction tests were used to adjust for multiple testing. These figures showed
that the power patterns of the epistasis tests for common variants were similar to that for rare
variants.

Fig 1. Power curves under Dominant OR Dominant with two genes including rare variants only.

doi:10.1371/journal.pgen.1005965.g001
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Next we investigate the impact of the number of traits on the power. Fig 5 plotted the power
curves of two-trait FRG, four-trait FRG, five-trait FRG, six-trait FRG and ten-trait FRG under
Dominant OR Dominant interaction model. Fig 5 showed that if the multiple phenotypes are
correlated then the power of the MFRG to detect epistasis will increase as the number of phe-
notypes increases.

Fig 2. Power curves under Dominant AND Dominant with two genes including rare variants only.

doi:10.1371/journal.pgen.1005965.g002

Fig 3. Power curves under Dominant OR Dominant with two genes including common variants only.

doi:10.1371/journal.pgen.1005965.g003
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To investigate the impact of sample size on the power, we plotted Fig 6 and S5–S7 Figs
showing the power of three statistics for testing the interaction between two genomic regions
(or genes) with only rare variants as a function of sample sizes under four interaction models,
assuming 20% of the risk rare variants and the risk parameter r = 0.05 for Dominant OR

Fig 4. Power curves under Dominant AND Dominant with two genes including common variants only.

doi:10.1371/journal.pgen.1005965.g004

Fig 5. Power curves of MFRGwith different trait number under Dominant OR Dominant.

doi:10.1371/journal.pgen.1005965.g005
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Dominant, Dominant AND Dominant, and Recessive OR Recessive, and r = 0.5 for Threshold
models, respectively. Again, we observed that the power of the two-trait FRG was the highest.

Application to Real Data Examples
To further evaluate the performance, the MFRG for testing epistasis was applied to data from
the NHLBI’s ESP Project. Five phenotypes: HDL, LDL, total cholesterol, SBP and DBP were
considered with a total of 2,016 individuals of European origin from 15 different cohorts in the
ESP Project. No evidence of cohort- and/or phenotype-specific effects, or other systematic
biases was found [34]. Exomes from related individuals were excluded from further analysis.
We took the rank-based inverse normal transformation of the phenotypes [35] as trait values.
The total number of genes tested for interactions which included both common and rare vari-
ants was 18,587. The remaining annotated human genes which did not contain any SNPs in
our dataset were excluded from the analysis. A P-value for declaring significant interaction
after applying the Bonferroni correction for multiple tests was 2.89×10−10. Population stratifi-
cation may inflate the test statistics. To reduce the inflation, the standard strategy is to adjust
for population stratification via principal components. All the tests were adjusted for sex, age
and population stratification via 5 principal components.

To examine the behavior of the MFRG, we plotted the QQ plot of the two-trait FRG test
(Fig 7). The QQ plots showed that the false positive rate of the MFRG for detection of interac-
tion in some degree is controlled.

A total of 91 pairs of genes which were derived from 85 genes showed significant evidence
of epistasis with P-values< 2.7×10−10 which were calculated using the MFRG model and
simultaneously analyzing interaction of inverse normally transformed HDL and LDL (S10
Table). The top 30 pairs of significantly interacted genes with HDL and LDL were listed in
Table 5. In Table 5 and S10 Table, P-values for testing interactions between genes by regression
on PCA and the minimum of P-values for testing all possible pairs of SNPs between two genes

Fig 6. Power curves as a function of sample sizes under Dominant OR Dominant with two genes including rare variants only.

doi:10.1371/journal.pgen.1005965.g006
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using standard regression model simultaneously analyzed for the HDL and LDL and P-values
for testing epistasis by the FRG separately against single trait HDL or LDL were also listed.

Several remarkable features from these results were observed. First, we observed that
although pairs of genes showed no strong evidence of interactions influencing individual trait
HDL or LDL, they indeed demonstrated significant interactions if interactions were simulta-
neously analyzed for correlated HDL and LDL. Second, the MFRG often had a much smaller
P-value to detect interaction than regression on the PCA and the minimum of P-values of pair-
wise tests.

Third, pairs of SNPs between two genes jointly have significant interaction effects, but indi-
vidually each pair of SNPs make mild contributions to the interaction effects as shown in
Table 6. There were a total of 60 pairs of SNPs between genes CETP on chromosome 16 and
GPR123 on chromosome 10 with P-values< 0.0488. None of the 60 pairs of SNPs showed
strong evidence of interaction. However, a number of pairs of SNPs between genes CETP and
GPR123 collectively demonstrated significant interaction influencing the traits HDL and LDL.
Fourth, 91 pairs of interacting genes formed a network (Fig 8). The genes C5orf64 that had
interactions with 19 genes, CSMD1 that had interactions with 20 genes, were hub genes in the
network. 26 genes out of total 85 genes in the network were mainly located in 18 pathways.
Each of 12 pathways included at least two interacting genes. However, the majority of interact-
ing genes are located in different pathways. Among 18 pathways, calcium signaling pathway
mediates the effect of LDL and plays a role in control of atherosclerosis susceptibility [36],
LDL-cholesterol has multiple roles in regulating focal adhesion dynamics [37], LDL is involved
in free radical induced apoptosis pathway [38], MAPK and JAK-STAT pathways are involved
in dietary flavonoid protection against oxidized LDL [39], up-regulation of autophagy via
AMPK/mTOR signaling pathway alleviates oxidized -LDL induced inflammation [40], PPARα

Fig 7. QQ plot of the two-trait FRG test adjusted for sex, age and population stratification via five PCs.

doi:10.1371/journal.pgen.1005965.g007
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holds a fundamental role in control of lipid homeostasis [41] and lectin-like ox-LDL receptor 1
mediates PKC-α/ERK/PPAR-γ/MMP pathway [42], HDL reduces the TGF-β1-induced colla-
gen deposition [43], the Wnt pathway plays an important role in lipid storage and homeostasis
[44], From the literatures, we found that both common and rare variants in CETP were associ-
ated with the HDL [45], CREBBP regulated LDL receptor transcription [46], PLTP was associ-
ated with HDL and LDL [47], TMEM57 was associated with serum lipid levels [48], SH2B3 was
associated with LDL cholesterol [49]. It was also reported that CSMD1 was associated with
multivariate phenotype defined as low levels of low density lipoprotein cholesterol
(LDL-C< or = 100 mg/dl) and high levels of triglycerides (TG> or = 180 mg/dl) [50], associ-
ated with hypertension [51]. It was also reported that CSMD1 was associated with LDL and
total cholesterol [52].

Table 5. P-values of top 30 pairs of significantly interacted genes with HDL and LDL after adjusting for sex, age and population stratification via
five PCs.

Gene 1 Chr Gene 2 Chr P-values

Two Traits HDL LDL

MFRG Pair-wise PCA FRG FRG
(minimum)

SHPK 17 ST20 15 1.42E-19 4.30E-04 3.03E-02 2.36E-08 6.48E-11

STK3 8 CSMD1 8 5.98E-16 5.58E-04 1.76E-01 2.82E-07 6.06E-05

ST20 15 FRMD5 15 6.97E-15 7.14E-04 2.13E-03 9.36E-07 4.03E-07

C5orf64 5 PSMD1 2 9.81E-15 1.21E-05 2.64E-01 1.01E-06 3.75E-07

ST20 15 PDE4DIP 1 3.65E-14 3.42E-06 2.18E-01 1.88E-03 1.95E-08

SHPK 17 CSMD1 8 2.44E-13 2.37E-04 4.91E-05 1.26E-03 2.93E-04

C5orf64 5 SPRY1 4 2.64E-13 1.21E-05 2.94E-03 1.12E-06 1.67E-07

NARG2 15 CSMD1 8 3.77E-13 8.07E-05 4.74E-02 2.24E-03 1.11E-04

SIGLEC7 19 NBPF1 1 4.03E-13 6.34E-04 2.64E-02 5.04E-06 5.90E-07

SHPK 17 NRG1 8 5.33E-13 3.91E-04 3.73E-03 2.48E-04 1.58E-07

PLTP 20 NBPF1 1 8.35E-13 2.03E-03 2.03E-01 6.77E-06 6.34E-05

DIAPH3-AS1 13 SPRY1 4 1.06E-12 1.35E-05 5.48E-04 1.35E-04 1.34E-06

MPG 16 NBPF1 1 1.11E-12 3.77E-03 5.56E-01 3.34E-04 2.18E-07

FRMD5 15 SLC8A3 14 2.92E-12 7.85E-05 9.79E-04 2.99E-03 1.67E-08

DIAPH3-AS1 13 PPRC1 10 3.57E-12 9.90E-04 7.71E-01 3.33E-05 2.01E-06

DIAPH3-AS1 13 STK3 8 3.57E-12 3.64E-03 4.74E-01 1.82E-06 5.95E-05

CD300A 17 CSMD1 8 3.89E-12 3.19E-04 2.59E-01 3.65E-04 1.71E-04

RNF40 16 DIAPH3-AS1 13 4.09E-12 3.39E-03 2.68E-01 5.05E-05 1.37E-07

CGB2 19 CSMD1 8 4.38E-12 1.82E-04 3.19E-04 1.87E-05 5.23E-06

SHPK 17 RYR3 15 4.47E-12 3.25E-04 2.47E-05 1.14E-02 7.29E-05

FRMD5 15 C5orf64 5 4.75E-12 1.42E-02 3.65E-01 8.14E-06 4.60E-05

PPM1A 14 CSMD1 8 4.77E-12 6.84E-05 2.37E-03 1.09E-06 2.46E-05

CSMD1 8 ZBTB47 3 5.53E-12 4.02E-06 2.71E-04 9.85E-07 1.78E-03

ST20 15 PSMD1 2 5.75E-12 1.06E-05 9.13E-02 4.41E-06 4.93E-06

CSMD1 8 KIF3A 5 6.56E-12 9.52E-04 2.35E-02 7.04E-03 1.16E-02

TRIM22 11 SORCS2 4 6.62E-12 1.05E-04 2.01E-01 2.98E-07 1.52E-05

CREBBP 16 CSMD1 8 7.56E-12 2.64E-05 2.77E-12 2.78E-03 3.16E-03

ADRA1B 5 PSMD1 2 9.05E-12 1.08E-05 5.86E-01 1.70E-05 1.04E-05

TRIM22 11 STK3 8 1.17E-11 3.46E-04 5.43E-02 1.48E-06 6.03E-05

DIAPH3-AS1 13 SH2B3 12 1.25E-11 5.62E-04 3.94E-01 5.91E-06 6.44E-05

doi:10.1371/journal.pgen.1005965.t005
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Table 6. P-values of 60 pairs of SNPs between genes CETP on chromosome 16 and GPR123 on chromosome 10 for testing interaction affecting
both HDL and LDL.

Gene 1 Gene 2 P-value

CETP GPR123 8.83E-11

SNP1 BP MAF SNP2 BP MAF P-Value

rs9930761 57007192 0.0672123 rs367825198 134940686 0.00024802 4.53E-05

rs5883 57007353 0.0577877 rs367825198 134940686 0.00024802 4.90E-05

rs148628525 56995963 0.00024802 rs11101914 134910629 0.25198413 1.14E-03

rs1800777 57017319 0.03497024 rs2806452 134942166 0.36383929 2.58E-03

rs1800774 57015545 0.34945437 rs115735367 134940724 0.0014881 3.03E-03

rs140547417 57009022 0.00124008 rs2806452 134942166 0.36383929 3.46E-03

rs5883 57007353 0.0577877 rs12219529 134916366 0.14409722 3.69E-03

rs140547417 57009022 0.00124008 rs11101914 134910629 0.25198413 3.94E-03

rs5883 57007353 0.0577877 rs2806453 134942319 0.04464286 5.22E-03

rs9930761 57007192 0.0672123 rs115735367 134940724 0.0014881 5.98E-03

rs5883 57007353 0.0577877 rs2806452 134942166 0.36383929 6.07E-03

rs1800777 57017319 0.03497024 rs10776696 134942340 0.11433532 6.12E-03

rs1532625 57005301 0.41914683 rs115735367 134940724 0.0014881 7.16E-03

rs9930761 57007192 0.0672123 rs118125186 134912135 0.00421627 7.23E-03

rs5883 57007353 0.0577877 rs118125186 134912135 0.00421627 7.50E-03

rs1532625 57005301 0.41914683 rs145543174 134941843 0.00049603 7.90E-03

rs1532625 57005301 0.41914683 rs118125186 134912135 0.00421627 8.49E-03

rs140547417 57009022 0.00124008 rs45586231 134942832 0.06547619 8.93E-03

rs9930761 57007192 0.0672123 rs12219529 134916366 0.14409722 9.17E-03

rs1532625 57005301 0.41914683 rs45586231 134942832 0.06547619 9.23E-03

rs34065661 56995935 0.00124008 rs115735367 134940724 0.0014881 9.56E-03

rs140547417 57009022 0.00124008 rs11101942 134940862 0.11929563 9.62E-03

rs9930761 57007192 0.0672123 rs2806452 134942166 0.36383929 9.69E-03

rs140547417 57009022 0.00124008 rs10776696 134942340 0.11433532 9.76E-03

rs1532625 57005301 0.41914683 rs4838796 134912098 0.03298611 1.12E-02

rs1800774 57015545 0.34945437 rs118125186 134912135 0.00421627 1.19E-02

rs1800774 57015545 0.34945437 rs2806452 134942166 0.36383929 1.33E-02

rs5883 57007353 0.0577877 rs11101916 134912314 0.1703869 1.37E-02

rs5883 57007353 0.0577877 rs11101942 134940862 0.11929563 1.46E-02

rs5883 57007353 0.0577877 rs45586231 134942832 0.06547619 1.59E-02

rs371233223 57005272 0.00024802 rs11101916 134912314 0.1703869 1.68E-02

rs371233223 57005272 0.00024802 rs2806452 134942166 0.36383929 1.70E-02

rs1532625 57005301 0.41914683 rs2806452 134942166 0.36383929 1.75E-02

rs13306230 57003250 0.00124008 rs2806452 134942166 0.36383929 2.21E-02

rs34611098 57004951 0.00124008 rs2806452 134942166 0.36383929 2.21E-02

rs5880 57015091 0.04861111 rs2806452 134942166 0.36383929 2.23E-02

rs9930761 57007192 0.0672123 rs11101941 134940779 0.01116071 2.28E-02

rs1800777 57017319 0.03497024 rs118125186 134912135 0.00421627 2.33E-02

rs5880 57015091 0.04861111 rs118125186 134912135 0.00421627 2.35E-02

rs9930761 57007192 0.0672123 rs2806453 134942319 0.04464286 2.47E-02

rs182237338 57012174 0.00198413 rs12219529 134916366 0.14409722 2.57E-02

rs5883 57007353 0.0577877 rs11101941 134940779 0.01116071 2.68E-02

rs5880 57015091 0.04861111 rs11101916 134912314 0.1703869 2.94E-02

(Continued)
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Next we analyzed five traits: HDL, LDL, SBP, DBP and TOTCHOL. Again, for each trait,
inverse normal rank transformation was conducted to ensure that the normality assumption of
the transformed trait variable was valid. To examine the behavior of the MFRG, we plotted QQ

Table 6. (Continued)

Gene 1 Gene 2 P-value

CETP GPR123 8.83E-11

SNP1 BP MAF SNP2 BP MAF P-Value

rs9930761 57007192 0.0672123 rs45586231 134942832 0.06547619 2.95E-02

rs9930761 57007192 0.0672123 rs11101914 134910629 0.25198413 3.19E-02

rs376545293 57016085 0.00024802 rs11101916 134912314 0.1703869 3.23E-02

rs9930761 57007192 0.0672123 rs11101942 134940862 0.11929563 3.24E-02

rs376545293 57016085 0.00024802 rs11101914 134910629 0.25198413 3.28E-02

rs139594305 57007286 0.00024802 rs4838796 134912098 0.03298611 3.46E-02

rs376545293 57016085 0.00024802 rs2806452 134942166 0.36383929 3.48E-02

rs139594305 57007286 0.00024802 rs12219529 134916366 0.14409722 3.55E-02

rs201267603 57005220 0.00099206 rs12219529 134916366 0.14409722 3.85E-02

rs13306230 57003250 0.00124008 rs11101916 134912314 0.1703869 4.00E-02

rs34611098 57004951 0.00124008 rs11101916 134912314 0.1703869 4.00E-02

rs9930761 57007192 0.0672123 rs11101916 134912314 0.1703869 4.11E-02

rs1800774 57015545 0.34945437 rs189113844 134941821 0.00173611 4.35E-02

rs1800774 57015545 0.34945437 rs11101941 134940779 0.01116071 4.38E-02

rs28381708 57007413 0.00124008 rs11101914 134910629 0.25198413 4.57E-02

rs34855278 57015076 0.0014881 rs11101914 134910629 0.25198413 4.69E-02

rs1532625 57005301 0.41914683 rs10776696 134942340 0.11433532 4.88E-02

doi:10.1371/journal.pgen.1005965.t006

Fig 8. Networks of 91 pairs of genes showing significant evidence of interactions as identified by MFRG.

doi:10.1371/journal.pgen.1005965.g008
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plot of the test (S8 Fig). The QQ plots showed that the false positive rate of the MFRG for
detection of interaction is controlled.

A total of 267 pairs of genes which were derived from 160 genes showed significant evidence
of epistasis influencing five traits with P-values< 1.96×10−10 which were calculated using the
MFRG model (S11 Table). Of them formed a largest connected subnetwork (Fig 9). The top 25
pairs of significantly interacted genes with five traits were listed in Table 7. We observed the
same pattern as was observed for the two traits: HDL and LDL. 46 genes out of 160 genes in the
networks were mainly located in 42 pathways including 15 signaling pathways. Among them,
14 pathways were in Fig 8. The interacting genes may be involved in the same biological path-
way or in the different biological pathways. We observed 12 pathways, each of which contained
at least two genes connected via interaction. However, the majority of interacting genes were
not located in the same pathways.

Again, we observed that pairs of SNPs between two genes jointly have significant interaction
effects, but individually each pair of SNPs might make mild contributions to the interaction
effects as shown in S12 Table. There were a total of 6,766 pairs of SNPs between genes CSMD1
and FOXO1. S12 Table listed 101 pairs of SNPs with P-values< 0.049. The majority of the 101
pairs of SNPs showed no strong evidence of interaction. However, they collectively demon-
strated significant interaction influencing five traits.

Among 42 pathways, in the previous sections we reported that 14 pathways were associated
with HDL and LDL. From the literatures, we also know that unsaturated fatty acids stimulated
the uptake of the LDL particles [53], PPAR signaling pathway was correlated with blood pres-
sure [54], purine metabolism was associated with SBP [55], Wnt signaling pathway mediated
cholesterol transportation [56], glycerolipid metabolism pathway was correlated with total

Fig 9. Networks of 267 pairs of genes showing significant evidence of interactions as identified by MFRG.

doi:10.1371/journal.pgen.1005965.g009

Interaction Analysis

PLOS Genetics | DOI:10.1371/journal.pgen.1005965 April 22, 2016 18 / 26



cholesterol [57], focal adhesion pathway was involved in lipid modulation [58], Cell adhesion
molecules was correlated with blood pressure [59].

We also observed from the literatures that a number of genes that appeared in the list of
interacted genes with five traits had major genetic effects with single trait. Many reports
showed that CETP, LIPC and LIPG were associated with HDL and LDL [60–62] and that
MTHRR had known main effects for LDL [63] and blood pressure [64], NR1I3 for lipid metab-
olism [65], PLTP for LDL [66],[67], FOXO1 for LDL [68] and hypertension [69], SMAD9 for
hypertension [70], and CSMD1 for SBP [51].

Discussion
Most genetic analyses of phenotypes have focused on analyzing single traits or, analyzing each
phenotype independently. However, multiple phenotypes are highly correlated. Genetic vari-
ants can be associated with more than one trait. Genetic pleiotropic effects likely play a crucial
role in the molecular basis of correlated phenotypes. To address these central themes and criti-
cal barriers in interaction analysis of multiple phenotypes, we shift the paradigm of interaction
analysis from individual interaction analysis to pleiotropic interaction analysis and uncover the
global organization of biological systems. MFRG was used to develop a novel statistical

Table 7. P-values of top 25 pairs of significantly interacted genes with five traits.

Gene 1 Gene 2 P-values

Five Traits LDL HDL SBP DBP TOTCHOL

MFRG Pair-wise(min) PCA FRG FRG FRG FRG FRG

PDZK1IP1 CSMD1 4.29E-35 5.61E-16 1.36E-10 4.52E-03 6.44E-02 8.62E-03 2.43E-03 1.19E-03

STK3 CSMD1 5.84E-34 3.39E-05 5.81E-03 6.06E-05 2.82E-07 1.37E-05 1.79E-05 3.22E-04

MEGF6 IRF2BPL 1.51E-31 2.55E-23 3.33E-18 7.65E-01 8.99E-02 2.75E-03 4.07E-02 1.25E-01

PLTP C5orf64 1.52E-31 2.96E-03 9.32E-01 1.77E-04 3.39E-07 3.37E-08 1.61E-06 3.26E-04

CSMD1 CCNDBP1 3.57E-31 1.66E-05 9.71E-04 1.14E-04 3.57E-03 8.80E-05 4.84E-04 8.23E-04

KIF3A C5orf64 1.06E-30 4.94E-05 5.63E-02 7.44E-05 1.21E-06 2.03E-03 1.50E-03 1.05E-03

CSMD1 KIF3A 1.10E-30 3.97E-05 1.13E-05 1.16E-02 7.04E-03 3.60E-01 3.54E-01 1.42E-02

ST20 PDE4DIP 1.93E-30 1.14E-06 6.03E-02 1.95E-08 1.88E-03 2.06E-03 3.22E-03 2.11E-06

CSMD1 NARG2 2.86E-30 3.97E-05 1.90E-06 1.11E-04 2.24E-03 1.78E-02 1.90E-03 3.56E-04

PDZK1IP1 ST20 3.17E-30 9.82E-16 2.09E-03 6.15E-03 1.34E-02 2.30E-03 7.63E-03 3.30E-03

CSMD1 FOXO1 3.32E-30 3.01E-19 2.59E-08 1.49E-06 2.61E-06 1.49E-05 9.21E-07 8.65E-07

SHPK ST20 1.11E-29 3.27E-03 9.68E-02 6.48E-11 2.36E-08 4.26E-04 8.34E-05 1.63E-09

DIAPH3-AS1 SPRY1 2.65E-29 5.40E-08 2.07E-06 1.34E-06 1.35E-04 2.47E-02 8.94E-02 7.67E-05

PLTP NBPF1 4.60E-29 2.92E-03 4.62E-01 6.34E-05 6.77E-06 2.85E-04 8.16E-03 3.93E-05

CREBBP CSMD1 2.18E-28 2.34E-05 5.30E-26 3.16E-03 2.78E-03 1.33E-01 6.30E-02 2.21E-03

TAB1 CSMD1 2.21E-28 1.33E-03 1.34E-04 5.12E-02 2.51E-02 1.48E-02 6.86E-02 4.17E-02

PAIP2B CSMD1 2.79E-28 2.54E-07 3.24E-12 1.02E-06 3.85E-06 1.24E-08 8.12E-08 1.38E-05

CSMD1 PHF3 2.95E-28 1.31E-04 7.20E-09 3.61E-03 6.28E-02 9.38E-02 6.87E-02 1.82E-03

CCNDBP1 ST20 3.19E-28 3.57E-03 1.32E-03 2.08E-05 1.32E-07 2.77E-06 1.17E-06 2.30E-05

SHPK CSMD1 8.06E-28 1.90E-03 1.77E-05 2.93E-04 1.26E-03 2.88E-02 2.68E-02 4.14E-04

ROR2 IRF2BPL 9.44E-28 2.02E-23 2.71E-17 5.04E-02 1.17E-01 2.30E-01 2.20E-01 9.30E-03

NARG2 ST20 1.25E-27 4.69E-05 1.07E-02 1.00E-04 2.46E-04 6.28E-05 1.28E-05 3.14E-05

TRIM22 CPSF3L 1.96E-27 1.03E-18 4.10E-05 2.39E-05 9.32E-05 5.34E-05 2.50E-05 3.09E-05

ST20 PSMD1 5.40E-27 6.32E-08 2.73E-02 4.93E-06 4.41E-06 2.31E-03 1.66E-05 1.24E-05

KIF3A MEGF6 7.65E-27 4.46E-06 6.84E-03 3.22E-04 1.07E-04 3.68E-02 7.89E-02 6.58E-04

doi:10.1371/journal.pgen.1005965.t007
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framework for joint interaction analysis of multiple correlated phenotypes. By large simula-
tions and real data analysis the merits and limitations of the proposed new paradigm of joint
interaction analysis of multiple phenotypes were demonstrated.

The new approach fully uses all phenotype correlation information to jointly analyze inter-
action of multiple phenotypes. By large simulations and real data analysis, we showed that the
proposed MFRG for joint interaction analysis of correlated multiple phenotypes substantially
increased the power to detect interaction while keeping the Type 1 error rates of the test statis-
tics under control. In real data analysis, we observed that although pairs of genes showed no
strong evidence of interactions influencing individual trait, they indeed demonstrated signifi-
cant interactions if interactions were simultaneously analyzed for correlated multiple traits.

Due to lack of power of the widely used statistics for testing interaction between loci and its
computational intensity, exploration of genome-wide gene-gene interaction has been limited.
Few significant interaction results have been observed. Many geneticists question the universe
presence of significant gene-gene interaction. Our analysis showed that although the number
of significantly interacted genes for single phenotype was small, the number of significantly
interacted genes for multiple phenotypes substantially increased. Our results suggested that
joint interaction analysis of multiple phenotypes should be advocated in future genetic studies
of complex traits.

The interaction analysis for multiple phenotypes has been limited to common variants in
carefully controlled experimental crosses and has mainly focused on the pair-wise interaction
analysis. Although pair-wise interaction analysis is suitable for common variants, it is difficult
to use to test interaction between rare and rare variants, and rare and common variants. There
is an increasing need to develop statistics that can be used to test interactions among the entire
allelic spectrum of variants for joint interaction analysis of multiple phenotypes. The MFRG
utilizes the merits of taking genotype as functions and decomposes position varying genotype
function into orthogonal eigenfunctions of genomic position. Only a few eigenfunctions that
capture major information on genetic variation across the gene, are used to model the genetic
variation. This substantially reduces the dimension in genetic variation of the data. The MFRG
can efficiently test the interaction between rare and rare, rare and common, and common and
common variants.

In both real data analysis of two phenotypes and five phenotypes, the interacted genes
formed interaction networks. Hub genes in the interaction networks were also observed. These
hub genes usually play an important biological role in causing phenotype variation.

An essential issue for interaction analysis of a large number of phenotypes is how to reduce
dimension while fully exploiting complementary information in multiple phenotypes. The
standard multivariate regression models for joint interaction analysis of multiple phenotypes
do not explore the correlation structures of multiple phenotypes and reduce the dimensions of
the phenotypes, and hence have limited power to detect pleotropic interaction effects due to
large degrees of freedom. Data reduction techniques such as principal component analysis
should be explored in the future interaction analysis of multiple phenotypes.

The results in this paper are preliminary. The current marginal approaches for interaction
analysis cannot distinguish between direct and indirect interactions, which will decrease our
power to unravel mechanisms underlying complex traits. To overcome these limitations, causal
inference tools should be explored for the joint interaction analysis of multiple phenotypes.
The purpose of this paper is to stimulate further discussions regarding great challenges we are
facing in the interaction analysis of high dimensional phenotypic and genomic data produced
by modern sensors and next-generation sequencing.
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