
Combining Comparative Proteomics and Molecular
Genetics Uncovers Regulators of Synaptic and Axonal
Stability and Degeneration In Vivo
Thomas M. Wishart1,2,3, Timothy M. Rooney4, Douglas J. Lamont5, Ann K. Wright1,2, A. Jennifer Morton6,

Mandy Jackson1,2, Marc R. Freeman4, Thomas H. Gillingwater1,2*

1 Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom, 2 Euan MacDonald Centre for Motor Neurone Disease Research, University of

Edinburgh, Edinburgh, United Kingdom, 3 Division of Neurobiology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh,

United Kingdom, 4 Department of Neurobiology, Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, Massachusetts, United States

of America, 5 FingerPrints Proteomics Facility, College of Life Sciences, University of Dundee, Dundee, United Kingdom, 6 Department of Pharmacology, University of

Cambridge, Cambridge, United Kingdom

Abstract

Degeneration of synaptic and axonal compartments of neurons is an early event contributing to the pathogenesis of many
neurodegenerative diseases, but the underlying molecular mechanisms remain unclear. Here, we demonstrate the
effectiveness of a novel ‘‘top-down’’ approach for identifying proteins and functional pathways regulating neurodegen-
eration in distal compartments of neurons. A series of comparative quantitative proteomic screens on synapse-enriched
fractions isolated from the mouse brain following injury identified dynamic perturbations occurring within the proteome
during both initiation and onset phases of degeneration. In silico analyses highlighted significant clustering of proteins
contributing to functional pathways regulating synaptic transmission and neurite development. Molecular markers of
degeneration were conserved in injury and disease, with comparable responses observed in synapse-enriched fractions
isolated from mouse models of Huntington’s disease (HD) and spinocerebellar ataxia type 5. An initial screen targeting
thirteen degeneration-associated proteins using mutant Drosophila lines revealed six potential regulators of synaptic and
axonal degeneration in vivo. Mutations in CALB2, ROCK2, DNAJC5/CSP, and HIBCH partially delayed injury-induced
neurodegeneration. Conversely, mutations in DNAJC6 and ALDHA1 led to spontaneous degeneration of distal axons and
synapses. A more detailed genetic analysis of DNAJC5/CSP mutants confirmed that loss of DNAJC5/CSP was
neuroprotective, robustly delaying degeneration in axonal and synaptic compartments. Our study has identified conserved
molecular responses occurring within synapse-enriched fractions of the mouse brain during the early stages of
neurodegeneration, focused on functional networks modulating synaptic transmission and incorporating molecular
chaperones, cytoskeletal modifiers, and calcium-binding proteins. We propose that the proteins and functional pathways
identified in the current study represent attractive targets for developing therapeutics aimed at modulating synaptic and
axonal stability and neurodegeneration in vivo.
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Introduction

Synaptic and axonal compartments of neurons are exceptionally

vulnerable to a wide array of neurodegenerative stimuli, ranging

from physical trauma through to genetic disease [1]. As a result,

the important role that synapses and axons play in the initiation

and progression of a wide range of neurodegenerative conditions is

becoming increasingly well documented. For example, published

studies have highlighted an important role for synaptic malfunc-

tion and degeneration in pre-clinical and early-symptomatic stages

of Alzheimer’s disease [2], Parkinson’s disease [3], Huntington’s

disease (HD) [4], spinocerebellar ataxia [5], prion diseases [6],

lysosomal storage disorders [7] and motor neuron diseases [8,9].

In many such conditions, synaptic and axonal pathology is

instigated in advance of pathological changes in other regions of

the neuron (e.g. the cell soma). Thus, neuroprotective strategies

directly targeting synapses and axons are likely to provide

important options for treating neurodegenerative disorders in

human patients [1,10,11].

Despite an increasing awareness of the scientific and clinical

importance of synaptic and axonal degeneration, little is known

about why distal compartments of neurons are particularly

vulnerable. Furthermore, our understanding of molecular and

genetic mechanisms regulating neurodegeneration remains in its

infancy. Of the many proteins present in synapses and distal axons,

only a few have been shown to be capable of directly modulating

neurodegeneration. One of the most extensively characterised, the

chimeric Wallerian degeneration slow (WldS) protein [12–14], is
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encoded by a novel chimeric gene formed by a spontaneous

mutation event in laboratory mice. It is not, therefore, endoge-

nously expressed in other species, including humans. Examples of

endogenous proteins capable of modulating synapse and distal

axon degeneration in vivo are relatively rare, including cysteine

string protein alpha (also known as DNAJC5) [15] and some

synucleins [16,17] (for review see [11]). There is, therefore, a need

to identify other proteins and pathways capable of modulating

synaptic and axonal stability and degeneration in vivo. However,

this is likely to require the development of integrated experimental

approaches capable of identifying and characterizing molecular

responses to degeneration in distal compartments of neurons.

Here, we report on the development of a novel ‘top-down’

approach for identifying proteins and functional pathways

regulating neurodegeneration in distal compartments of neurons

in vivo. We combined sequential comparative proteomic screens on

synapse-enriched fractions isolated from the mouse brain under-

going injury-induced degeneration with molecular genetic dissec-

tion of mechanisms underlying degeneration in Drosophila. We

show that synaptic and axonal degeneration is associated with

dynamic perturbations to the proteome, impacting on molecular

pathways involved with synaptic transmission and neurite devel-

opment. Experiments on two mouse models of neurodegenerative

disease (Huntington’s disease and spinocerebellar ataxia type 5)

showed that molecular pathways underlying distal neuron

degeneration were conserved from injury to disease. Genetic

manipulation of 13 synaptic proteins using mutant Drosophila lines

led to the identification of 6 potential regulators of axonal and

synaptic degeneration in vivo: ALDHA1 (Aldehyde dehydroge-

nase), CALB2 (calbindin2), DNAJC5/CSP (DnaJ (Hsp40) homo-

log, subfamily C, member 5), DNAJC6 (DnaJ (Hsp40) homolog,

subfamily B, member 6), HIBCH (3-hydroxyisobutyryl-CoA

hydrolase) and ROCK2 (Rho-associated, coiled-coil containing

protein kinase 2). A more robust genetic analysis of DNAJC5/CSP

confirmed that loss of this synaptic protein was neuroprotective,

robustly delaying degeneration in axonal and synaptic compart-

ments of neurons in vivo. We conclude that conserved molecular

responses are instigated locally within distal compartments of

neurons during the early stages of neurodegeneration. Such

responses are focused around networks of proteins modulating

synaptic transmission, incorporating molecular chaperones, cyto-

skeletal modifiers, and calcium binding proteins.

Results

Proteomic identification of molecular responses to
degeneration in synapse-enriched fractions of the mouse
brain

To uncover molecular pathways activated in synapses and

axons during the early stages of neurodegeneration we initially

wanted to obtain a global overview of protein expression changes

occurring locally within distal neuronal compartments undergoing

degeneration in response to a defined stimulus. We therefore

performed a series of comparative, unbiased proteomic screens on

synapse-enriched fractions biochemically isolated from the mouse

brain (see Methods and Figure 1A) [18]. The relative absence of

nuclear proteins (BRCA2) and glial cell proteins (MBP), alongside

robust levels of synaptic proteins synaptophysin and synapsin 1

(Figure 1A), confirmed the enrichment of synaptic material in

these preparations. However, it should be noted that low-level

contamination originating from other cell types and/or non-

synaptic fractions is likely to be present in these preparations.

Synaptic and distal axon degeneration was induced using an in

vivo cortical lesion model that injures cell bodies and proximal

axons giving rise to corticostriatal projections. In this model

unilateral ablation of one cortical hemisphere down to the level of

the corpus callosum reliably triggers axonal and synaptic

degeneration in the underlying ipsilateral striatum [14,19].

Morphological evidence for axonal and synaptic degeneration is

not observed until 48 hours following injury in wild-type mice

(C57Bl/6) [14,19], revealing the presence of a ,24–48 hour lag

period preceding the physical onset of degeneration. We therefore

generated synapse-enriched fractions preparations from the

striatum of wild-type mice at 3 time points (N = 6 mice per time

point): prior to injury (0 hrs), providing a base-line for protein

detection and expression; 24 hours following injury (24 hrs) to

identify immediate early responses triggered during the initiation

of degeneration; and 48 hours following injury (48 hrs), correlat-

ing with the onset of synaptic breakdown. In order to increase

stringency in reporting, a minimum cut-off threshold of 20%

change versus uninjured controls was used to indicate a protein

with modified expression levels. iTRAQ (Isobaric Tag for Relative

and Absolute Quantitation) proteomic analyses identified a total of

178 putative proteins (from a pool of 56,957 peptide sequences)

with expression levels modified by more than 20% at either 24 h

or 48 hr after injury compared to uninjured (0 hrs) controls. Of

these, 112 putative proteins showed expression changes of greater

than 20% maintained at 48 hrs following injury (Table S1).

Bioinformatics analysis of the 178 putative proteins using IPA

software revealed that .87% of the proteins were cytoplasmic or

membrane bound, consistent with them being synaptic proteins,

rather than arising as a result of contamination from nuclear

compartments.

Modifications to the proteome of synapse-enriched fractions

revealed in our initial analyses are unlikely to solely represent

responses directly associated with degeneration, as the cortical

lesion injury used generated systemic responses in corticostriatal

networks that could conceivably effect the molecular composition

of the tissue (e.g. in response to modified patterns of activity). In

Author Summary

In diseases affecting the nervous system, such as
Alzheimer’s disease and motor neuron disease, the
breakdown of synaptic connections between neurons is
a critical early event, contributing to disease onset and
progression. However, we still know very little about the
molecular machinery present in synaptic and axonal
compartments of neurons that regulate their stability
and cause breakdown during neurodegeneration. In this
study we examined the protein composition of healthy
and degenerating synapse-enriched fractions isolated from
the brains of mice in order to identify early molecular
changes occurring during neurodegeneration. We identi-
fied a range of proteins and cellular pathways that were
modulated in synapse-enriched fractions during the early
phases of degeneration, many of which were already
known to regulate synaptic function. Similar molecular
alterations were found in synapse-enriched fractions
prepared from mouse models of Huntington’s disease
(HD) and spinocerebellar ataxia type 5. Data from these
proteomic studies were then used to design experiments
in Drosophila, in which we found that at least six of the
individual proteins modified in degenerating synapses
from mice were capable of independently regulating
neuronal stability and degeneration in vivo. Designing
novel therapeutics to target these proteins and pathways
may help to delay or prevent neurodegeneration across a
range of diseases.

Regulators of Synaptic and Axonal Degeneration
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order to improve our dataset, leaving only molecular responses

directly associated with active processes of degeneration, we refined

our analysis by undertaking a subsequent comparison with

proteomic data obtained from synapse-enriched fractions in mice

genetically protected from neurodegeneration by the Wlds gene. We

have previously demonstrated that both axonal and synaptic

degeneration in the striatum are absent for at least 6 days after a

cortical lesion in Wlds mice [14,19]. We therefore reasoned that any

alterations to the proteome observed in Wlds mice at either 24 hrs or

48 hrs after injury were more likely to represent systemic responses

to the lesion injury itself rather than changes directly related to the

process of synaptic and axonal degeneration. iTRAQ proteomic

analyses were therefore performed on tissue from Wlds mice using

the same protocol adopted for our initial experiments on wild-type

animals. Through subtracting candidates identified in synapse-

enriched fractions from both wild-type and Wlds mice following

injury (Table S2; validated using western blotting at 72 hrs after

injury, Figure 1B), we refined our dataset to include only those

putative proteins with modified expression in synapse-enriched

fractions undergoing degeneration (Figure 1C–1D). This approach

removed a total of 19 candidates from the dataset, resulting in a

refined profile comprised of 93 putative proteins.

Given that we planned to use data generated by our proteomics

analysis to directly guide subsequent molecular genetic experiments

in Drosophila (see below), we wanted to exclude any of the 93 putative

proteins identified for which we could not be certain of their identity

based on the peptide sequences reported from the proteomics

analysis. We therefore excluded all putative proteins identified only

by 1 unique peptide that we could not subsequently validate by

western blotting. Examples of validation western blots for one up-

regulated (ABLIM1) and one down-regulated (UBR4) protein are

shown in Figure 2A. This generated a final refined list of 47 unique

proteins with robustly modified expression in synapse-enriched

fractions 48 hrs after injury (Table S3; Figure 2B). These 47

proteins were therefore considered to represent robust molecular

perturbations occurring in synapse-enriched fractions during the

initiation and onset phases of neurodegeneration in vivo.

A complex temporal profile of protein expression
changes during neurodegeneration

Expression mapping of all 47 proteins identified as having

modified expression levels in degenerating synapse-enriched

fractions allowed them to be grouped according to the temporal

dynamics of their responses, as well as magnitude of expression

change (Figure 2B). Given that synaptic degeneration was absent

in the striatum 24 hrs after cortical lesion, but was widespread at

48 hrs after lesion [14,19], we reasoned that individual proteins

responding within 24 hrs of lesion were more likely to represent

immediate-early responders and initiators of the degeneration

process. By contrast, we reasoned that individual proteins whose

expression levels were found to be altered only at 48 hrs after the

lesion were more likely to represent effector pathways involved

with the onset of degeneration.

Diverse temporal patterns of expression changes were observed

across the 47 proteins examined, suggesting that our analyses had

detected proteins contributing both to early initiating phases and

onset phases of degeneration (Figure 3). Of the 47 synaptic proteins

identified 24 responded within 24 hrs of injury. Of these, 14

remained stable at 48 hrs whereas 10 showed additional incremen-

tal changes by 48 hrs. The other 23 proteins were unchanged at

24 hrs, responding only at 48 hrs after injury (Figure 3).

In silico analysis revealed significant functional clustering
of proteins

Next, we wanted to establish whether the profile of individual

protein alterations identified in degenerating synapse-enriched

fractions represented perturbations of specific functional pathways.

We performed an in silico systems level analysis on the proteomics

Figure 1. Proteomic identification and refinement of molecular pathways underlying degeneration in synapse-enriched brain
fractions. A. Representative bands from fluorescent western blots demonstrating enrichment of two distinct synaptic proteins (synaptophysin and
synapsin-1) and relative purity of the synapse-enriched fractions, comparatively free from nuclear contamination (BRCA2) and glial cell contamination
(MBP) relative to non-synaptic fractions. Actin is shown as a loading control. B. Representative bands from fluorescent western blots showing
examples of protein expression changes (VAT1 and DOCK7) present in striatal synapse-enriched fractions from both wild-type and WldS mice before
(0D) and 3 days after (3D) cortical lesion. Both proteins showed similar alterations in expression in degenerating tissue across wild-type and WldS mice
suggesting that they are more likely to represent systemic responses to injury rather than direct mediators of the degenerative process (as synaptic
degeneration is yet to be initiated in WldS mice 3 days after lesion [14]). Tubulin is shown as a loading control. C/D. Pie charts representing all proteins
found to have altered expression .20% following cortical lesion. The blue section of each chart represents those proteins altered only in wild-type
mice. The red sections show those proteins found to be altered in both wild-type and WldS mice, which were subsequently subtracted from the
proteomic profile as they were not considered to represent expression changes underlying degeneration.
doi:10.1371/journal.pgen.1002936.g001

Regulators of Synaptic and Axonal Degeneration
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data using Ingenuity Pathway Analysis (IPA) software. This

analysis identifies statistically significant functional clustering of

proteins, based on known protein interactions and biological

functions reported in the published literature [18]. Functional

networks identified by the IPA software are statistically ranked

according to a score calculated via a right-tailed Fischer’s exact

test, taking into account the number of original input proteins and

the size of the network generated as a result. Only networks

comprised of 3 or more identified proteins and reported with a P

value of ,0.05 were considered as being significant. These

experiments revealed that the 47 identified proteins were

functionally clustered into a relatively small group of networks

(Table S4), focused principally around pathways regulating

synaptic function (including synaptic transmission, exocytosis,

transport of vesicles and formation of vesicles) and neurite

development (including guidance of axons, formation of filaments,

development of neurites and biogenesis of the cytoskeleton).

The in silico analysis also highlighted many proteins previously

implicated in molecular pathways underlying neurological condi-

tions (Table S4). Interestingly, these included neurodegenerative

conditions where synapses and axons are known to be primary

pathological targets (e.g. Alzheimer’s disease, Parkinson’s disease

and HD; see introduction).

Molecular pathways underlying synapse pathology are
conserved from injury to disease

Next, we wanted to establish whether molecular pathways

modified as a result of injury-induced degeneration were similarly

Figure 2. Temporal expression profiling identifies molecular changes occurring in synapse-enriched fractions from the striatum
undergoing degeneration. A. Representative bands from fluorescent western blots for one up-regulated protein (Ablim1) and one down-
regulated protein (Ubr4) in degenerating synapse-enriched fractions, validating expression changes observed in proteomic experiments. Tubulin is
shown as a loading control. B. Graphical representation of protein expression changes for all 47 proteins modified in degenerating synapse-enriched
fractions (see Table 1), illustrating global trends in the magnitude and scope of alterations identified.
doi:10.1371/journal.pgen.1002936.g002

Figure 3. Temporal expression profiling for individual proteins identified in synapse-enriched fractions undergoing degeneration.
Temporal profiles of protein expression changes in degenerating synapse-enriched fractions were grouped into 3 distinct categories: proteins with
expression changes .20% by 24 hours, with further progressive alterations by 48 hours (A); proteins up or down regulated .20% by 24 hours
following injury but with no subsequent increase/decrease (B); and proteins not changed at 24 hours but up or down regulated .20% at 48 hours
following injury (C). Proteins responding within 24 hrs of lesion were considered to represent immediate-early responders and initiators of the
degeneration process, whereas proteins whose expression levels were found to be altered only at 48 hrs after the lesion were considered to
represent effector pathways involved with the onset of degeneration.
doi:10.1371/journal.pgen.1002936.g003

Regulators of Synaptic and Axonal Degeneration
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modified in synapse-enriched fractions undergoing pathological

alterations in neurodegenerative diseases resulting from genetic

mutations. We therefore selected 11 proteins from our injury

proteomics data where reliable antibodies were available for use in

quantitative fluorescent western blotting experiments (ABLIM1,

SPBTN, CCT7/TCP1, CFL1, CNP, DNAJC5/CSP, INPP4A,

NFASC, ROCK2, SIRT2 and UBR4). These included candidates

from the top five cellular process categories identified in our

functional clustering analysis (see Table S4). We quantified

expression levels in synapse-enriched fractions isolated from two

distinct mouse models of neurodegenerative disease at early-

symptomatic time-points: a genetic disease model with synaptic

degeneration (the R6/2 mouse model of HD) and a model of

spinocerebellar ataxia type 5 with synaptic dysfunction/dysregu-

lation (bIII-spectrin knockout mouse).

The pathophysiology of HD involves aggregation of mutated

huntingtin (Htt) protein, transcriptional dysregulation, altered

energy metabolism, excitotoxicity, impaired axonal transport and

synaptic pathology [20]. The R6/2 mouse model of HD exhibits a

progressive and fatal neurological phenotype, with synaptic

alterations notable in the striatum [4]. Protein expression levels

were analysed in synapse-enriched fractions generated from the

striatum of R6/2 mice carrying a CAG repeat of 259–266 at 9–10

weeks of age (representing early-symptomatic stages of the disease).

Of the 11 proteins examined, 8 showed significant changes in

expression levels in fractions prepared from R6/2 mice (Figure 4A

and 4B).

The bIII-spectrin knockout mouse models many of the human

aspects of spinocerebellar ataxia type 5, including; synaptic

dysfunction, postural abnormalities, progressive loss of motor

coordination, and cerebellar degeneration [5]. Protein expression

levels were analysed in synapse-enriched fractions generated from

the cerebellum of bIII-spectrin knockout mice at 12 weeks of age

(representing early-symptomatic stages of the disease [5]). Of the

10 proteins examined (SPTBN is knocked out in these mice), 7

showed significant changes in expression levels in bIII-spectrin

knockout mice (Figure 4C and 4D).

Comparisons of protein expression data obtained from the

cortical lesion model, R6/2 model and bIII-spectrin knockout

revealed that 9 of the examined proteins showed expression

changes occurring in the same direction across all three models

(Figure 4E). Although the magnitude of identified expression

changes were not always identical between models (and often were

variable between individual mice), this likely represents the

differing extent and nature of synaptic pathology observed

between the three models at the time-points examined [4,5,14].

Identification of individual proteins capable of
independently regulating synapse and distal axon
degeneration in vivo

Although we had obtained a clear understanding of conserved

molecular alterations occurring in synapse-enriched fractions

undergoing neurodegeneration, it remained unclear whether or

Figure 4. Molecular pathways underlying degeneration in
synapse-enriched fractions are conserved across diverse
neurodegenerative conditions. A. Bar chart (mean6SEM) showing
quantitative fluorescent western blot data for protein expression levels
in synapse-enriched fractions from the striatum generated from the R6/
2 transgenic mouse model of HD compared to wild-type controls (N$3
mice per genotype). Bars to the left of the dotted line show levels of
control proteins (including Huntingtin [HTT]). Bars to the right of the
dotted line show levels of proteins previously identified following injury
(see Table 1). NS = not significant; *P,0.05; **P,0.01; Mann-Whitney
test. B. Representative bands from quantitative fluorescent western blot
experiments on synapse-enriched fractions from wild-type (WT) and R6/
2 mice. C. Bar chart (mean6SEM) showing quantitative fluorescent
western blot data for protein expression levels in synapse-enriched
fractions from the cerebellum generated from a mouse model of
spinocerebellar ataxia type 5 (bIII-spectrin KO mice) compared to wild-
type controls (N$3 mice per genotype). Bars to the left of the dotted
line show levels of control proteins (including bIII-spectrin [SPTBN]).
Bars to the right of the dotted line show levels of proteins previously
identified following injury (see Table 1). NS = not significant; *P,0.05;
**P,0.01; Mann-Whitney test. D. Representative bands from quantita-

tive fluorescent western blot experiments on synapse-enriched
fractions from wild-type (WT) and bIII-spectrin mice (KO). E. Comparison
of protein expression changes in synapse-enriched fractions from the
injury model (summarized from the proteomics data), R6/2 mice and
bIII-spectrin KO mice. Red boxes indicate mean expression decreased
.10%, green boxes indicate mean expression increased .10%, grey
boxes indicate changes ,10%. Up = significantly upregulated com-
pared to controls; Down = significantly downregulated compared to
controls; NS = not significantly changed compared to controls.
doi:10.1371/journal.pgen.1002936.g004
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not any of the proteins and pathways identified were capable of

actively modulating synaptic and axonal stability and degeneration

in vivo. We therefore used a molecular genetic approach in

Drosophila to screen individual proteins for a direct role in

neurodegeneration.

We examined the role of individual proteins in regulating

synaptic stability and degeneration using the Drosophila olfactory

system to screen a collection of existing mutants, or lines with

transposon insertions in a subset of these genes. Briefly, mutants

and insertion lines were crossed in to a background that allowed

visualization of a subset of olfactory receptor neurons (ORNs;

OR22a-Gal4/UAS-mCD8::GFP). Distal axons and their synaptic

fields in the antennal lobe were examined in uninjured controls as

well as 7 days after surgical ablation of antennae. Examining

uninjured controls allowed us to screen individual mutant lines

and test whether they modified basal synaptic and axonal stability

(e.g. do synapses and axons degenerate spontaneously in the

mutant line?). Spontaneous degeneration was identified by the

presence of fragmented axons and absence/decrease of GFP signal

in the glomeruli housing synaptic terminals of ORNs [21] and

scored using a spontaneous degeneration index, where a score of 0

represented no disruption of axons or synapses in the glomerulus

and 5 indicated complete spontaneous breakdown (see methods;

Figure 5). Surgical ablation of antennae triggered rapid axonal and

synaptic degeneration, which is complete within one day in wild-

type controls, and axonal debris is cleared within one week after

injury [21]. Screening individual mutant lines 7 days after surgical

ablation therefore allowed us to examine whether any of the

mutations resulted in a delay in the rate of injury-induced

degeneration, scored using a delayed degeneration index where a

score of 0 indicated no delay in degeneration and 5 indicated a

complete block (see methods; Figure 5).

From our original list of 47 synaptic proteins we obtained

Drosophila lines for 21 different genes that harbored either defined

mutations known to affect that gene, or P element insertions within

the locus identified by the Drosophila Genome Project (see

methods). Of the 34 mutant lines obtained, 14 produced viable

flies suitable for analyses of axonal and synaptic stability and

degeneration (covering a total of 13 individual proteins; Table 1).

Eight of the lines examined showed no overt phenotype in either

stability or degeneration assays (Table 1). However, 6 mutant lines

were found to independently modulate stability or degeneration of

distal axons and synapses in ORNs. Mutants of both ALDHA1

and DNAJC6/Auxillin caused spontaneous degeneration of distal

Figure 5. Overview of putative axo-synaptic degeneration
phenotypes observed in Drosophila neurodegeneration
screens. A. Representative confocal micrograph showing the mor-
phology of the intact Drosophila olfactory receptor neuron (ORN)
system, with axons and synaptic fields labeled with GFP in the UAS-
mCD8::GFP,OR22a-Gal4/+ background. Axons enter the antennal lobe
laterally and project medially across the lobe to reach their target
glomerulus, where synapses are located (see reference [21]). B.

Representative confocal micrographs showing three distinct phenotyp-
ic profiles observed in injured and un-injured ORN axons and synapses
7 days after unilateral (right hand side of image) antennal ablation. The
top panel shows intact healthy axons and synapses on the uninjured
side and complete axonal degeneration (indicated by absence of GFP
labeled profiles) on the injured side (example from an NFASC mutant).
The middle panel shows delayed axo-synaptic degeneration on the
injured side, as indicated by the retention of GFP-labelled axon profiles
7 days after injury (white arrow; example from a ROCK2 mutant). The
bottom panel shows spontaneous (i.e. not injury-induced) axo-synaptic
degeneration in the uninjured axons and synapses, indicated by
reduction and fragmentation of GFP labeled axons and synapses (white
arrows; example from a DNAJC6 mutant). C. Bar chart (mean6SEM)
showing index scores (see methods) for spontaneous degeneration (S;
grey bars) and delayed degeneration (D; black bars) in 7 mutant
Drosophila lines. OGDH is shown as an example of a mutant line with no
overt phenotype. DNAJC6 and ALDH1A1 mutants revealed evidence for
spontaneous degeneration in the absence of any injury stimulus.
DNAJC5, CALB2, ROCK2 and HIBCH mutants revealed evidence for
delayed degeneration following antennal ablation.
doi:10.1371/journal.pgen.1002936.g005

Regulators of Synaptic and Axonal Degeneration
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axons and synaptic terminals in uninjured ORNs (Figure 5). In

contrast, mutations affecting CALB2/Calretinin, DNAJC5/CSP,

HIBCH and ROCK2 caused a partial delay of injury-induced

degeneration of axons and synapses (Figure 5). In each of these lines,

intact distal axons or axonal fragments were observed 7 days after

experimental nerve lesion, a time-point at which axonal remnants

were never observed in wild-type flies (data not shown [21]).

To provide more robust genetic evidence for a role for one of

these proteins (DNAJC5/CSP) in axonal and synaptic degenera-

tion, we obtained two additional alleles: cspX1, a loss of function

allele which deletes the first exon of csp; and Df(3R)Exel6138, a

deletion which completely removes the csp locus. Both cspX1 and

Df(3R)Exel6138 failed to complement the delay in axonal

degeneration observed with our original allele (cspDG29203), thereby

mapping this phenotype to the csp locus (Figure 6). We further note

that the severity of the delay in axonal degeneration appeared to

be enhanced when cspDG29203 was placed over either of these null

alleles of csp, which argues that cspDG29203 is a weak loss of function

allele.

Thus, several individual proteins initially identified as a result of

having modified expression levels in synapse-enriched fractions

undergoing neurodegeneration appear capable of directly influ-

encing synaptic and axonal stability and degeneration in Drosophila.

In addition, our work rigorously defines the role of DNAJC5/CSP

as an in vivo regulator of synaptic and axonal degeneration.

Discussion

In this study we report on the effective use of a novel ‘top-down’

approach for identifying individual proteins and functional

pathways responsible for regulating neurodegeneration in synaptic

and axonal compartments of neurons. By undertaking a series of

comparative quantitative proteomic screens on degenerating

synapse-enriched fractions isolated from the mouse brain we

identified 47 proteins with robustly modified expression levels

during the early stages of neurodegeneration. We showed that

molecular responses to degeneration occurring in synapse-

enriched fractions following injury were recapitulated in synapse-

enriched fractions undergoing pathological changes as a result of

disease-causing genetic mutations. We also used our proteomic

data to design molecular genetic screens in Drosophila that revealed

roles for 6 proteins in regulating synaptic and axonal degeneration

Figure 6. Detailed genetic analysis confirms DNAJC5/CSP as a robust regulator of axo-synaptic degeneration in vivo. Representative
confocal micrographs showing axon degeneration profiles in wild-type (WT) flies and additional DNAJC5/CSP lines: cspX1, a loss of function allele
which deletes the first exon of csp; and Df(3R)Exel6138, a deletion which completely removes the csp locus. Examples are shown of uninjured axons
(left panels), unilaterally injured axons (middle panels) and bilaterally injured axons (right panels). Both cspX1 and Df(3R)Exel6138 failed to complement
the delay in axonal degeneration observed with our original allele (cspDG29203), thereby mapping this phenotype to the csp locus. Note how the
severity of the delay in axonal degeneration was enhanced when cspDG29203 was placed over either of these null alleles of csp, suggesting that
cspDG29203 is a weak loss of function allele.
doi:10.1371/journal.pgen.1002936.g006

Table 1. List of viable Drosophila lines tested in the current
study.

Protein Bloomington ID Observation

ALDHA1 12900 Spontaneous Degeneration

Auxillin/DNAJC6 26277 Spontaneous Degeneration

CALB2/calretinin 18382 Delayed Degeneration

CFL1 7762 No Overt Phenotype

CSP/DNAJC5 20497 Delayed Degeneration

DLG1 12301 No Overt Phenotype

HIBCH 30075 Delayed Degeneration

HTT 24665 No Overt Phenotype

INPP4A 18046 No Overt Phenotype

NFASC 5595 No Overt Phenotype

OGDH 23173 No Overt Phenotype

ROCK2 6671 Delayed Degeneration

VPS29 13491, 20672 No Overt Phenotype

doi:10.1371/journal.pgen.1002936.t001

Regulators of Synaptic and Axonal Degeneration

PLOS Genetics | www.plosgenetics.org 7 August 2012 | Volume 8 | Issue 8 | e1002936



in vivo. These findings further our understanding of mechanisms

regulating the active degeneration of synapses and axons,

providing a basis from which to develop novel neuroprotective

strategies for a range of neurodegenerative conditions.

An initial comparison of the 6 individual proteins found to

directly mediate synaptic and axonal stability and degeneration in

our Drosophila screen reveals a diverse range of biological functions.

For example, both DNAJC5/CSP and DNAJC6 belong to the

evolutionarily conserved DNAJ/HSP40 family of proteins that

regulate molecular chaperone activity by stimulating ATPase

activity [22], whereas CALB2/calretinin is an intracellular

calcium-binding protein [23] and ROCK2 is a Rho kinase

belonging to a family of serine/threonine kinases involved in

structural remodeling of the cytoskeleton [24]. Despite this

apparent heterogeneity, it should be noted that the in silico analysis

of data generated by our proteomics experiments highlighted

significant clustering of proteins within functional networks that

regulate synaptic transmission. This finding is further reinforced

by comparisons of the biological roles of the 6 proteins found to

independently regulate degeneration in our Drosophila screen, 5 of

which have been implicated in the control of synaptic function:

both CALB2/Calretinin and ALDHA1 modulate synaptic long-

term potentiation (LTP) [25,26], DNAJC6 has been implicated in

clatherin-mediated synaptic vesicle recycling [27,28], DNAJC5/

CSP plays a role in SNARE-complex assembly [29], and ROCK2

levels influence synaptic transmission and plasticity [30]. Taken

together with previous reports linking perturbations in synaptic

transmission with synaptic degeneration [11] (also see below), our

findings suggest that endogenous neuronal proteins and pathways

regulating synaptic function play an important role in modulating

neurodegenerative pathways.

It is worth noting, however, that at least one of the other

proteins found to influence degeneration in our Drosophila screen

(HIBCH; 3-hydroxyisobutyryl-CoA hydrolase) is unlikely to

impact directly on synaptic transmission pathways. HIBCH plays

an important role in valine catabolism, disruption of which is

sufficient to induce progressive infantile neurodegeneration in

humans [31]. Thus, multiple cellular and molecular pathways are

likely to converge on mechanisms regulating synaptic and axonal

degeneration. This finding is supported by our in silico analysis

revealing that several of the proteins identified in our screen also

contribute to pathways regulating neurite development. This

supports previous observations from Drosophila models linking

ubiquitin-mediated developmental processes with neurodegenera-

tive processes occurring in axonal compartments of neurons [32].

Thus, although proteins and pathways involved in synaptic

transmission are likely to contribute significantly to neurodegen-

eration, other distinct molecular pathways also appear to be

capable of influencing synaptic and axonal degeneration in vivo.

Only one of proteins we identified as a direct mediator of

degeneration, DNAJC5/CSP, belongs to the small group of

endogenous genes and proteins previously reported to directly

affect synaptic stability and degeneration in vivo. DNAJC5/CSP

has been implicated in synaptic degeneration contributing to the

pathogenesis of neurodegenerative diseases [11,33]. However, our

findings are partially inconsistent with previously published studies

examining the role of DNAJC5/CSP in animal models. For

example, Fernández-Chacón and colleagues reported that loss of

CSP expression in mice caused synaptic degeneration in the CNS,

leading them to conclude that increased levels of the protein may

be neuroprotective [15,34]. By contrast, we found that DNAJC5/

CSP levels are robustly and consistently increased in degenerating

synapse-enriched fractions following injury and in synapse-

enriched fractions from mouse models of neurodegenerative

disease. Moreover, a thorough genetic analysis in Drosophila using

well-defined mutants in DNAJC5/CSP revealed that loss of CSP is

neuroprotective, delaying degeneration in axonal and synaptic

compartments. Thus, whilst it is clear that DNAJC5/CSP needs to

be regarded as a critical regulator of-neuronal stability and

degeneration in vivo, precise details correlating expression levels

with its role in stabilizing distal axons and synapses during disease-

induced degeneration remain to be determined.

Given that only partial coverage of the entire synaptic proteome

is possible through the coupling of subcellular fractionation with

current proteomics technologies, alongside the stringent 20% cut

off threshold employed, the refinement methodologies applied in

the current study and the limited number of viable fly lines that we

screened, it is highly likely that additional genes and proteins

capable of regulating neurodegeneration remain to be discovered.

Our uncovering of molecular responses underlying neurodegen-

eration in distal compartments of neurons, alongside the

identification of 5 novel mediators of degeneration and new

experimental insights into the role of DNAJC5/CSP, suggests that

combining proteomic screens on synapse-enriched fractions with

axonal/synaptic degeneration assays in Drosophila provides a

powerful approach for elucidating mechanisms of neurodegener-

ation in vivo.

Materials and Methods

Ethics statement
All animal experiments were approved by a University of

Edinburgh internal ethics committee and were performed under

license by the UK Home Office (project license number 60/3891).

Mouse cortical lesion model
Two month old, female C57Bl/6 (wild-type) and Wlds mice

were obtained from Harlan Olac Laboratories (Bicester, UK) and

housed within the animal care facilities in Edinburgh. Care was

taken to ensure that the wild-type mice did not contain the alpha-

synuclein gene deletion that was present in a sub-strain of Harlan

Olac Bl6 mice [18]. All surgical procedures were performed under

license from the UK Home Office. General anaesthesia was

induced using a mixture of isopentane and oxygen, before securing

the head in a Kopf stereotaxic frame. Fur overlying the cranial

vault was shaved with scissors before making an incision through

the skin at the midline. Four holes were drilled on the left side of

skull; 1) in the midline at bregma, 2) in line with the first but at the

level of lambda, 3) further caudal on the lateral side just above the

temporalis muscle, 4) anterolateral in line with the first and third

holes. The skull was cut in lines connecting all holes except the

most caudal border, and then reflected. A suction pipette was used

to remove all visible cortex under a dissecting microscope, down to

the level of the corpus callosum, before replacing the skull-flap

[14,19]. The lesion site was filled with gel foam (Ethicon) before

replacing the skull-flap. Overlying skin was then sutured and the

mouse placed on a heated blanket until recovered fully from the

anaesthetic. Mice were maintained in standard animal house

conditions and were checked daily for any signs of distress or

discomfort as previously described [14,19].

Mouse disease models
R62 mice with a CAG repeat number of 259–266 from

breeding colonies at the University of Cambridge were sacrificed

at 9–10 weeks old. Mice were genotyped as previously described

[20]. Mice lacking bIII-spectrin and age-matched controls from

breeding colonies at the University of Edinburgh were raised and
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sacrificed at 12–15 weeks old. Mice were genotyped as previously

described [5].

Preparation of synapse-enriched fractions
Brains were rapidly removed following sacrifice and required

brain regions microdissected out (cerebellum from bIII-spectrin

mice, striatum from wild-type mice, Wlds mice subjected to a

cortical lesion and R6/2 mice). Synapse-enriched fractions were

prepared as previously described [18]. Briefly, brain regions were

homogenised in an ice-cold isotonic sucrose solution (0.32 M

sucrose, 1 mM EDTA, 5 mM Tris-HCl, pH 7.4). Homogenate

was centrifuged in a fixed-angle rotor at 900 g for 10 min and the

supernatant (S1) was collected. The pellet (P1) was resuspended in

sucrose solution and centrifuged again at 900 g for 10 min. The

resulting supernatant (S19) was combined with S1 and centrifuged

in a fixed angle rotor at 20,000 g for 15 min. The supernatant (S2)

was discarded and the pellet (P2) containing crude synapse-

enriched fractions was washed in a Krebs-like buffer (118.5 mM

NaCl, 4.7 mM KCl, 1.18 mM MgCl2, 0.1 mM K2HPO4, 20 mM

Hepes, 1.3 mM CaCl2, 10 mM glucose, pH 7.4) then centrifuged

at 14,000 g for 10 min.

Quantitative Western blots
Quantitative fluorescent western blotting was performed as

previously described [35]. Briefly, protein was extracted (N.3

mice per sample) in RIPA buffer with 10% protease inhibitor

cocktail (Sigma). 15–30 mg of protein per lane was separated by

SDS/Polyacrylamide gel electrophoresis on 4–20% pre-cast

NuPage 4–12% Bis Tris gradient gels (Invitrogen) and then

transferred to PVDF membrane overnight. The membranes were

then blocked using Odyssey blocking buffer (Li-COR) and

incubated with primary antibodies as per manufacturers instruc-

tions (ABLIM1, SPBTN, CCT7/TCP1, UBR4 - Santa Cruz;

Beta-actin, BIII-tubulin, CNP, CFL1, CSP, DOCK7, HTT,

INPP4A, NFASC, ROCK2, SIRT2, VAT1 - Abcam). Odyssey

secondary antibodies were added according to manufacturers

instructions (Goat anti rabbit IRDye 680 and Goat anti mouse

IRDye 800). Blots were imaged using an Odyssey Infrared

Imaging System (Li-COR Biosciences). Scan resolution of the

instrument ranges from 21–339 mm and in this study blots were

imaged at 169 mm.

iTRAQ proteomics
Protein was extracted from synapse-enriched fractions in

MEBC buffer (50 mM Tris, 100 mM NaCl, 5 mM NaEDTA,

5 mM NaEGTA, 40 mM glycerophosphate, 100 mM NAF,

100 mM Sodium orthovanadate, 0.25% NP40, 1 Roche ‘‘com-

plete’’ protease inhibitor tablet, pH 7.4) before acetone precipita-

tion and labeling for iTRAQ analysis as previously described [35].

Samples (N = 36 mice in total. N = 18 mice per genotype, N = 6

mice per time point) were precipitated with 220uC chilled acetone

(1:4, vol/vol) and stored at 220uC overnight. The precipitates

were spun at 4uC for 10 min then washed with an acetone:water

mixture (4:1, vol/vol) twice prior to air drying. The pellets were

then re-suspended in iTRAQ sample buffer (25 ml 500 mM

TEAB, 1 ml denaturant (2% SDS) and 2 ml of reducing agent

(TCEP)). The samples were allowed to incubate for 1 hour at

60uC prior to protein estimation in triplicate (361 ml) by

microBCA assay (Pierce).

Aliquots of each sample equivalent to 100 mg were made up to

28 ml using the iTRAQ sample buffer minus denaturant. To each

sample 1 ml of 84 mM IAA was added, the samples mixed and

spun prior to incubation at room temperature in the dark for

30 minutes. To each sample 10 ml of a 1 ml/ml solution of trypsin

(Sequencing grade, Roche) in water was added and the samples

incubated overnight on a shaking platform at 30uC. To each vial

of iTRAQ reagent (113, 114, 115, 116, 117, 118) 70 ml of ethanol

was added, mixed and spun prior to transfer to each sample vial

(WT0 hrs-114, WT24 hrs-116, WT48 hrs-118; Wlds0 hrs-113,

Wlds24 hrs-115, Wlds48 hrs-117). The pH was checked for each

sample to ensure pH was greater than 8.0 prior to incubation for

1 hour at room temperature. 100 ml of water was added to each

sample to quench the reaction prior to pooling of the six iTRAQ

labelled samples and subsequent drying by vacuum centrifugation

as previously described [35].

The pooled iTRAQ sample was resuspended in 50 ml of 25%

acetonitrile in 0.1% formic acid prior to loading through a home

made ziptip using 10 ml of 10% slurry of Poros HS in 50:50

methanol:water. The ziptip was then washed with 3625 ml of 25%

acetonitrile in 0.1% formic acid prior to loading of the pooled

iTRAQ sample. The ziptip was then washed with 3625 ml of 25%

acetonitrile in 0.1% formic acid prior to elution with a stepped

NaCl gradient in 25% acetonitrile in 0.1% formic acid. A fraction

of iTRAQ labelled peptides were then eluted with 2625 ml of 5–

800 mM NaCl (5, 10, 20, 50, 100,150, 200, 150, 300, 400, 800) in

25% acetonitrile in 0.1% formic acid. A final elution of the ziptip

with 200 mM NH4OH and 50% propanol was used to remove

the most hydrophobic peptides. Each fraction was then dried by

vacuum centrifugation and stored until mass spectrometry analysis

of pooled iTRAQ samples by nano liquid chromatography-mass

spectrometry/mass spectrometry (nLC-MS/MS). Prior to the

analysis, each dried SCX fraction was re-suspended in 35 ml of

1% formic acid and 10 ml aliquots were injected onto an Agilent

6520 Q-TOF using an Agilent 1200 series nanoLC system with

microfluidic interface as previously described [35].

Raw data files were converted to mascot generic file (mgf) by

MassHunter workstation software prior to merging of the files with

Mascot Daemon and subsequent database (IPI Mouse) searching

with the Mascot search engine (Matrix Science, Version 2.2). To

be considered as a protein with modified relative expression, the

peptide abundance (or average of all peptide abundances for

proteins identified by more than one unique peptide) had to be

modified by greater than 20% (up or down) [35]. For validation,

expression levels of a number of proteins which were identified by

a single peptide were quantified in freshly prepared tissue samples

using quantitative fluorescent western blotting (see above).

Ingenuity Pathways Analysis (IPA) statistical network analyses

were performed as previously described [18].

Drosophila degeneration screen
Drosophila orthologs of the designated mouse proteins were

identified, when available, using a reciprocal BLASTing approach

and the Ensembl website (ensemble.org). Available mutations were

identified in Flybase the following Drosophila mutant stocks were

obtained from the Bloomington Stock Center (Bloomington ID

#): 12900, 26277, 18382, 7762, 20497, 12301, 30075, 24665,

18046, 5595, 23173, 6671, 13491, 20672, 25213, 18502, 13446,

9109, 11876, 7084, 25107, 7938, 5708, 11734, 29228, 2247,

13491, 15889, 8479, 18884, 23097, 15642, 382, 32035, and 7617.

Mutant stocks on the X chromosome were crossed to OR22a-Gal4,

UAS-mCD8::GFP flies and males were used for the degeneration

screen. Stocks for mutants on the second chromosome were

crossed to Sp/Cyo; OR22a-Gal4, UAS-mCD8::GFP, and the progeny

were self-crossed to obtain homozygous mutant flies on the second

and OR22a-Gal4, UAS-mCD8::GFP on the third chromosome.

Similarly, stocks for mutants on the third chromosome were

crossed to OR22a-Gal4, UAS-mCD8::GFP; Dr/TM3 and the

progeny self-crossed to obtain homozygous mutant flies on the
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third chromosome and OR22a-Gal4, UAS-mCD8::GFP on the

second chromosome.

The Wallerian degeneration assay was performed as described

[21]. Briefly, flies were aged for 7 days after eclosion to allow

strong labeling of ORN axons with GFP. The left 3rd antennal

segment was then removed, and the flies aged for another 7 days.

The right antennal ORNs served as unlesioned controls. The fly

heads were then fixed in 4% formaldehyde/PBS/0.1% Tween,

and dissected. Fly brains were mounted in Vectashield and

examined by confocal microscopy where they were phenotypically

scored by an investigator who was unaware of the genotype. A

minimum of 10 animals were examined and assessed per mutant

strain.

Spontaneous degeneration in uninjured axons and synapses was

scored by eye using the following criteria: 0 = no evidence for

fragmentation of axons or loss of GFP fluorescence in the

glomerulus; 1 = ,10% of axons showing fragmentation and/or

mild loss of GFP fluorescence in the glomerulus; 2 = ,25% of

axons showing fragmentation and/or mild to moderate loss of

GFP fluorescence in the glomerulus; 3 = .50% of axons showing

fragmentation and/or moderate to severe loss of GFP fluorescence

in the glomerulus; 4 = only fragmented axons remaining and/or

severe loss of GFP fluorescence in the glomerulus; 5 = no GFP

signal remaining in axons or the glomerulus. Delayed degenera-

tion in injured axons and synapses was scored by eye using the

following criteria: 0 = no intact axons and no fragments remaining;

1 = no intact axons but fragmented debris remaining; 2 = ,25% of

axons intact but with extensive fragmentation of surrounding

axons; 3 = ,50% of axons intact with evidence for fragmentation

in surrounding axons; 4 = .75% of axons intact with only modest

amounts of fragmentation in surrounding axons; 5 = intact axons

and synapses with no evidence for fragmentation.

Statistical analysis
Statistical analyses were performed using either Ingenuity

Pathways Analysis (IPA) software (for analysis of proteomic data)

or GraphPad Prism software (for data from quantitative western

blots). P,0.05 was considered to be statistically significant.
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