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Abstract

Human facial diversity is substantial, complex, and largely scientifically unexplained. We used spatially dense quasi-
landmarks to measure face shape in population samples with mixed West African and European ancestry from three
locations (United States, Brazil, and Cape Verde). Using bootstrapped response-based imputation modeling (BRIM), we
uncover the relationships between facial variation and the effects of sex, genomic ancestry, and a subset of craniofacial
candidate genes. The facial effects of these variables are summarized as response-based imputed predictor (RIP) variables,
which are validated using self-reported sex, genomic ancestry, and observer-based facial ratings (femininity and
proportional ancestry) and judgments (sex and population group). By jointly modeling sex, genomic ancestry, and
genotype, the independent effects of particular alleles on facial features can be uncovered. Results on a set of 20 genes
showing significant effects on facial features provide support for this approach as a novel means to identify genes affecting
normal-range facial features and for approximating the appearance of a face from genetic markers.
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Introduction

The craniofacial complex is initially modulated by precisely-

timed embryonic gene expression and molecular interactions

mediated through complex pathways [1]. As humans grow,

hormones and biomechanical factors also affect many parts of

the face [2,3]. The inability to systematically summarize facial

variation has impeded the discovery of the determinants and

correlates of face shape. In contrast to genomic technologies,

systematic and comprehensive phenotyping has lagged. This is

especially so in the context of multipartite traits such as the human

face. In typical genome-wide association studies (GWAS) today

phenotypes are summarized as univariate variables, which is

inherently limiting for multivariate traits, which, by definition

cannot be expressed with single variables. Current state-of-the-art

genetic association studies for facial traits are limited in their

description of facial morphology [4–7]. These analyses start from a

sparse set of anatomical landmarks (these being defined as ‘‘a point

of correspondence on an object that matches between and within

populations’’), which overlooks salient features of facial shape.

Subsequently, either a set of conventional morphometric mea-

surements such as distances and angles are extracted, which

drastically oversimplify facial shape, or a set of principal

components (PCs) are extracted using principal components

analysis (PCA) on the shape-space obtained with superimposition

techniques, where each PC is assumed to represent a distinct

morphological trait. Here we describe a novel method that

facilitates the compounding of all PCs into a single scalar variable

customized to relevant independent variables including, sex,

genomic ancestry, and genes. Our approach combines placing
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spatially dense quasi-landmarks on 3D images [8,9], principal

component analysis (PCA), and a new partial least squares

regression (PLSR, [10]) derived method we call ‘‘bootstrapped

response-based imputation modeling’’ (BRIM) to measure and

model facial shape variation (Text S1, Figures S1, S2, S3).

Given the multivariate nature of the face and the large number

of genes likely affecting variation in the face, we chose to focus

attention on the between-population variation with a genetic

admixture approach using research participants from three West

African/European admixed populations. Ancestry informative

markers (AIMs) can be used to estimate individual genomic

ancestry from DNA [11], which can be used to investigate

population differences and map genes for genetically determined

traits that vary between populations. Non-random mating and

continuous gene flow in admixed populations results in admixture

stratification or variation in individual ancestry [12,13]. The

process of admixture also results in admixture linkage disequilib-

rium or the non-random association among both AIMs and traits

that vary between the parental populations. These characteristics

make admixed populations uniquely suited to investigations into

the genetics of such traits [14–16]. By simultaneously modeling

facial shape variation as a function of sex and genomic ancestry

along with genetic markers in craniofacial candidate genes, the

effects of sex and ancestry can be removed from the model thereby

providing the ability to extract the effects of individual genes.

Results/Discussion

A spatially dense mesh of 7,150 quasi-landmarks was used to

map 3D images of participants’ faces onto a common coordinate

system (Figure 1). Quasi-landmarks are defined here as largely

homologous vertices in this mapped mesh. The mesh is applied

automatically, eliminating the difficult and error-prone procedure

of manually indicating facial landmarks [8,9,17]. Deviations from

bilateral symmetry were removed by averaging each face with its

mirror image [18,19]. PCA on the symmetrized 21,450 quasi-

landmark 3D coordinates (X, Y, and Z for each of the 7,150 quasi-

landmarks) using all 592 participants produces 44 principal

components (PCs) that together summarize 98% of the variation

in face shape and define a multidimensional face space. The effects

of the first 10 PCs are illustrated in Figure 2. Some of these PCs

(e.g., PC4, PC5) capture the effects of changes in only particular

parts of the face. However, many PCs (e.g., PC1, PC2, PC3)

capture effects in multiple parts of the face. Moreover, although

the PCs are statistically independent, any particular part of the

face is affected by several PCs. As such, it is likely incorrect to

assume that each PC represents a distinct morphological trait

resulting from the action of specific genes. Our use of BRIM to

combine the independent effects of PCs is agnostic about their

biological meaning, if any, and provides for the compounding of

the information from any or all of the PCs together into a single

variable that is customized to the predictor variable being

modeled. In this way, BRIM also overcomes the problem of

multiple testing inherent to other methods for summarizing facial

variation. In other words, the hypothesis, does this gene have significant

effects on facial shape, can be addressed with a single statistical test

(Text S1).

BRIM is an extension of existing relationship modeling

techniques that uses response variables to refine and, in some

cases, to transform one or more initial predictor variables. In other

words and in contrast to alternate techniques, BRIM uses a

multivariate matrix of response variables in a leave-one-out forced

imputation setup to update the initial predictor variable values,

creating a new type of variable – the response-based imputed

predictor (RIP) variable (Figure S2). The BRIM process is

bootstrapped, and estimator improvement over successive itera-

tions can be monitored (Figures S5, S6, S7, S8, S9). BRIM also

functions to correct observation error, misspecification of predictor

values, and other sources of statistical confounding (Text S1).

Within the iterative bootstrapping scheme, a nested leave-one-out

approach is used to avoid model over-fitting and to allow

hypothesis testing using standard statistical techniques, such as

correlation analysis, ANOVA, and receiver operating character-

istic (ROC) curve analysis [20], to test the significance of the

association between the predictors and RIP variables. Likewise,

the relationships between the RIP variables and the response

variables, e.g., the 21,450 facial parameters, allows for the

visualization and quantitation of their effects on face shape.

RIP variables modeling sex (RIP-S) and genomic ancestry (RIP-

A), as well as those modeling the effects of particular genetic

markers (RIP-Gs), can be visualized using two primary methods –

shape transformations and heat maps. We used three summary

statistics (area ratio, normal displacement, and curvature differ-

ence), which can be illustrated using heat maps, to quantify the

particular changes to the face that result. These measures of facial

change, along with particular inter-landmark distances, angles,

and spatial relationships, can together be termed face shape change

parameters (FSCPs). FSCPs provide a means of translating face

shape changes from the abstract face space into both visual

representations into words. Such terms are used in clinical and

anthropological descriptions of faces and by doing so we can

compare these to the BRIM results (e.g., Figures S28, S29, S30,

S31, S32, S33, S36, S37, S38, and Table S1). The statistical

significance of these and related FSCPs can be tested using

permutation.

As expected, many parts of the face are affected by both

ancestry and sex. Figure 3 illustrates the partial effects of RIP-A

and RIP-S on facial shape using transformations and heat maps

for effect size (R2) and the three primary FSCPs. Facial regions

that are statistically significant (p,0.001) for effect size and the

FSCPs are shown in Figure 3 as the yellow (not green regions in

the bottom panels). The RIP-A and RIP-S shape transformations

Author Summary

The face is perhaps the most inherently fascinating and
aesthetic feature of the human body. It is a principle
subject of art throughout human history and across
cultures and populations. It provides the most significant
means by which we communicate our emotions and
intentions in addition to health, sex, and age. And yet
features such as the strength of the brow ridge, the
spacing between the eyes, the width of the nose, and the
shape of the philtrum are largely scientifically unexplained.
Here, we use a novel method to measure face shape in
population samples with mixed West African and Europe-
an ancestry from three locations (United States, Brazil, and
Cape Verde). We show that facial variation with regard to
sex, ancestry, and genes can be systematically studied with
our methods, allowing us to lay the foundation for
predictive modeling of faces. Such predictive modeling
could be forensically useful; for example, DNA left at crime
scenes could be tested and faces predicted in order to
help to narrow the pool of potential suspects. Further, our
methods could be used to predict the facial features of
descendants, deceased ancestors, and even extinct human
species. In addition, these methods could prove to be
useful diagnostic tools.

Modeling 3D Facial Shape from DNA
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shown are set to the points three standard deviations plus and

minus the mean RIP-A and RIP-S levels in these samples. As seen

in the effect-size (R2) panels in Figure 3, the proportion of the total

variance in particular facial features explained by RIP-A and

RIP-S can be substantial. In general, up to a third of the variance

in several parts of the face is explained by these two variables.

RIP-A primarily affects the nose and lips and, to lesser extents, the

roundness of the face, the mandible, and supraorbital ridges. Sex

has a much larger effect than ancestry on the supraorbital ridges

and cheeks, and smaller effects on the nose and under the eyes.

The FSCPs help to illustrate the specific ways in which particular

RIP variables affect the face. For example, the area ratio shows

increased surface area for the medial canthus, sides of the nose,

and front of the chin on the European end of RIP-A and a greater

surface area for the nostrils and lips on the West African end of

RIP-A. The curvature difference highlights the top of the philtrum

as a facial feature that is highly convex on the European end and

highly concave on the West African end of RIP-A. Regions

showing curvature differences for RIP-A are also seen in the nasal

bridge, supraorbital ridges, and chin. RIP-S shows greatest effects

on the supraorbital ridges, nasal bridge, nasal ridge, zygomatics,

and cheeks. The nose, lips, medial canthus, and mandible are also

affected by RIP-S. The largest differences in facial curvature

related to changes in RIP-S are on the supraorbital ridges and the

nasal bridge.

Despite the complex ways in which faces are affected by RIP-A

and RIP-S, these variables are useful summaries of the degree to

which particular faces are more or less ancestry-typical and sex-

typical, respectively. This is evident in the strong relationship

observed between RIP-A and genomic ancestry as measured with

a panel of 68 AIMs (r = 0.81, p,0.001; Figure 4A). Approximately

two thirds of the variation in RIP-A across these three West

African/European admixed populations is explained by genomic

ancestry. Likewise, as seen in Figure 4B, RIP-S is very distinctive

between the sexes. ROC analyses (Figure S32) show that the AUC

for RIP-S on sex is 0.994 (p,0.001). Genomic ancestry,

Figure 1. Workflow for 3D face scan processing. A) original surface, B) trimmed to exclude non-face parts, C) reflected to make mirror image, D)
anthropometric mask of quasi-landmarks, E) remapped, F) reflected remapped, G) symmetrized, H) reconstructed.
doi:10.1371/journal.pgen.1004224.g001
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Figure 2. PCA effects on facial morphology. The effects of the first 10 PCs (A–J) on face shape change parameters (FSCPs). The effect as a
magnitude of each quasi-landmark displacement is shown first, followed by the alternate transformations (grey faces), the area ratio between both,
the curvatures on the transformations, the curvature ratio between both, and finally the normal displacement between both, which is the signed
magnitude of the displacement of one quasi-landmark in the direction normal to the surface of the first transformation (left gray faces).
doi:10.1371/journal.pgen.1004224.g002

Modeling 3D Facial Shape from DNA

PLOS Genetics | www.plosgenetics.org 4 March 2014 | Volume 10 | Issue 3 | e1004224



Modeling 3D Facial Shape from DNA

PLOS Genetics | www.plosgenetics.org 5 March 2014 | Volume 10 | Issue 3 | e1004224



independently from sex, explains 9.6% of the total facial variation,

while sex independently from ancestry explains 12.9% of the total

facial variation (Table S3). Most facial variation, like human

genetic variation in general, is shared among different human

populations and by members of both sexes.

We used alternate subsets of AIMs and alternate population

samples to test the robustness of the facial ancestry (RIP-A)

estimation. RIP-A values were derived using different initial

predictor variables and compared. The pairwise correlations of

RIP-A estimates are high (R2.0.99), showing that very similar

estimates of facial ancestry result from different panels of AIMs

(Figure S9) and alternate population samples (Figures S10, S11).

The robustness of RIP-A estimates to both marker panel and

population sample substantiates the generality and, thus, practical

usefulness of these models.

We also see that RIP-A estimates generated using AIMs panels

with lower ancestry-information content show stronger correla-

tions with more accurate genomic ancestry estimates than with the

genomic ancestry estimates that were used to generate them

(Figure S9). To further evaluate the performance of BRIM when

less information is available, we performed noise injection

experiments by adding or subtracting randomly defined quantities

from the estimates of genomic ancestry and misclassifying the sex

of persons in the sample (Figures S4, S5, S6, S7, S8 and Figures

S12, S13, S14, respectively). These experiments demonstrate the

same patterns noted above using alternate panels of AIMs:

Accurate RIP variables for these two traits are possible with

incorrect coding of sex and imprecise estimates of genomic

ancestry. The initial predictor variable values of both sex and

ancestry can be reduced in precision by as much as 30% (i.e.,

r2 = 0.7 between the original predictor variable and the noise

predictor injected variable) and still show correlation coefficients of

about r = 0.95 between the RIP measures generated with these

noisy estimates and RIP measures generated with the original

estimates (Figure S8 and Figure S14). BRIM is efficient in using

the latent covariance structure of the facial PCs to discover the

paths through face space that reflect sex and ancestry and can

accurately summarize the relative positions of individual faces on

these paths as RIP-S and RIP-A, respectively.

Humans are also very adept at observing faces and can infer

many aspects of the variability among faces [21,22]. Given this,

we attempted to test whether the human observer might

provide a means of validating the RIP-A and RIP-S variables.

Observers were shown false-colored 3D animated GIF images

of research participants’ faces and asked to rate the proportion

of West African ancestry (from 0% to 100%) and the femininity

(using a Likert scale from 1 to 7). Observers were also asked to

judge the sex and the population group. As shown in Figures 5A

and 5B, the correlations between RIP-A and observer ratings

of proportional facial ancestry and judgments of facial

population are strong (all r.0.85 and p,0.0001). Similarly,

RIP-S and observer ratings of facial femininity and judgments

of facial sex are also highly correlated (r.0.85 and p,0.0001;

Figures 5C and 5D). These findings provide additional

validation that RIP-A and RIP-S are informative summary

statistics representing the relative levels of facial ancestry and

facial femininity.

Like sex and genomic ancestry, SNP genotypes can be used as

initial predictor variables in BRIM resulting in one RIP-G variable

per SNP. We performed a partial BRIM analysis modeling

genotype effects independent of sex and ancestry for each of 76

West African/European ancestry-informative SNPs located in 46

craniofacial candidate genes. These 46 genes were selected

primarily from a set of 50 craniofacial genes that also showed

genomic signatures of accelerated evolution in a survey of 199

genes (Table S2). Since properly conditioned tests of genetic

association in admixed populations are an efficient approach to

discover genes affecting traits that differ between populations and

since RIP-A is an efficient means of summarizing overall facial

ancestry, it is perhaps somewhat counterintuitive that RIP-A

conditioning is superior to genomic ancestry conditioning in our

partial BRIM modeling (Figures S15, S16, S17, S18, S19, S20 and

S27). Likewise, RIP-S proved to be a better conditioning variable

than sex in the partial BRIM analyses to estimate RIP-G (Figures

S21, S22, S23, S24, S25, S26). We performed ANOVAs to test for

average differences in RIP-G by genotype category (e.g., CC, CT,

and TT coded as 21, 0, and 1 assuming additive allelic effects).

Given the substantial a priori evidence, viz., that these genes show

evidence of accelerated evolution in one or both of the parental

populations and that mutations in these genes can cause overt

murine or human craniofacial dysmorphology, we consider our

analysis of each gene to be a separate statistical test and, as such,

do not require adjustments for multiple testing. Twenty-four of 76

RIP-G variables (in 20 different genes) show p,0.1 (Table S2).

The relatively low threshold was motivated by the strong a priori

evidence for each gene noted above, the single trait summary

provided by RIP-G, and an expected small effect of single genes on

normal-range variation across the whole face. Additionally, given

the general finding that clinically relevant genes can also affect

subclinical and normal-range variation (e.g., [23]), we performed

detailed post hoc descriptions of the effects of these RIP-Gs using

FSCPs (Figures S34, S35, Figures S39, S40, S41, S42, S43, S44

and Table S4).

Summaries of the effects of three of these 24 RIP-G variables

(rs1074265 in SLC35D1, rs13267109 in FGFR1 and rs2724626 in

LRP6) presented in Figures 6A, 6B, and 6C illustrate these results.

A detailed analysis and description of each of the 24 SNP effects

using FSCPs is given in the supporting material (Text S1). The

gene solute carrier family 35 member D1 gene (SLC35D1;

OMIM#610804) is located on human chromosome 1p31.3

[24]. Mutations in SLC35D1 have been shown to result in

Schneckenbecken dysplasia (OMIM#269250), which affects the

face causing the characteristic feature of ‘‘superiorly oriented

orbits.’’ The normal-range results of the SNP in rs1074265 in

SLC35D1 (Figure 6A) indicate strong effects at the eyes and

periorbital regions, including notable differences at the supra-

orbital region, as well as at the midface and the chin.

Mutations in the human fibroblast growth factor receptor 1

(FGFR1;OMIM#136350) gene located on chromosome 8p21.23-

p21.22 can result in four autosomal dominant craniofacial

disorders: Jackson-Weiss syndrome (OMIM#123150), which is

characterized by craniosynostosis and midfacial hypoplasia;

trigonocephaly (OMIM#190440), which is characterized by a

keel-shaped forehead resulting in a triangle-shaped cranium when

Figure 3. Transformations and heat maps showing how face shape is affected by (A) RIP-A and (B) RIP-S. The top row of each panel
shows the shape transformations three standard deviations below and above the mean of the RIPs in this sample. The second row shows the R2

(proportion of the total variation in each quasi-landmark) and the three primary facial shape change parameters: area ratio, curvature difference, and
normal displacement. The bottom row shows in yellow the regions of the face that are statistically significantly different (p,0.001) between the two
transformations. The max R2 values for RIP-A and RIP-S are 40.83% and 38.21%, respectively.
doi:10.1371/journal.pgen.1004224.g003
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Figure 4. Relationships between the ancestry and sex RIP variables and their initial predictor variables. (A) RIP-A with genomic
ancestry; genomic ancestry is calculated using the core panel of 68 AIMs and RIP-A is calculated using this ancestry estimate on the set of three
populations combined (N = 592). Populations are indicated as shown in the legend with United States participants shown with black circles, Brazilians
with red circles, and Cape Verdeans with blue circles. (B) Histograms of RIP-S by self-reported sex.
doi:10.1371/journal.pgen.1004224.g004

Modeling 3D Facial Shape from DNA

PLOS Genetics | www.plosgenetics.org 7 March 2014 | Volume 10 | Issue 3 | e1004224



viewed from above; osteoglophonic dysplasia (OMIM#166250),

which is characterized by craniosynostosis prominent supraorbital

ridge and depressed nasal root; and Pfeiffer syndrome

(OMIM#101600), which is characterized by midface hypoplasia

and, depending on the subtype, ocular proptosis, short cranial

base, and cloverleaf skull. The normal-range results of the SNP

rs13267109 in FGFR1 depicted in Figure 6B indicate the strongest

effects in the supraorbital ridges, the eyes, the midface, the nose,

and the corners of the mouth. The strongest differences in the

shape transformations are indeed the forehead, supraorbital

ridges and nasal bridge. The mouse homologue of the

human low-density lipoprotein receptor-related protein 6 (LRP6;

OMIM#603507) gene is known to be critical for the development

of lips in the mouse resulting in bilateral cleft lips in the knockout

LRP6 mouse model [25]. As yet, no human craniofacial diseases

have been linked to the LRP6 gene or to the gene region on human

chromosome 12p13.2 although the gene product is known to

interact on a molecular level with WNT signaling. Observing the

shape transformation in Figure 6C, a change from a prominent lip

region, including the appearance of a thick and convex vermilion,

to a less prominent lip region, including an apparently thinner and

less convex (more concave) vermilion, is noted. This is confirmed

by inspecting the normal displacement results and the significance

maps, in which the lips are clearly delineated (Figure S43).

In general, some RIP-G variables show localized effects (e.g.,

rs1074265 in SLC35D1), changing only certain aspects in facial

shape, while others display changes in several facial regions (e.g.,

rs13267109 in FGFR1). Summary statistics for the underlying

distributions of effect sizes across the quasi-landmarks are

presented in Table S3. In the case where multiple SNPs in the

same gene are modeled, overlapping and similar effects are seen

across the different SNPs for the same gene (e.g., DNMT3B and

SATB2) and different SNPs from genes within the same biological

pathway (e.g., WNT3, FGFR1, and FGFR2). We present a graphical

Figure 5. Relationships between human observer rating and judgments of facial ancestry and sex. (A) RIP-A and proportional ancestry
ratings (r = 0.854, p,0.0001), (B) RIP-A and ancestry judgments (r = 0.859, p,0.0001), (C) RIP-S and femininity ratings (r = 0.860, p,0.0001), (D) RIP-S
and sex judgments (r = 0.856, p,0.0001).
doi:10.1371/journal.pgen.1004224.g005
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user interface (GUI) so that effects of changes in these 24 RIP-G

variables, RIP-A, RIP-S, or any of the top 44 PC variables can be

visualized in more detail. These transformations can be visualized

with the texture map as well as shape only, and the GUI (http://

tinyurl.com/DNA2FACEIN3D) allows for the illustration of the

comparison of transformed faces to the consensus face using the

three primary FSCPs.

Since both categorical and continuous variables can be modeled

using BRIM, this approach might be used to test for relationships

between facial features and other factors, e.g., age, adiposity, and

temperament. The methods illustrated here also provide for the

development of diagnostic tools by modeling validated cases of

overt craniofacial dysmorphology. Most directly, our methods

provide the means of identifying the genes that affect facial shape

and for modeling the effects of these genes to generate a predicted

face. Although much more work is needed before we can know

how many genes will be required to estimate the shape of a face in

some useful way and many more populations need to be studied

before we can know how generalizable the results are, these results

provide both the impetus and analytical framework for these

studies.

Materials and Methods

Population samples and participant recruitment
Population samples were collected in the United States (State

College, PA, Williamsport, PA, and The Bronx, NY); Brasilia,

Brazil; and Cape Verde (São Vicente, and Santiago), all under a

Penn State University Internal Review Board (IRB) approved

research protocol titled, ‘‘Genetics of Human Pigmentation,

Ancestry and Facial Features.’’ Skin pigmentation was measured

using narrow-band reflectometry with the DermaSpectrometer

(Cortrex Technology, Hadsund, Denmark) in the United States and

Brazil and the DSMII (Cortrex Technology, Hadsund, Denmark) in

Cape Verde. DermaSpectrometer readings were rescaled to the

DSMII scale by multiplying by 1.19, the slope derived from a

comparison of readings with both instruments on the same set of

participants (data not shown). Height, weight, age, self-reported

ancestry, and sex were collected by survey. DNA was collected both

with buccal cell brushes and using finger-stick blood on four-circle

Whatman FTA cards (Whatman, Florham Park, NJ).

To minimize age-related variation in facial morphology, we

only recruited participants between the ages of 18 and 40. From

these recruits, we selected individuals with .10% West African

ancestry and ,15% combined Native American and East-Asian

ancestry as measured with the 176 ancestry informative marker

(AIM) panel. We assigned these cutoff points to reduce admixture

from parental populations other than West African and European.

Ancestry-based exclusion criteria were not applied to Cape

Verdeans given the largely dihybrid nature of this population.

Finally, we excluded participants whose 3D images were

obstructed by facial or head hair. After excluding participants by

these criteria, we were left with 592 participants (154 from the US,

191 from Brazil, and 247 from Cape Verde).

SNP genotyping and genomic ancestry estimates
Genotyping of 176 AIMs for the US and Brazilian samples

was performed on the 25 K SNPstream ultra-high-throughput

genotyping system (Beckman Coulter, Fullerton, CA) as previously

described [11]. Ancestry was estimated using the various panels of

AIMs by one of two methods. Ancestry using full set of 176 AIMs

was estimated in the US and Brazilian subsample using maximum

likelihood on a four-population model; European, West African,

Native American, and East Asian [11].The 68-AIM ancestry

estimates were generated using the full sample (U.S., Brazilian,

and Cape Verdean) using ADMIXMAP as these markers were

available on all 592 participants. One marker (rs917502) from the

original 176 had a call rate of less than 30% and was omitted from

the ADMIXMAP analyses.

The Cape Verdean sample was assayed for the Illumina

Infinium HD Human1M-Duo Beadarray (Illumina, San Diego,

CA) following the manufacturer’s recommendations. A total of

537,895 autosomal SNPs that passed quality controls were used to

estimate ancestry using the program FRAPPE [26], assuming two

ancestral populations (West African and European). HapMap

genotype data, including 60 unrelated European-Americans

(CEU) and 60 unrelated West Africans (YRI), were incorporated

in the analysis as reference panels (phase 2, release 22, The

HapMap Project; [27]).

We identified a list of selection-nominated candidate genes for

testing against normal-range facial variation in admixed individ-

uals of European and West African descent. Ancestry information

and tests for accelerated evolution [28] were used to prioritize

among a larger set of craniofacial genes. Since most genomic

regions show low levels of allele frequency change across human

populations, genes affecting traits that vary across populations are

usually distinctive in showing large differences in frequency and

other features of local variation and allele frequency spectra

consistent with rapid local evolution. A preliminary set of

craniofacial candidate genes was developed by searching the

Online Mendelian Inheritance in Man (OMIM) database [24].

The keywords ‘‘craniofacial’’ and ‘‘facial’’ were searched to

determine a set of genes known to affect craniofacial development.

The OMIM entries for each gene included in the search output

were then scanned manually to remove genes where the term

appeared as a result of phrases such as ‘‘no craniofacial

associations found’’ and other similar negative results. OMIM

searching resulted in a list of 199 unique craniofacial candidate

genes. Because this work focused on admixed populations of West

African and European descent, the statistical power to detect

linkage with craniofacial variation is greatest for SNPs that show

large allele frequency differences between West African and

European parental populations. Therefore, allele frequency

differences among parental groups were further used to prioritize

among the candidate genes. SNP frequency data in putative

parental population (CEPH Europeans (CEU) and Yoruban (YRI)

West Africans) for all SNPs within the 199 OMIM candidate genes

were pulled from the HapMap database. This reduced subset of

genes was then tested for signatures of non-neutral evolution in a

200 kb window surrounding each gene using a combination of

three statistical tests: Locus-Specific Branch Length (LSBL) [29],

the log of the ratio of the heterozygosities (lnRH) [30], and

Tajima’s D [31]. Because these tests are inferring different

concepts regarding population history, we considered as significant

any gene with statistical evidence of selection for all three measures

or strong evidence of non-neutral evolution for two measures in

Figure 6. Transformations and heat maps showing how face shape is affected by three particular RIP-G variables. The initial predictor
variables are SNPs in the genes (A) SLC35D1 (B) FGFR1, and (C) LRP6. The top row of each panel shows the shape transformations near the extreme
values of the particular RIP-G shown. The second row shows the R2 (proportion of the facial total variation), the three primary facial shape change
parameters: area ratio, curvature difference, and normal displacement. The max R2 values for A, B, and C are 11.68%, 15.16% and 10.10%, respectively.
doi:10.1371/journal.pgen.1004224.g006
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either West African and/or European parental populations as a

Selection-nominated candidate gene. It is notable that these steps

were taken to increase the likelihood that a functional SNP would

be available to test the ability of methods like BRIM to model

individual gene effects on the human face. We are making no

strong claims in this analysis that craniofacial genes generally or

this subset in particular have been subject to greater than average

levels of non-neutral evolution or that these genes do in fact have

genetic variation that is affecting normal range facial variation in

this sample. A total of 50 autosomal genes were thus selected (SKI,

LMNA, SIL1, EDN1, RSPO2, TRPS1, POLR1D, MAP2K1,

ADAMTS10, TBX1, PEX14, HSPG2, CAV3, CTNND2, TFAP2A,

PEX6, PEX3, MEOX2, RELN, ROR2, NEBL, CHUK, FGFR2,

WT1, PEX16, BMP4, FANCA, RAI1, FOXA2, ECE1, DPYD, ZEB2,

SATB2, FGFR3, NIPBL, NSD1, ENPP1, GLI3, COL1A2, BRAF,

ASPH, FREM2, SNRPN, FBN1, MAP2K2, RPS19, DNMT3B,

GDF5, and UFD1L) and a set of SNPs with high allele frequency

differences (delta .0.4) in these 50 craniofacial Selection-

nominated candidate genes to test for associations with facial

shape variation.

3D facial images and phenotyping
3D images composed of surface and texture maps were taken

using the 3dMDface system (3dMD, Atlanta, GA). Participants

were asked to close their mouths and hold their faces with a neutral

expression for the picture. Images were then exported from the

3dMD Patient software in OBJ file format and imported into a scan

cleaning program for cropping and trimming, removing hair, ears,

and any dissociated polygons. The complete work flow involved in

processing face scans is depicted in Figure 1. Five positioning

landmarks were placed on the face to establish a rough facial

orientation. Subsequently, an anthropometric mask (7,150 quasi-

landmarks) was non-rigidly mapped onto the original 3D images

and their reflections [8,9,17], which were constructed by changing

the sign of the x-coordinate [18,32]. This established homologous

spatially-dense quasi-landmark (Q-L) configurations for all original

and reflected 3D images (8). Note that, by homologous, we mean

that each quasi-landmark occupies the same position on each face

relative to all other quasi-landmarks. Subsequently, a generalized

Procrustes superimposition [18,33] is used to eliminate differences

in position, orientation, and scale of both original and reflected

configurations combined was performed. This constructed a

tangent space of the Kendall shape-space centered on the overall

consensus configuration [25]. Procrustes shape coordinates, repre-

senting the shape of an object [34], were obtained for all 3D faces

and their reflections. After Procrustes superimposition, the overall

consensus configuration is perfectly symmetrical and a single shape

can be decomposed into its asymmetric and its bilaterally symmetric

part [18]. The average of an original and its reflected configuration

constitutes the symmetric component while the difference between

the two configurations constitutes the asymmetric component

[19,35]. The analyses in this report were all based on facial shape

as represented using the component of symmetry only. Although

deviations from bilateral symmetry are thought to be the effects of

developmental noise and/or environmental factors [36], it is likely

there are genetic effects on asymmetry, which would compel

independent investigation.

Principal components analysis (PCA) [9] on the superimposed

and symmetrized quasi-landmark configurations of the panel of

592 participants resulted in 44 PCs that together summarize 98%

of the total variation in face space. To examine the effect of

excluding lower PCs, we first reconstructed actual quasi-landmark

configuration from the 44 PCs only and compared these to the

original remapped face. We found that the average root mean

squared error (RMSE) is as small as 0.2 mm per quasi-landmark.

The localized differences between the original faces and the faces

as represented by the first 44 PCs are largest around the iris,

eyelids, under the nose, and the corners and opening of the mouth

and are at most about 0.45 mm. How a PC or any other

independent variable affects the face can be shown with heat maps

and shape transformations: heat maps use contrasting colors to

highlight the specific parts of the face that are affected, while shape

transformations illustrate the changes in overall face shape with

two or more images of the face at set intervals. Shape

transformations are obtained from the average face in the

direction of each PC at 23 and +3 times the accompanying

standard deviation (square-root of the eigenvalue). Figure 2 shows

how the first 10 PCs affect the face. Some of these PCs (e.g., PC1,

PC2, PC3) summarize effects on many parts of the face, while

other PCs (e.g., PC4, PC5) summarize the effects of changes in only

particular parts of the face. The effects of each of the 44 PCs as

well as the RIP variables can be visualized with a GUI software

tool that we have written called DNA2FACEIN3D.EXE. The

program and instruction manual can be downloaded here: http://

tinyurl.com/DNA2FACEIN3D.

We have used three methods to visualize and quantify facial

difference so that we can systematically express the effects of

particular response-based imputed predictor (RIP) variables on the

face into anatomically interpretable results. These are based on

comparing faces pairwise, such as comparing the most feminine

RIP-S to the most masculine RIP-S transformed consensus faces

using three fundamental measures: area ratio, normal displace-

ment, and curvature ratio. These two ratios and one displacement

along with particular inter-landmark distances and angles can

together be termed ‘‘face shape change parameters’’ (FSCPs) and

are a means of translating face shape changes from the abstract

face space into language of facial characteristics such that

comparisons between clinical or anthropological descriptions of

faces can be compared to bootstrapped response-based imputation

modeling (BRIM) results. The statistical significance of these

FSCPs can be estimated using permutation. A more detailed

description on how this is done is given in the supplementary

online material.

Human observer ratings and judgments
Ancestry and sex observations. Given the dexterity

humans have for discerning numerous traits, features, and

expressions, it is reasonable to expect the observer would provide

a useful reference point for studies of the genetics of facial traits.

We accessed observer ratings and judgments of sex and ancestry in

order to test the informativeness of RIP-A and RIP-S.

Selection of stimuli. A total of 500 participant faces were

selected and divided into twenty-five panels of twenty faces, with

each panel including faces of research participants across the range

of genomic ancestry levels and similar numbers of male and female

faces. We used false colored grey GIF animations so that ancestry

and sex ratings and judgments would be based on face-shape cues

but not cues of skin, iris, or hair pigmentation or hair texture.

Animation order was randomized.

Administration of instruments. We administered the

instruments containing the animated, false-colored GIFs with

accompanying questions using Survey Monkey (SurveyMonkey.

com LLC; Palo Alto, CA). Four survey questions were asked for

each of 20 faces participants observed:

1. ‘‘What proportion (from 0% to 100%) of this person’s ancestry

appears to be West African?’’ (Ratings made with a number between

0 and 100.)
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2. Which single categorical group best describes this person?

(Judged with Black African, or African-American; White, European or

European-American; or Mixed)

3. Does this person appear to be male or female? (Judged with

‘‘male’’ or ‘‘female’’)

4. ‘‘How feminine does this person’s face appear to you?’’ (Ratings

made with a choice from a 7-point Likert scale ranging from 1 ‘‘extremely

feminine’’ to 7 ‘‘extremely masculine’’.)

Observers were randomly assigned to one of the 20 panels

through a link on the Anthropology Department homepage.

Observers were recruited from students enrolled at Penn State

University. Of the 1,156 participants, 938 (81.1%) completed the

surveys. The number of observers for the 20 alternative surveys

ranged from 27 to 70, with a mean of 47. Observers who

completed fewer than half of the survey as well as three whose

discrepancies were more than three standard deviations from the

mean were excluded from the analysis. Observers were not trained

and were not familiar with the research participants whose faces

were shown as stimuli.
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