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Abstract

In mammalian cells, AU-rich elements (AREs) are well known regulatory sequences located in the 39 untranslated region
(UTR) of many short-lived mRNAs. AREs cause mRNAs to be degraded rapidly and thereby suppress gene expression at the
posttranscriptional level. Based on the number of AUUUA pentamers, their proximity, and surrounding AU-rich regions, we
generated an algorithm termed AREScore that identifies AREs and provides a numerical assessment of their strength. By
analyzing the AREScore distribution in the transcriptomes of 14 metazoan species, we provide evidence that AREs were
selected for in several vertebrates and Drosophila melanogaster. We then measured mRNA expression levels genome-wide
to address the importance of AREs in SL2 cells derived from D. melanogaster hemocytes. Tis11, a zinc finger RNA–binding
protein homologous to mammalian tristetraprolin, was found to target ARE–containing reporter mRNAs for rapid
degradation in SL2 cells. Drosophila mRNAs whose expression is elevated upon knock down of Tis11 were found to have
higher AREScores. Moreover high AREScores correlate with reduced mRNA expression levels on a genome-wide scale. The
precise measurement of degradation rates for 26 Drosophila mRNAs revealed that the AREScore is a very good predictor of
short-lived mRNAs. Taken together, this study introduces AREScore as a simple tool to identify ARE–containing mRNAs and
provides compelling evidence that AREs are widespread regulatory elements in Drosophila.
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Introduction

Gene expression is extensively regulated at both transcriptional

and posttranscriptional levels. In the cytoplasm, numerous

mechanisms act on mRNAs to ensure their proper localization,

translation and stability [1]. Together with the rate of transcrip-

tion, the lifespan of an mRNA is a key determinant of the level at

which any given gene is expressed. Half-lives differ widely between

transcripts, ranging in human cells from 5 minutes to .10 hours

[2,3]. In yeast, mRNAs are degraded more rapidly and their half-

lives range from 3 to .90 minutes [4].

AU-rich elements (AREs) are well-characterized cis-acting regu-

latory sequences that strongly accelerate the degradation of

mammalian mRNAs. AREs were initially discovered in 39

untranslated regions (UTRs) of short-lived transcripts encoding

cytokines [5,6], and since have been proposed to reside in 5–8% of all

transcripts [7]. However, the frequency of functional AREs in a given

cell type is certainly lower because genome-wide measurements of

mRNA decay rates showed that the presence of AU-rich sequences

correlates only to a limited extent with rapid mRNA decay: In

primary human T-cells, only about 25% of mRNAs with AU-rich

sequences were found to decay rapidly [2], and in the hepatocellular

carcinoma cell line HepG2 this proportion was only 10–15% [8].

Although there is no strict consensus sequence for AREs, the

following key motifs have been identified: AUUUA pentamers that

frequently occur in multiple copies, which may overlap or localize

in close proximity [6,9]; a related nonameric motif UUAU-

UUAUU or UUAUUUA(U/A)(U/A), which is strongly linked to

rapid mRNA decay [10,11,12,13]; and a generally U-rich or AU-

rich context required for maximum efficiency of either pentamers

or nonamers [9]. AREs can be distinguished according to different

deadenylation kinetics, which gave rise to a widely used

classification published by Shyu et al. [14]. Class I AREs (e.g. c-

myc, c-fos) contain a few scattered pentamers within a larger U- or

AU-rich context, and mediate synchronous deadenylation indic-

ative of a distributive exoribonuclease. Class II AREs (e.g. GM-

CSF, IL-3 and TNFa) have a cluster of 4–7 partially overlapping

pentamers within a U-rich context, and mediate asynchronous

deadenylation indicative of a processive exoribonuclease. Class III

AREs (e.g., c-jun) lack pentamers and have been less well

characterized. Khabar et al. proposed an alternative classification

of AREs into five groups based on the number of overlapping

AUUUA pantamers [15]. This classification has been used to mine

databases for the occurrence of ARE-regulated genes [7], yet the

functional implication of this classification has not been thoroughly

tested.

ARE-mediated mRNA decay (AMD) depends on specific RNA-

binding proteins (BPs) that recognize AREs and target the mRNA

for rapid degradation [16]. The Tis11 zinc finger proteins are

ARE-BPs with a major role in AMD. The mammalian Tis11
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family comprises TTP [17], BRF1 [18] and BRF2 [19], all of

which are potent inducers of mRNA degradation. These proteins

share a highly conserved tandem C3H zinc finger domain required

for RNA binding. TTP is the best characterized member of this

family and acts as a suppressor of inflammation in mice by

controlling the expression of tumor necrosis factor-a (TNFa) [17].

Further studies showed that TTP causes the degradation of many

additional mRNAs related to the immune response (reviewed in

[20]). TTP induces the degradation of its target mRNAs by

recruiting the components of the general RNA degradation

machinery such as the exosome [21], the decapping complex

[22] and the Ccr4-Caf1-Not deadenylation complex [23].

Moreover, TTP is regulated through phosphorylation by the

p38-MAPK – MK2 kinase cascade. Direct phosphorylation by

MK2 causes binding of 14-3-3 adaptor proteins and decreases the

activity of TTP [24,25] by interfering with the ability of TTP to

recruit the Ccr4-Caf1-Not deadenylation complex [26,27]. In

turn, the protein phosphatase 2A dephosphorylates TTP and

thereby activates AMD [28].

Very little is known about AMD in Drosophila melanogaster. So far,

only the mRNAs encoding CecA1 and bnl were shown to contain

a functional ARE [29,30,31]. The CecA1 ARE binds to Tis11, the

homologue of TTP in D. melanogaster, which in turn promotes rapid

degradation of CecA1 mRNA by enhancing deadenylation [29].

Interestingly, expression of mammalian TTP could compensate

for the knock down of Tis11 in Drosophila cells [30], suggesting

evolutionary conservation. While the regulation of CecA1 mRNA

degradation has been well characterized, there is no experimental

study addressing more generally the role of AMD in D. melanogaster.

Here we report the development of AREScore, a software

application by which mRNAs can be assessed for the presence of

AREs. After validating the AREScore using half-life measurements

of human and mouse mRNAs, the transcriptome-wide AREScore

distribution was analyzed across 14 metazoan species. The

AREScore was then applied to the analysis of AMD in Drosophila

SL2 cells. By combining biochemical and bioinformatic approach-

es, we provide evidence for a specific set of mRNAs regulated by

Tis11, and for the broader role of AREs in controlling mRNA

degradation in D. melanogaster.

Results

AREScore provides a numerical assessment for AREs
With the aim to identify genes containing AREs in any given set

of sequences, we developed an algorithm termed AREScore,

schematically depicted in Figure 1A. Its purpose is to provide a

numerical measure of the potential strength of an ARE, and assess

the occurrence of AREs on a transcriptome-wide level. The

AREScore is based on quantifying three typical features of AREs:

the number of AUUUA pentamers, the proximity between

pentamers, and the presence of a region with high AU content

surrounding AUUUA pentamers. The UUAUUUA(U/A)(U/A)

nonamer was not counted as a separate parameter because it

largely corresponds to two overlapping AUUUA pentamers or a

pentamer within a region of high AU content. The algorithm first

counts AUUUA pentamers and attributes a fixed value of 1 for

each pentamer to generate a basal score. It then calculates the

distance between neighboring pentamers, and adds a value to the

basal score if pentamers are close to each other. Likewise, a value

is added if pentamers are located within a region of high AU

content, herein termed an AU-block. To increase the flexibility of

AREScore, users can change the values that are added to the basal

score, and alter the settings that define an AU-block. Thereby

users can adapt the algorithm to their needs and particular

questions. A web-based version of AREScore is available at http://

arescore.dkfz.de/arescore.pl.

To validate the algorithm, we calculated the AREScore for every

human mRNA in the RefSeq database with a 39UTR length $10

nucleotides (nt), whereby many falsely annotated 39UTRs could be

excluded from the analysis. In Figure 1B, the AREScore was then

compared to previously measured mRNA half-lives in human

DG75 B-cells [32]. The AREScore shows a slight, but statistically

highly significant, negative correlation with mRNA half-life

(Spearman rank correlation coefficient RS = 20.155, p,0.0001).

The correlation was more apparent when mRNAs were classified

into groups with similar AREScores and the average half-life was

plotted for each group (Figure 1C). We then used Receiver

Operating Characteristic (ROC) analysis to assess the predictive

power of the AREScore in this dataset (Figure 1D). Every possible

AREScore value was tested for its ability to discriminate the 10%

most short-lived mRNAs from the 10% most long-lived ones. For

instance, mRNAs with an AREScore $3.9 make up 53% of the

short-lived mRNAs (true positive rate), but only 14% of the long-

lived mRNAs (false positive rate). By plotting true positive rate

against false positive rate for every possible AREScore, the ROC

curve is obtained. The area under this curve (AUC) corresponds to

the probability that a random short-lived mRNA has a higher

AREScore than a random long-lived mRNA. With a value of 0.75,

the AUC is well above that of a random predictor (AUC = 0.5).

In a similar manner, we compared the AREScore of mouse

mRNAs with half-lives measured previously in mouse NIH3T3

fibroblasts [33]. This analysis again showed a weak but highly

significant negative correlation between AREScore and mRNA

half-life (Figure 1E, RS = 20.147, p,0.0001, and Figure 1F). With

an AUC of 0.73, the ROC curve of the mouse dataset (Figure 1G)

is very similar to the curve of the human dataset (Figure 1D).

Taken together, the comparison of AREScores with genome-wide

measurements of mRNA half-lives showed that mRNAs with a

high AREScore are more likely to be short-lived, both in human

and mouse cell lines.

To further validate the AREScore, we analyzed a set of

transcripts that we had previously identified as TTP-associated

mRNAs in mouse macrophages using RNA-immunoprecipitation

[13]. Figure 1H shows that the AREScore is very high among the

Author Summary

Many genes are regulated at the posttranscriptional level
by factors that influence the stability of the messenger
RNA. In mammals, AU-rich elements are known to cause
rapid degradation of messenger RNAs and thereby
suppress gene expression. In order to identify such
elements on a genome-wide scale, we developed a
bioinformatic tool with which we can score messenger
RNAs for the presence of AU-rich elements. Using the
AREScore algorithm, we observe that AU-rich elements
correlate with reduced messenger RNA stability and
expression levels. We then used the AREScore to compare
the transcriptomes of 14 metazoan species and found that
messenger RNAs with high AREScores are enriched in
several vertebrates and the fruit fly Drosophila melanoga-
ster. We identified messenger RNAs whose levels are
regulated by the Drosophila Tis11 protein, which binds to
AU-rich elements. Our study introduces the AREScore as a
means to globally assess AU-rich elements and predict
short-lived messenger RNAs. Furthermore, it demonstrates
the regulatory role of AU-rich elements in suppressing
gene expression by accelerating messenger RNA degrada-
tion in D. melanogaster cells.

AREScore and mRNA decay in D. melanogaster
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135 TTP-associated mRNAs (median 7.8) compared to the entire

mouse transcriptome (median 1.3) or a more stringent control set

of randomly chosen, concatenated 39UTR sequences (median

4.65) whose lengths were matched to the lengths of the TTP-

associated 39UTRs. To test whether the AREScore distribution of

the TTP-associated mRNAs was statistically different from the

controls, we compared the frequency of mRNAs with an AREScore

,4 and $4 in 262 contingency tables (Tables S1 and S2). P-

values were calculated either by x2-test or Fisher’s exact test, and

found to be ,0.0001 for both comparisons. Thus, the AREScores

of the TTP-associated mRNAs were significantly higher than the

AREScores of both control groups. This confirmed that the

AREScore is a useful tool to identify ARE-containing mRNAs.

AREs are more abundant in vertebrate and arthropod
genomes

Having the AREScore at hand as a numerical tool to estimate the

abundance and strength of AREs in any given genome, we

calculated the AREScore of all annotated transcripts with a 39UTR

length $10 nt for Homo sapiens and four important metazoan

model organisms, Caenorhabditis elegans, D. melanogaster, Danio rerio,

and Mus musculus. The analysis shows that in all five species, the

vast majority of mRNAs have a score below 4 (Figure 2A).

Differences became apparent when frequencies were plotted on a

logarithmic scale (Figure 2B). The highest AREScore is 17.4 in C.

elegans and 34.3 in D. melanogaster, whereas in the two mammalian

species AREScores go beyond 60. These differences are also visible

in the plot of cumulative frequencies (Figure 2C), which shows the

highest prevalence of low AREScores in C. elegans and of high

AREScores in H. sapiens. It was interesting to note that the 39UTR

length follows a similar pattern (Figure 2D), with C. elegans having

the by far shortest 39UTRs (median: 140 nt), followed by D.

melanogaster (207 nt) and D. rerio (402 nt), and considerably longer

39UTRs in the two mammalian species (704 nt in mouse, 804 in

man). This analysis shows that mRNAs with high AREScores as

well as long 39UTRs are more abundant in the two mammalian

species, which likely reflects the need for additional elements

regulating gene expression.

Evolutionary selection for AREs
To test whether AREs are truly enriched in any of the

transcriptomes we analyzed, we compared the AREScore distribu-

tion in different species with sets of randomized sequences that

have identical A/T/G/C contents and length distributions

(Figure 3 and Figure S1). This comparison revealed that mRNAs

with high AREScores ($10) are overrepresented in the transcrip-

tome of H. sapiens (Figure 3A). In D. melanogaster, the enrichment

already starts at an AREScore of 4 (Figure 3B), whereas there is

no enrichment of mRNAs with higher AREScores in C. elegans

(Figure 3C). We then expanded this analysis to the transcriptomes

of 11 additional species, covering most of the major branches of

metazoan evolution (Figure S1). Only for Annelida and Crustacea,

no properly annotated transcriptomes were available. In the 14

species analyzed, the frequency of mRNAs with an AREScore $10

was compared to the frequency of AREScores $10 in sets of

randomized control sequences (Figure 3D). mRNAs with an

AREScore $10 were found to be overrepresented in the

transcriptomes of H. sapiens, M musculus, Gallus gallus (chicken),

Danio rerio (zebrafish) and D. melanogaster. This is reflected by a

positive W coefficient, a measure for how strongly AREScores $10

are associated with the actual transcriptome as compared to the

randomized control. In all these cases, the difference was

significant as determined by x2-test. mRNAs with an AREScore

$10 were also more abundant in Ixodes scapularis (deer tick),

although in this case the difference was statistically not significant.

In the 8 other species analyzed, mRNAs with an AREScore $10

were less abundant than in the randomized control sequences.

Thus, our analysis suggested that AREs were selected for during

the evolution of several vertebrate species (Xenopus laevis being the

exception) as well as D. melanogaster.

AREScore of Tis11-sensitive mRNAs in Drosophila cells
Given that we found AREs to be overrepresented in the D.

melanogaster transcriptome (Figure 3B) and that little is known about

the general importance of AMD in this organism, we decided to

experimentally address the functional relevance of the AREScore in

Drosophila. We first established an assay to measure AMD in D.

melanogaster SL2 cells by generating firefly luciferase (FL) reporter

genes containing the ARE of mouse interleukin (IL)-3 in the

39UTR (Figure S2A, IL3 ARE sequence depicted in Figure S3).

Expression of the FL reporter gene was found to be strongly

suppressed by the IL3 ARE in SL2 cells, both at the protein

(luciferase activity) and mRNA level, and suppression was due to

accelerated degradation of the reporter mRNA (Figure S2B–S2D).

We then tested several factors for their involvement in Drosophila

AMD by knocking down their expression using dsRNAs. Whereas

knock down (kd) of Tis11 and Not1, a core protein of the

cytoplasmic Ccr4-Caf1-Not deadenylation complex, caused ele-

vated expression of the ARE-reporter, other proteins such as

Rox8, AGO1, AGO2, LSm1 and pcm did not affect reporter gene

expression (Figure 4A).

Since Drosphila Not1 is important for mRNA deadenylation in

general [34,35], we focused on Tis11 as an ARE-specific RNA

binding protein. Our goal was to examine the AREScore of

mRNAs regulated by Tis11. We first confirmed that the dsRNA

against Tis11 potently suppressed the expression of Tis11 mRNA

(Figure 4B), and that Tis11 kd stabilizes the FL-mIL3-ARE

reporter mRNA (Figure 4C). To identify Drosophila mRNAs

Figure 1. Numerical assessment of AREs using the AREScore algorithm. (A) The AREScore is based on counting the number of AUUUA
pentamers per 39UTR or sequence. The proximity between pentamers and the occurrence of pentamers within larger AU-blocks adds to the score.
Sequences to be analyzed can be entered either as a list of Refseq IDs or in FASTA format. A web-based version of the AREScore algorithm is available
under http://arescore.dkfz.de/arescore.pl. (B) Relationship between AREScore and genome-wide mRNA half-lives from a study in human DG75 B-cells
[32]. The red curve corresponds to non-linear lowess regression, RS to the Spearman rank correlation coefficient. (C) mRNAs depicted in panel B were
grouped according to their AREScore and set in relation to the average half-life in each group. (D) ROC analysis was applied to the data in panel B,
testing every possible AREScore value for its ability to discriminate the 10% most short-lived mRNAs from the 10% most long-lived mRNAs. AUC, area
under the curve. Maximum AREScores with a true positive rate of at least 0.5 and 0.8, respectively, are indicated by dotted lines. (E) Relationship
between AREScore and genome-wide mRNA half-lives from a study in mouse NIH3T3 fibroblasts [33]. Analysis was performed as in panel E. (F) mRNAs
depicted in panel E were grouped according to their AREScore, and set in relation to the average half-life in each group. (G) ROC analysis for the data
in panel E, as in panel D. (H) AREScore distribution of TTP-associated mRNAs in mouse RAW264.7 macrophages from an RNA-IP study [13]. AREScore
frequencies are plotted for 135 mRNAs that were enriched by immunoprecipitation of TTP. As controls, AREScore frequencies are shown for a group
of 135 randomly concatenated 39UTR sequences matching in size to the TTP-associated 39UTRs, and for the 39UTRs $10 nt in size of all annotated
mouse mRNAs.
doi:10.1371/journal.pgen.1002433.g001
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Figure 2. AREScore distribution in different metazoa. (A) The AREScore was determined for every annotated transcript with a 39UTR length
$10 nt, for Caenorhabditis elegans, Drosophila melanogaster, Danio rerio, Mus musculus and Homo sapiens. mRNAs were grouped according to
AREScores of 0–0.99, 1–1.99, 2–2.99, etc. The graph shows the frequency of mRNAs in each group using a linear scale. (B) The same distribution as in
panel A is shown on a logarithmic scale to better visualize the low abundant mRNAs with high AREScores; frequencies of 0 were omitted from the
graph. (C) The same distribution as in panel A is depicted using cumulative frequencies on a linear scale. (D) The 39UTR length distribution was
plotted for the same set of transcripts. mRNAs were grouped according to 39UTR lengths of 10–99, 100–199, 200–299, … 1000–1499, 1500–1999, …
4500–4999, and $5000 nt.
doi:10.1371/journal.pgen.1002433.g002
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Figure 3. AREScore distribution in comparison to randomized controls. (A) The AREScore distribution of the H. sapiens transcriptome (every
annotated transcript with a 39UTR length $10 nt) was compared to a fully adjusted, randomized control set of sequences with identical lengths and
A/T/G/C-content. Percentage of transcripts is depicted on a logarithmic scale. (B) The same analysis was done with the D. melanogaster transcriptome,
as in panel A. Frequencies of 0 were omitted from the graph. (C) The same analysis was done with the C. elegans transcriptome, as in panel B. (D) The
frequency of mRNAs with an AREScore $10 in the actual transcriptome of 14 species was compared to the frequency in fully adjusted, randomized
control sequences. The analysis was carried out for Amphimedon queenslandica (demosponge), Hydra magnipapillata (freshwater polyp), Aplysia
californica (California sea hare), Caenorhabditis elegans (roundworm), Ixodes scapularis (deer tick), Drosophila melanogaster (fruit fly),

AREScore and mRNA decay in D. melanogaster
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regulated by Tis11, we determined the mRNA expression profile

in SL2 cells after knocking down Tis11 or, as a control, GFP.

Since direct targets of Tis11 are expected to show higher

expression levels after Tis11 kd, we concentrated on the 53

mRNAs that we found to be upregulated by a factor of at least

1.41 (0.5 log2-transformed) after Tis11 kd in the microarray

Figure 4. Tis11 mediates rapid mRNA degradation in D. melanogaster SL2 cells. (A) To knock down the expression of several mRNA decay
factors, SL2 cells were treated with dsRNA (12.5 mg/ml) over a period of 4 days. For control, cells were treated with water alone, or with a dsRNA
targeting GFP. On day 3, cells were transfected with a firefly luciferase (FL) reporter containing the ARE of mouse IL3 (pRp128-FL-mIL3-ARE) together
with pRp128-RL encoding Renilla luciferase (RL). FL and RL activities were measured on day 5 and normalized to the water control. The graph shows
average FL-mIL3-ARE/RL ratios 6 SD based on 4–9 biological repeats. In comparison to the GFP control, dsRNAs targeting Tis11 or Not1 cause a
highly significant increase with p-values of (**) 1.661026 and (***) 3.361029, respectively. (B) The Tis11 knock down efficiency was examined after
treatment of SL2 cells with dsRNA for 5 days. Total RNA was extracted, and 8 mg per sample were subjected to Northern blot analysis using a probe
against Tis11 mRNA. Ribosomal protein RpS20 mRNA serves as a loading control. (C) To measure reporter mRNA stability, SL2 cells were treated with
dsRNAs against GFP or Tis11 over a period of 4 days, and transiently transfected with Ac5-FL, Ac5-FL-mIL3-ARE or Ac5-FL-Vir1-ARE on day 3. On day 5,
cells were treated with actinomycin D (5 mg/ml), and total RNA was extracted after 0, 30, 60 and 120 minutes. Per sample, 4–5 mg of RNA were
subjected to Northern blot analysis. mRNA signal intensities from three (FL) or four (IL3, Vir1) biological repeat experiments were quantified, and the
average FL/RpS20 ratio 6 SE was plotted against time in the panels on the right side. mRNA half-lives are given as average values 6 SE.
doi:10.1371/journal.pgen.1002433.g004

Strongylocentrotus purpuratus (purple sea urchin), Ciona intestinalis (vase tunicate), Branchiostoma floridae (Florida lancelet), Danio rerio (zebrafish),
Xenopus laevis (African clawed frog), Gallus gallus (chicken), Mus musculus (common house mouse) and Homo sapiens (man). The W coefficient serves
as a measure for how strongly AREScores $10 are associated with the actual transcriptome as compared to the randomized control. P-values were
calculated by x2-test, n represents the number of transcripts. Species labeled in red show a significant enrichment of mRNAs with AREScores $10.
doi:10.1371/journal.pgen.1002433.g003
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analysis (Figure 5A). 20 out of these mRNAs were chosen for

confirmation by qPCR, and for 18 of them we could verify that

Tis11 kd causes a an increase in expression of minimally 1.41-fold

(Figure S4), indicating that our microarray dataset was reliable.

The Vir1 mRNA, which was strongly upregulated by Tis11 kd

(Figure S4), has an AREScore of 5.6 and a readily detectable ARE

(Figure S3). Indeed, an FL reporter mRNA containing the ARE of

Drosophila Vir1 was stabilized by kd of Tis11 (Figure 4C).

Out of the 53 mRNAs sensitive to Tis11 kd, we then determined

the AREScore for those 49 transcripts whose annotated 39UTR

length is $10 nt. In comparison to the AREScore distribution of

the entire D. melanogaster transcriptome, the Tis11-sensitive

mRNAs showed an increased abundance of AREScores $4

(Figure 5B). By x2-test, this increase was statistically significant

with a p-value of 0.0011 (Table S3), suggesting that target mRNAs

of Drosophila Tis11 share characteristics with mammalian AREs.

AREScore correlates with Drosophila mRNA half-life and
expression level

After applying the AREScore to the subgroup of Tis11-sensitive

mRNAs, we wanted to assess the importance of AREs in

regulating Drosophila gene expression more generally. If AREs

are wide-spread elements that promote mRNA degradation but do

not affect transcription, a first prediction is that, on average,

mRNAs with a high AREScore should be expressed at lower levels.

A second prediction is that these mRNAs should have shorter half-

lives. We tested the first prediction by comparing the expression

levels of 6657 mRNAs, derived from our microarray analysis in

SL2 cells, with their AREScores (Figure 6A). Indeed, we observed a

tendency for mRNAs with high AREScores to be expressed at lower

levels. We further grouped the mRNAs into 9 categories according

to their AREScore, and compared the average expression levels of

each group to the overall average (Figure 6B). The two groups

with very high AREScores $12 showed average expression levels

that were more than 3-fold (1.6 log2-transformed) below the

overall average, and the reduction in expression was already

significant above an AREScore of 8.

We then compared the 39UTR lengths with the AREScores of all

6657 mRNAs (Figure 6C). As expected, we found a very strong

correlation between these two parameters (RS = 0.57, p,0.0001).

Thus, it was important to assess whether the 39UTR length on its

own had an influence on mRNA expression levels (Figure 6D and

6E). Two opposing correlations were apparent: mRNAs with very

short 39UTRs ,100 nt, and mRNA with long 39UTRs $1000 nt

were expressed at significantly reduced levels, whereas mRNAs

with 39UTRs of intermediate length (100–999 nt) showed the

highest expression levels. In fact, the 39UTR length appeared to

have a stronger influence on the expression level than the

AREScore, as mRNAs with 39UTRs $2000 nt were expressed

more than 5-fold (2.4 log2-transformed) below the overall average.

To examine whether the predictive power of the AREScore is

independent of 39UTR length, we chose to analyze a subgroup of

1781 mRNAs with 39UTRs between 200 and 499 nt (pink bars in

Figure 6E). In this group, the length of the 39UTR per se does not

negatively correlate with mRNA levels (Figure 6F), whereas

mRNAs with higher AREScores do show a trend towards reduced

expression levels (Figure 6G). Indeed, the 35 mRNAs that have an

AREScore $8 within this group had a more than 3-fold (1.6 log2-

transformed) reduced average expression level compared to the

1746 mRNAs that have an AREScore between 0 and 7.99

(Figure 6H), and this difference was highly significant

(p,0.0005). In contrast, the average expression level of the 35

mRNAs with the longest 39UTRs was only 1.4-fold (0.5 log2-

transformed) below the expression level of the remaining 1749

mRNAs with the shorter 39UTRs. From this comparison we

concluded that a high AREScore correlates with lower mRNA

expression levels independently of the 39UTR length.

Finally, we tested the second prediction that mRNAs with

higher AREScores should undergo more rapid decay. To this end,

we measured the half-lives of 26 mRNAs with high accuracy by

qPCR (Table 1, Figure S5). 12 mRNAs were chosen from the

group of Tis-11 sensitive mRNAs, and 14 from the large pool of

mRNAs that are not affected by Tis11 kd. To cover the entire

range, 5 mRNAs had a high AREScore $8, 8 mRNAs had a

medium AREScore between 4 and 7.99, and 13 had a low

AREScore ,4. In Figure 7A, we plotted the half-lives of these

mRNAs against the AREScore. The most striking observation was

that 9 out of 10 mRNAs with an AREScore of 0 degraded very

slowly with half-lives .240 minutes. On the other side, the two

mRNAs with the highest AREScore (CG115435 from the group of

Tis11-sensitive mRNAs and Reck and from the control group)

also had the shortest half-lives. In our analysis of 26 mRNAs, the

Spearman’s rank correlation coefficient RS between the two

parameters equals 20.73, and this correlation was highly

significant (p,0.001). We also compared the half-lives of these

26 mRNAs with their 39UTR length (Figure 7B), and found a

weaker correlation (RS = 20.61, p,0.001). ROC analysis was

then applied to test the ability of both AREScore and 39UTR

length to discriminate labile mRNAs with half-lives ,140 min-

utes from stable mRNAs with half-lives .240 minutes

(Figure 7C). The AREScore performed extremely well in this test

with an AUC of 0.95, better than 39UTR length with an AUC of

0.87. Clearly, the AREScore identifies short-lived mRNAs in D.

melanogaster, showing that AREs are general regulatory elements

in this organism.

Discussion

In this report, we developed AREScore as an algorithm to

identify AREs and provide a measure for their potential strength

(Figure 1). The AREScore was validated using genome-wide

mRNA half-life measurements in human DG75 B-cells [32] and

mouse NIH3T3 fibroblast [33]. Although the correlation between

AREScore and mRNA half-life was weak (RS = 20.155 and

20.147 in the two data sets, respectively), it was statistically

highly significant. To our knowledge, this is the best correlation

observed so far between any parameter and mRNA half-lives on a

genome-wide scale.

The potential of the AREScore could be further demonstrated

with a set of TTP-associated mRNAs that we had previously

identified by RNA-IP in mouse macrophages [13]. AREScores were

much higher in this set of mRNAs than in the two control groups

(Figure 1H). Among the Tis11-sensitive mRNAs that we identified

in Drosophila SL2 cells, we also observed an increased frequency of

mRNAs with higher AREScores (Figure 5), suggesting that

Drosophila Tis11 recognizes AREs with sequence features similar

to mammalian AREs.

Khabar et al. used bioinformatic tools to generate the ARE-

database (ARED), a comprehensive list of potential AREs in the

human, mouse and Drosophila genome [7,31,36]. The principle

behind ARED is that it classifies AREs according to the number

and density of AUUUA pentamers and surrounding AU-rich

sequences, which correlates, to some degree, with the potential

strength of the ARE. In contrast to ARED, the purpose of

AREScore is not to make categories, but rather generate a single

score that provides a measure for the likelihood and potential

strength of an ARE. It is important to emphasize that in the

absence of experimental validation, neither ARED nor AREScore

AREScore and mRNA decay in D. melanogaster
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is able to predict with absolute certainty whether a given mRNA

contains a functional ARE. For the AREScore, the false positive

rate was visualized by ROC analysis, whereby the AREScore is

tested for its ability to discriminate between the 10% most short-

lived and the 10% most long-lived mRNAs (Figure 1D and 1G).

For ARED, the false positive rate is not known.

An advantage of AREScore is that it can be applied easily to any

genome or set of sequences. Thus, we were able to compute the

AREScore distribution for the transcriptomes of 14 species

representing all but two of the major branches of metazoan

evolution (Figure 2 and Figure S1). The analysis showed that

mRNAs with high AREScores are most abundant in man and

mouse, the two mammalian species analyzed. Comparison to

randomized control sequences revealed that mRNAs with high

AREScores ($10) are overrepesented in man, mouse, chicken,

zebrafish and the fruit fly (Figure 3). This suggests that AREs were

under positive selection pressure during the evolution of these

organisms. On the other hand, high AREScore mRNAs are

underepresented in the sponge A. queenslandica, the freshwater

cnidarian H. magnipapillata, the mollusc A. californica and the

nematode C. elegans, suggesting that AREs did not expand in the

genomes of metazoans with simpler body plans. Alternatively, the

element corresponding to the ARE might have different sequence

features in these organisms.

Given that very little is known about AREs in D. melanogaster, we

then made use of the AREScore to address the role of AMD in

Drosophila SL2 cells. Using an FL-based reporter assay, we first

tested several factors and found that knocking down Tis11 or Not1

caused inhibition of AMD, whereas the kd of Rox8, AGO1,

AGO2, LSm1 or pcm had no effect (Figure 4). The requirement of

Tis11 for AMD is in good agreement with the well documented

role of TTP in mammalian AMD [37] as well as previous reports

demonstrating that Tis11 participates in AMD in Drosophila cells

[29,30,31,38]. The requirement for Not1 may be linked to our

recent finding that mammalian TTP recruits the Caf1 deadenylase

through its association with Not1 [23]. Not1 is the scaffold protein

of the Ccr4-Caf1-Not deadenylase complex that plays a key role in

cytoplasmic mRNA turnover. In Drosophila, Not1 was shown to be

important for bulk mRNA deadenylation and, more specifically,

for the rapid deadenylation of Hsp70 mRNA [34,35]. A previous

report had suggested that AGO1 and AGO2 are required for the

rapid degradation of a reporter mRNA containing the ARE of

mammalian TNFa in Drosophila S2 cells [38]. In our assay, kd of

the argonaute proteins AGO1 and AGO2 did not affect

expression of the reporter gene containing the ARE of mouse

IL-3 (Figure 4A), indicating that AGO proteins are not generally

required for AMD.

As potential substrates of AMD, we then identified 53 mRNAs

whose expression was elevated after kd of Tis11 (Figure 5A). The

AREScore of these Tis11-sensitive mRNAs was found to be higher

in comparison to the distribution in the entire D. melanogaster

transcriptome (Figure 5B), and the difference was statistically

significant for mRNAs with AREScores $4 (Table S3). CecA1

mRNA, previously identified as a target of Tis11 [29,30,31], did

not come up as Tis11-sensitive simply because this mRNA is not

represented on the Affymetrix Drosophila Genome 2.0 array that

we used for our study.

We then compared the expression levels of 6657 mRNAs in

SL2 cells with their AREScore (Figure 6A–6E), and observed that

mRNAs with high AREScores have reduced expression levels.

However, this effect may be indirect because the AREScore

strongly correlates with 39UTR length. Indeed, when grouping

mRNAs according to their 39UTR length, we again observed

that mRNAs with long 39UTRs have lower expression levels.

The impact of 39UTR length was in fact stronger than the

impact of the AREScore. Long 39UTRs are likely to correlate

with low expression levels through the presence of different

suppressive elements including AREs and miRNA-binding sites.

Moreover, the distance between the stop codon and the poly(A)

tail is a determinant of nonsense-mediated mRNA decay [39]

and may thereby as well contribute to mRNA suppression. We

also noted that mRNAs with very short 39UTRs ,100 nt are

expressed below the overall average. A possible explanation is

that very short 39UTRs might lack stabilizing elements, although

there is little experimental evidence that such elements are

abundant.

To examine the impact of the AREScore independently of its

correlation with 39UTR length, we chose a group of mRNAs with

intermediate 39UTRs (Figure 6F–6H). Within this group we

could observe that mRNAs with an AREScore $8 had a more

than 3-fold reduced average expression level compared to the

mRNAs with AREScores ,8. Since 39UTR length had a much

smaller effect on mRNA levels in this group, we concluded that

the AREScore is an independent parameter that correlates with

suppressed mRNA levels. Given the multitude of factors that

affect mRNA stability and transcription rates, it is remarkable

that the AREScore alone has a detectable influence on mRNA

expression levels.

Finally, we measured the decay rates of 26 mRNAs in Drosophila

SL2 cells (Table 1). Indeed, we observed a very strong, negative

correlation between mRNA half-life and the AREScore

(RS = 20.73, Figure 7), which was higher than the correlation

with 39UTR length (RS = 20.61,). Since we measured mRNA

half-lives both in control GFP and Tis11 kd cells, we could also

identify three mRNAs that are significantly stabilized by the

absence of Tis11. These mRNAs encode for peroxidasin (Pxn),

CG15435, a C2H2 zinc finger protein of unknown function, and

CG7115, a protein phosphatase of the PP2C family. Taken

together, our analysis provides compelling evidence that AREs are

functional regulatory elements in D. melanogaster cells whose

suppressive effect can be detected on a transcriptome-wide level.

Interestingly, we found two short-lived mRNAs with a high

AREScore (Reck and CG32512) in our control group of mRNAs

that are not sensitive to Tis11 kd. This indicates that in addition to

Tis11, other proteins also participate in regulating AMD. It is clear

that we have only begun to understand the posttranscriptional

regulatory network that controls gene expression through mRNA

turnover in D. melanogaster.

Figure 5. Analysis of Tis11-sensitive mRNAs in D. melanogaster SL2 cells. (A) D. melanogaster SL2 cells were treated over a period of 4 days
with 12.5 mg/ml dsRNA in order to knock down Tis11, or with dsRNA targeting GFP as a control. Total RNA was extracted from three biological
repeats for microarray analysis using the Affymetrix Drosophila Genome 2.0 array. After normalization of the signal intensities using Robust Multi-
array Analysis (RMA), the fold change of expression by Tis11 kd (signal in Tis11 kd/signal in GFP kd) was calculated. The list shows all 53 mRNAs with a
log2-transformed fold change of .0.5, i.e. a fold change of .1.41. Statistical significance was determined by rank products (RP) test and
independently by Student’s T-test (TT). A heat map of the signal intensities in the three biological repeats is provided on the left side, the AREScore is
shown on the right side. (B) The AREScore distribution is depicted for 49 out of the 53 Tis11-sensitive mRNAs identified in panel A. Only mRNAs with
an annotated 39UTR length $10 nt were included. The AREScore distribution of the entire D. melanogaster transcriptome serves as the control group.
doi:10.1371/journal.pgen.1002433.g005

AREScore and mRNA decay in D. melanogaster

PLoS Genetics | www.plosgenetics.org 10 January 2012 | Volume 8 | Issue 1 | e1002433



Figure 6. Relationship among AREScore, 39UTR length, and mRNA expression level. (A) For 6657 Drosophila mRNAs with a 39UTR $10 nt,
the log2-transformed expression levels, as measured by microarray analysis in SL2 cells under control conditions (dsGFP), were plotted against the
AREScore. The red curve corresponds to non-linear lowess regression. (B) The 6657 mRNAs were grouped into 9 categories according to their
AREScore: 0–0.99; 1–1.99; 2–2.99; 3–3.99; 4–5.99; 6–7.99; 8–11.99; 12–15.99; and $16. Average expression levels 6 SE were determined for each group
and plotted in the graph, the number n of mRNAs within each group is indicated. Asterisks mark statistically significant differences in comparison to
the average expression level of all 6657 mRNAs, as determined by Student’s T-test. (C) The 39UTR length of all 6657 mRNAs was plotted against the
AREScore. The red curve corresponds to non-linear lowess regression. (D) The log2-transformed expression levels of all 6657 mRNAs were plotted
against the 39UTR length. The red curve corresponds to non-linear lowess regression. (E) The 6657 mRNAs were grouped into 9 categories according
to their 39UTR length: 10–99; 100–199; 200–299; 300–399; 400–499; 500–999; 1000–1499; 1500–1999; and $2000 nt. Average expression levels 6 SE
were represented as in panel B. (F) For the 1781 mRNAs with a 39UTR length between 200 and 499 nt, the log2-transformed expression levels were
plotted against the 39UTR length. The red curve corresponds to non-linear lowess regression, R to the Pearson correlation coefficient. (G), For the
same 1781 mRNAs, the log2-transformed expression levels were plotted against the AREScore. (H) The same 1781 mRNAs were divided into two
groups based on AREScores of 0–7.99 and $8. The same mRNAs were also divided into two equally large groups according to the 39UTR length, and
average expression levels 6 SE were determined for each group.
doi:10.1371/journal.pgen.1002433.g006
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Methods

Plasmid construction
Plasmid pRp128-RL (p2933) [40] contains the Drosophila RNA

polymerase III 128 kDa subunit promoter to drive RL expression,

and was kindly provided by Michael Boutros (German Cancer

Research Center, Heidelberg). For pRp128-FL (p2934), pRp128-

RL was digested with SpeI/NheI and religated to remove part of

the polylinker. In the resulting construct, the RL-containing

HindIII/XbaI fragment was replaced with the FL-containing

HindIII/XbaI insert from pGL3-Basic (Promega). For pRp128-

FL-mIL3-ARE (p2935), the mouse IL-3 ARE sequence

(NM_010556.4, nt 680–744) was amplified by PCR using primers

G1090/G1091 (Table S4) and inserted into the XbaI site of

pRp128-FL. The control vector pRp128-FL-mIL3-INV (p2936)

was constructed in the same way with the IL-3 ARE inserted in the

opposite orientation.

To generate pAc5-FL-mIL3-ARE (p2937), a 3.8 kb FL-

containing HindIII (blunt)–BglII fragment was excised from

plasmid pRp128-mIL3-ARE and ligated to KpnI (blunt) - BglII

fragment (2.4 kb) with Ac5 promoter obtained by digestion of

pAc5.1b-EGFP-dmDcp1 (p2450) (kindly provided by Elisa

Izaurralde, Max Planck Institute for Developmental Biology,

Tübingen, Germany). For pAc5-FL-Vir1-ARE (p2938), the D.

melanogaster Vir1 39UTR (NM_165011.2, nt 1521–1830) was first

amplified by RT-PCR using primers G1673/G1674. An ARE-

containing 191 nt long fragment (NM_165011.2, nt 1640–1830)

was re-amplified by PCR using XbaI site-containing primers

G1681/G1679 and inserted into the XbaI site of pRp128-FL to

generate pRp128-FL-Vir1-ARE. Finally, the Ac5 promoter was

excised as a SapI–BglI fragment from pAc5-FL-mIL3-ARE and

cloned into the SapI/BglI sites of pRp128-FL-Vir1-ARE, thereby

replacing the pRp128 promoter. pAc5-FL (p2939) was generated

in a similar manner by cloning the SapI–BglI fragment from

pAc5-FL-mIL3-ARE into the SapI/BglI sites of pRp128-FL.

Cell culture and transfection
Drosophila SL2 cells were cultivated at 26uC under atmospheric

CO2 in Schneider’s Drosophila Medium (Invitrogen-Gibco, Cat.

No. 11720-034) supplemented with 10% foetal bovine serum

(Biochrome Superior FBS, Cat. No. S0615), 50 U/ml penicillin

and 0.05 mg/ml streptomycin (both Pan Biotech).

All DNA transfections were performed using Effectene reagent

(Qiagen, Cat. No. 301425) according to the manufacturer’s

Table 1. Drosophila mRNA half-lives in SL2 cells treated with GFP and Tis11 dsRNA.

Abbr. CG #
t1/2 dsGFP
(min ± SD)

t1/2 dsTis11
(min ± SD)

p
(T-test) n 39UTR length (nt) AREScore

Tis11-sensitive mRNAs

Pxn CG12002 163662 .240
(5106238)

(0.007) 5 180 0

TotA CG31509 .240 .240 5 153 2.6

Vir-1 CG31764 .240 .240 5 311 4

Lectin-28C CG7106 .240 .240 5 53 0

CG8239 CG8239 134690 1996118 0.178 5 287 10.8

NimB2 CG31839 .240 .240 5 81 0

Ric CG8418 229695 200668 0.298 5 1317 10.1

CG15435 CG15435 4666 60611 0.018 5 191 11.55

CG7115 CG7115 63613 85621 0.040 5 493 6.15

CG10249 CG10249 4966 4467 0.131 5 822 6.5

CG2915 CG2915 .240 .240 5 83 0

NimB1 CG33119 .240 .240 5 36 0

Control mRNAs

Reck CG5392 3967 3564 0.161 5 582 11.2

Pax CG31794 158656 120620 0.122 4 325 4.65

CG32512 CG32512 114643 78615 0.060 5 583 9.55

Ho CG14716 77619 65611 0.122 5 104 4.1

CG5026 CG5026 183696 128642 0.134 5 572 6.5

CG7787 CG7787 .240 168651 5 438 3.2

Ef1a48D CG8280 .240 .240 3 554 4.9

CG17184 CG17184 66611 107664 0.097 5 653 3.9

CG31997 CG31997 .240 .240 3 70 0

CG10131 CG10131 .240 .240 3 97 0

CG8135 CG8135 .240 170637 5 148 0

dUTPase CG4584 .240 .240 3 131 0

Mod(mdg4) CG32491 93632 74614 0.126 5 44 5.2

eEF1d CG4912 .240 .240 3 91 0

doi:10.1371/journal.pgen.1002433.t001
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instructions. When combined with RNAi, cells were first treated

with dsRNA for two days, followed by DNA transfection for two

additional days. For luciferase assays, 10.000 cells were seeded per

well of a 384-well plate (Greiner), treated with 250 ng of dsRNA

and transfected with 7 ng of FL-encoding and 3 ng of RL-

encoding plasmids. Where indicated, ActinomycinD (Applichem,

Cat. No. A1489) was used at a concentration of 5 mg/ml. Unless

noted otherwise, cell lysis and RNA extraction were performed

with Genematrix universal DNA/RNA/Protein purification kit

(Eurx), according to manufacturer’s instructions.

dsRNA preparation and treatment
DNA templates for in vitro transcription were amplified by PCR

using primers containing Sp6 promoter sequences, as specified in

Table S5. DNA templates were gel-purified using a gel extraction

kit (QIAGEN, Cat. No. 28706). In vitro transcription reactions

were assembled in a total volume of 50 ml containing 50–75 ng/ml

DNA template, 3 mM NTPs each (Promega), 40 U RNasin

(Promega, N2111), 0.5 U yeast pyrophospatase (Sigma, Cat.

No. I1891), 200 U Sp6 RNA polymerase (Fermentas, EP0133),

80 mM HEPES-KOH pH 7.5, 32 mM MgCl2, 2 mM spermidine

and 40 mM DTT. Reactions were incubated for 4 hours at 37uC.

DNA was then digested by the addition of 1 U/ml DNase RQ1

(Promega) for 15 minutes at 37uC. The synthesized RNA was

purified by gel filtration using pre-packed Sephadex G-50 columns

(Roche, Cat. No. 11274015001). Strands were annealed by

heating the purified RNA to 65uC and allowing it to slowly cool

to room temperature. For RNAi, Drosophila cells were grown in

6 cm-dishes and incubated with 50 mg of dsRNA per 4 ml of

medium for a minimum of 4 days.

Nothern blot analysis
Total RNA was extracted using the Genematrix universal RNA

purification kit (Eurx). 5–12 mg of RNA was resolved by 1.1%

agarose/2% formaldehyde/MOPS (morpho-linepropanesulfonic

acid) gel electrophoresis and blotted over night with 86 saline-

sodium citrate (SSC, 16 contains 0.15 M NaCl and 0.015 M

sodium citrate) buffer onto Hybond-N+ Nylon membranes

(Amersham, GE Healthcare). Membranes were hybridized

overnight at 55uC with digoxigenin-labelled RNA probes

synthesized in vitro using Sp6 polymerase (Fermentas) and DIG

RNA labelling mix (Roche). 500 ng RNA probe was diluted in

10 ml hybridization buffer containing 50% formamide, 56 SSC,

56 Denhard’s solution, 5 mM EDTA, 10 mM PIPES pH 7.0,

4 mg torula yeast RNA (US Biological) and 1% SDS. Membranes

were washed twice with 26 SSC/0.1% SDS for 5 minutes, and

twice with 0.56SSC/0.1% SDS for 20 minutes at 65uC. Alkaline

phosphatase-coupled anti-digoxigenin Fab fragments and CDP-

Star substrate (both Roche) were used for detection according to

the manufacturer’s instructions. Sequences of primers that were

used to generate templates for digoxigenin-labelled RNA probes

are provided in Table S6.

Quantitative PCR
For qPCR, total RNA was extracted by Genematrix RNA

purification kit (Eurx) and subjected to DNase treatment using

RQI DNase (Promega, 1.5 U/column). cDNA was synthesized

from 5 mg of total RNA using oligo-dT18 (Invitrogen) and M-

MLV H(-) reverse transcriptase (Promega). 1:40 volume of a

cDNA reaction was used for PCR. PCR reactions were assembled

in 384-well plates, 15 ml/well final volume. DNA SYBR Green I

Master kit (Roche Cat. No. 04707516001) was used according to

manufacturer’s instructions. Quantitative PCR was performed

with the Lightcycler 480 system (Roche). Gene-specific primers

sequences are given in Table S7.

Luciferase assay
FL and RL activities were measured using the Dual Luciferase

Reporter Assay system (Promega) or reagents developed in the lab

of Michael Boutros (German Cancer Research Centre, DKFZ,

Heidelberg). Chemiluminescence was measured using a Mithras

LB940 plate reader.

Figure 7. Relationship among AREScore, 39UTR length, and mRNA half-lives. (A) The half-lives of 26 Tis11-sensitive and control mRNAs, as
measured by qPCR in SL2 cells subjected to control GFP dsRNA, were set in relation to their AREScore. Half-lives above 240 minutes could not be
determined accurately, and were presented without scale in the white area at the top of the graph. RS, Spearman rank correlation coefficient. (B) The
half-lives of the same mRNAs were compared to their 39UTR length. Half-lives above 240 minutes could not be determined accurately, and were
presented without scale in the white area at the top of the graph. (C) ROC analysis was applied to the 26 mRNAs, testing the ability of both AREScore
and 39UTR length to discriminate mRNAs with a half-life ,140 minutes from mRNAs with a half-life .240 minutes. AUC, area under the curve.
doi:10.1371/journal.pgen.1002433.g007
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Genome-wide expression profiling and bioinformatic
analysis

Drosophila SL2 were treated with either dsRNA-GFP or dsRNA-

Tis11 for 4 days. Total RNA was prepared using RNEasy kit from

Qiagen (Cat. No. 74106). Efficiency of Tis11 knockdown was

confirmed separately by Northern blot and qPCR analyses.

Expression profiling was carried out on GeneChip Drosophila

Genome 2.0 Arrays (Affymetrix, Cat. No. 900531) at European

Molecular Biology Lab Genecore facility (Heidelberg, Germany).

Microarray data were deposited at NCBI GEO, accession

GSE28147. The RMA algorithm was used for normalization of

raw data (RMAExpress software, http://rmaexpress.bmbolstad.

com/). Further statistical analyses were performed in the multi-

experiment viewer of the TM4 microarray software suite [41] or

with R software (http://www.r-project.org). Beside standard

Student t-test, we also used microarray-oriented Rank products

test [42] to identify significant changes in expression.

AREScore
The AREScore algorithm was written in Perl and is accessible

online at http://arescore.dkfz.de/arescore.pl. AREScore uses either

a set of sequences provided in FASTA format or retrieves the

39UTR sequences of properly annotated transcripts if Refseq IDs

are entered. The algorithm first generates a basal score by adding

a fixed value of 1 for each AUUUA pentamer identified. It then

calculates the distance between neighboring pentamers, and adds

a value to the basal score if pentamers are in close proximity. A

value is also added when pentamers are located within a region of

high AU content, termed an AU-block in AREScore. In its standard

setting, AREScore adds a value of 1.5 for overlapping pentamers,

0.75 if pentamers are 0–3 nt apart, 0.4 if pentamers are 4–6 nt

apart, 0.2 if pentamers are 7–9 nt apart, and 0.3 if pentamers are

within an AU-block. By default, an AU-block starts when a

sequence of 20 nt (word size) has an AU content of $80%. The

block ends when the AU content drops below 55% within the

chosen word size. To increase the flexibility of AREScore, users can

change the values that are added to the basal score, and alter the

settings that define an AU-block.

For the transcriptome-wide AREScore analysis, transcripts with

properly formated feature fields (Genbank GeneID and Accession

identifiers) were downloaded from Refseq, and the AREScore was

determined for every 39UTR $10 nt in length. If several

transcripts map to the same gene locus (identical GeneIDs), only

the mRNA with the highest AREScore was taken into the analysis.

To generate a fully matched set of randomized control sequences,

nucleotides were randomly chosen from the pool of all 39UTRs

analyzed, and assembled into sequences identical in length to the

original 39UTRs. The AREScore was then determined for the

randomized control sequences as well.

Supporting Information

Figure S1 AREScore distribution in comparison to randomized

controls. The AREScore was calculated for all annotated 39UTRs

$10 nt in legth in the transcriptomes of 14 metazoan species. The

AREScore distribution was compared to fully adjusted, random-

ized control sets of sequences whose lengths and A/T/G/C-

content were identical to the 39UTRs of the respective

transcriptome. Percentage of transcripts were depicted on a

logarithmic scale for the following species: (A) Homo sapiens, man;

(B) Mus musculus, common house mouse; (C) Gallus gallus, chicken;

(D) Xenopus laevis, African clawed frog; (E) Danio rerio, zebrafish; (F)

Branchiostoma floridae, Florida lancelet; (G) Ciona intestinalis, vase

tunicate; (H) Strongylocentrotus purpuratus, purple sea urchin; (I)

Drosophila melanogaster, fruit fly; (J) Ixodes scapularis, deer tick; (K)

Caenorhabditis elegans, roundworm; (L) Aplysia californica, California

sea hare; (M) Hydra magnipapillata, freshwater polyp; (N) Amphimedon

queenslandica, demosponge.

(PDF)

Figure S2 Reporter gene expression. (A) Schematic representa-

tion of reporter genes containing the Drosophila RpIII128 promoter,

the coding sequence of firefly luciferase (FL) and an SV40 39UTR

including a polyadenylation signal. The 64 nt long ARE of mouse

IL-3 was inserted at the beginning of the 39UTR. The inverse (INV)

sequence of the ARE was used as a negative control. (B) SL2 cells

were treated with water or 12.5 mg/ml dsRNAs against GFP or

Tis11 over a period of 4 days. On day 3, cells were transiently

transfected with pRp128-FL, pRp128-FL-mIL3-ARE or pRp128-

FL-mIL3-INV together with pRp128-RL. FL activities were

measured on day 5 and normalized to RL. The graph shows

average FL/RL ratios 6 SE based on 3 biological repeats. (C) SL2

cells were transiently transfected with pRp128-FL, pRp128-FL-

mIL3-ARE or pRp128-FL-mIL3-INV. After 48 hours, total RNA

was extracted and 8 mg per sample were subjected to Northern Blot

analysis using a probe against FL. The endogenous mRNA

encoding ribosomal protein RpS20 serves as a loading control.

(D) The degradation of FL, FL-mIL3-ARE and FL-mIL3-INV

mRNA was determined in transiently transfected SL2 cells.

Following treatment with actinomycin D (5 mg/ml), total RNA

was extracted at one hour intervals and analyzed by Northern

blotting. mRNA signal intensities were quantified, and the FL/

RpS20 mRNA ratio was plotted against time in the bottom panel.

(PDF)

Figure S3 Sequence of the mouse IL3 ARE and the Drosophila

Vir1 ARE. Depicted are the sequences that were inserted into the

FL-mIL3-ARE and FL-Vir1-ARE reporter genes. The mIL3-ARE

sequence corresponds to a 65 nt long fragment derived from M.

musculus NM_010556.4 (nt 680–744); the Vir1-ARE sequence

corresponds to a 191 nt long fragment derived from D. melanogaster

NM_165011.2 (nt 1640–1830).

(PDF)

Figure S4 Confirmation of Tis11-dependent mRNA expression.

(A) The expression levels of 20 Tis11-sensitive mRNAs were

measured by qPCR in SL2 cells after treatment for 4 days with

dsRNAs against Tis11 or GFP. Expression levels were normalized

to RpS20 mRNA, and plotted as the ratio between the normalized

level in Tis11 kd cells and the normalized level in GFP kd cells

(green bars). The fold change observed in the microarray analysis

is represented by red bars. (B) The same analysis was carried out

for 15 control mRNAs, whose expression was not affected by the

knock down of Tis11.

(PDF)

Figure S5 Degradation rates of Tis11-sensitive and control

mRNAs. (A) The decay rates of 12 Tis11-sensitive mRNAs were

measured in SL2 cells upon kd of Tis11 or, as a control, GFP.

After treating cells with the corresponding dsRNAs for four days,

Actinomycin D (5 mg/ml) was added, and total RNA was

extracted 0, 30, 60 and 120 minutes later. mRNA levels were

measured by qPCR, normalized to RpS20 mRNA, and repre-

sented as % of the initial value at time point 0. Shown are average

values 6 SD from 3–5 repeat experiments. Half-lives are listed in

Table 1. (B) The decay rates of 15 control mRNAs, whose

expression is not affected by Tis11 kd, were measured by qPCR in

SL2 cells as described above. Shown are average values 6 SD

from 3–5 repeat experiments.

(PDF)
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Table S1 Comparison of AREScore between TTP-associated

mRNAs and mouse transcriptome.

(PDF)

Table S2 Comparison of AREScore between TTP-associated

mRNAs and concatemer control sequences.

(PDF)

Table S3 Comparison of AREScore between Tis11-sensitive

mRNAs and D. melanogaster transcriptome.

(PDF)

Table S4 Oligonucleotides used for reporter plasmid cloning.

(PDF)

Table S5 Oligonucleotides used for dsRNA synthesis templates.

(PDF)

Table S6 Oligonucleotides used for Northern blot probes.

(PDF)

Table S7 Oligonucleotides used for qPCR.

(PDF)
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