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Abstract

There is strong evidence that rare variants are involved in complex disease etiology. The first step in implicating rare variants
in disease etiology is their identification through sequencing in both randomly ascertained samples (e.g., the 1,000
Genomes Project) and samples ascertained according to disease status. We investigated to what extent rare variants will be
observed across the genome and in candidate genes in randomly ascertained samples, the magnitude of variant
enrichment in diseased individuals, and biases that can occur due to how variants are discovered. Although sequencing
cases can enrich for casual variants, when a gene or genes are not involved in disease etiology, limiting variant discovery to
cases can lead to association studies with dramatically inflated false positive rates.
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Introduction

Genome wide association studies using indirect mapping have

been successful in localizing genes which are associated with

complex diseases when common variants are the underlying cause

of disease etiology [1,2]. Strong linkage disequilibrium (LD)

between tagSNPs and underlying causal variants makes it feasible

to use indirect mapping. To detect associations with rare variants

the indirect LD mapping will be low-powered due to weak

correlations between common tagSNPs and rare causal variants.

In order for variants to be highly correlated they must have similar

allele frequencies and the maximum r2 value of 1 can be obtained

only when the two loci have equal minor allele frequencies [3].

Therefore for associations with rare variants it is necessary to

perform direct mapping and rare variants within a sample must

first be identified. Sequencing of candidate genes or entire

genomes is the optimal way to identify rare variants. A number

of studies have successfully used the approach of sequencing

candidate genes to carry out association studies for several

complex traits [4–11]. There is emerging interest in association

studies of rare variants and it is hypothesized that rare variants are

more likely to be functional than common variants [12]. Although

the genotypic RRs of rare causal variants are not elevated enough

to produce familial aggregation, they are considerably higher than

the genotypic RRs of common variants which are involved in

complex disease etiology [13]. New sequencing technologies (e.g.,

Illumina Solexa, ABI SOLiD, and Roche 454) [14] have greatly

reduced the cost of generating large amounts of sequencing data.

This advancement has enabled the launch of the 1,000 Genomes

Project, which will sequence at least 1,000 genomes from 10

different ethnic backgrounds. The project’s goals include provid-

ing a detailed catalog of human variants to facilitate the

identification of disease causing variants [15]. Even if the

assumption holds that all variants present in a sample can be

successfully identified through sequencing (i.e., no false negatives),

variants may not be observed within a sample solely due to the

randomness of sampling. Therefore we investigated three main

questions for a randomly ascertained sample of 100–1,000

individuals for variants with frequencies between 0.01% and

1.0%: (1) What is the probability that a variant will be discovered

at a specific site? (2) What proportion of variants will be uncovered

across the entire genome? and (3) What is the probability that a

certain proportion of variants will be discovered in a gene? It was

also investigated to what extent carrying out variant discovery in

cases increases the probability of uncovering causal variants

compared to when variant discovery is performed in a randomly

ascertained sample. Due to the high cost of sequencing, it may be

attractive to sequence a subset of a sample of individuals for

variant discovery and genotype the remaining samples, in

particular to sequence an excess of cases due to their potential

enrichment for causal variants. It was investigated how such

strategies impact type I error.

Results

Discovering Rare Variants at a Specific Site and across the
Genome

The probability of observing a variant at least once at a specific

site was calculated for variants with a frequency of 1%, 0.5%,

0.2%, and 0.1% in sample sizes of 100–1,000 individuals (Table 1).

The probability of observing a variant one or more times at a

unique site in a sample is equivalent to the average proportion of

variants discovered across genomes when linkage equilibrium is

assumed among variants with equal frequency and discovery is

carried out using the same number of individuals. It is observed

that for variants with 1% frequency, even if the genomes of only
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100 individuals are sequenced, 0.866 of all variants present in the

population from which the sample was ascertained will be

discovered. If the variant frequency is 0.1%, sequencing 100

genomes will only uncover 0.181 of all variants within the

population; if the sample size is increased to 1,000 genomes, the

proportion of variants discovered increases to 0.865 (Table 1).

The Probability of Observing Rare Variants with Equal
Frequencies within a Gene in a Randomly Ascertained
Sample

For a randomly ascertained sample, it was examined what

proportion of variants within a gene will be discovered if they are

assumed to be independent (i.e., in linkage equilibrium). For

example if a gene with 10 variants each with 1.0% frequency is

sequenced in a sample of 100 individuals, the probability is 0.860

that $8 variants and 0.237 that all 10 variants from the population

will be identified. If the sample size is increased to 1,000

individuals, the probability that all variants will be discovered is

close to 1.0. If the 10 variants within the gene have a frequency of

0.1%, then sequencing the gene in 100 individuals will uncover

$8 variants with probability 3.761025 and increasing the sample

size to 1,000 individuals will identify $8 variants with probability

0.857 and all variants with probability 0.234 (Table 2 and

Figure 1A).

For rare variants within genes a more realistic assumption is that

they reside on separate haplotypes and are not in linkage

equilibrium [16,17]. If rare variants do not lie on the same

haplotype with other rare variants, although the variants are in

complete LD (D’~1), the correlation is extremely low (r2&0).

Therefore there is little difference in the results when it is assumed

that the variants are on separate haplotypes (Table S1) or that they

are in linkage equilibrium (Table 2). There is also a possibility that

the rare variants are on the same haplotype and in this situation the

correlation between the two variants is high and r2 = 1 when the two

rare variants have equal frequency. However, the probability that

two rare variants within a gene occur on the same haplotype is

extremely low and decreases with decreasing variant frequency.

Enrichment of Causal Rare Variants with Equal
Frequencies in Cases

If rare variants confer risk of being diseased, there is an

enrichment of rare causal variants in cases. The magnitude of

Table 1. The proportion of variants identified in samples
randomly ascertained from the population.

Frequency N = 100 N = 200 N = 500 N = 1,000

0.001 0.181(0.012) 0.330(0.015) 0.632(0.015) 0.865(0.011)

0.002 0.330(0.015) 0.551(0.016) 0.865(0.011) 0.982(0.004)

0.005 0.633(0.015) 0.865(0.011) 0.993(0.003) 1.000(2.1E-4)

0.01 0.866(0.011) 0.982(0.004) 1.000(2.1E-4) 1.000(1.4E-6)

The proportion of variants discovered assuming linkage equilibrium and their
standard deviations (shown in parentheses) in samples of N = 100, 200, 500, and
1,000 individuals for variants with equal population frequencies of 0.001, 0.002,
0.005, and 0.01. Although the mean proportions of variants discovered are not
dependent on the number of variants in the genome, the standard deviations
will vary depending on the number of variants. The standard deviations shown
are for M = 1,000 variants. All proportions of variants discovered displayed as 1.0
were rounded up and their actual values are between .0.999 and ,1.0.
doi:10.1371/journal.pgen.1000481.t001

Author Summary

One focus of human genetics is localizing genes that are
involved in the etiology of complex diseases. Although
emphasis has been placed on mapping common variants,
recent studies have demonstrated that rare variants also
play an important role in complex trait etiology and their
identification should have a greater impact on risk
assessment, disease prevention, and treatment due to
their large genetic effects. Genome-wide association
studies are used to identify common variants by genotyp-
ing tagSNPs that are proxies for common causal variants.
This study design is not adequately powered for associ-
ation studies of rare variants; instead, causal variants must
be identified and then analyzed. With the development of
sequencing technologies, it is feasible to sequence
candidate genes and, soon, entire genomes to obtain
data on rare variants for complex disease association
studies. We investigated several questions that are
germane to the discovery of rare variants within a sample;
for example, proportion of variants discovered within a
random sample and enrichment of causal variants within
samples of cases compared to a random sample. We also
demonstrate that when an excess of cases are sequenced
to discover variants and the remaining samples are
genotyped, this design strategy can lead to inflated false
positive rates.

Table 2. The probability of identifying rare variants with equal frequencies within a gene in samples of randomly ascertained
individuals.

M Frequency N = 100 N = 200 N = 1,000

50% 80% 1.00% 50% 80% 100% 50% 80% 100%

10 0.001 0.0220 3.7E-5 3.8E-8 0.2060 0.0032 1.5E-5 0.9992 0.8571 0.2340

0.005 0.8836 0.2265 0.0103 0.9992 0.8584 0.2354 1.0000 1.0000 0.9996

0.01 0.9993 0.8600 0.2373 1.0000 0.9994 0.8343 1.0000 1.0000 1.0000

20 0.001 0.0012 3.1E-9 1.5E-16 0.0863 2.2E-5 2.3E-10 1.0000 0.8770 0.0547

0.005 0.9266 0.0903 0.0001 1.0000 0.8786 0.0554 1.0000 1.0000 0.9991

0.01 1.0000 0.8805 0.0563 1.0000 1.0000 0.6961 1.0000 1.0000 1.0000

The probability of discovering at least 50%, 80%, and 100% of variants within a gene with M = 10 and 20 variants in linkage equilibrium with population frequencies of
0.001, 0.005, and 0.01 are displayed for samples of N = 100, 200, and 1,000 individuals. All probabilities of identifying rare variants that are shown as 1.0 were rounded up
and their actual values are between .0.9999 and ,1.0.
doi:10.1371/journal.pgen.1000481.t002

Discovery of Rare Variants

PLoS Genetics | www.plosgenetics.org 2 May 2009 | Volume 5 | Issue 5 | e1000481



increase in frequency of causal variants in cases is dependent on

variant frequency, genotypic RR and disease model (Figure 1 and

Table 3). The relative increase is defined as the ratio of the

frequency of causal variants in cases compared to their frequency

in a randomly ascertained sample. If there is no difference between

variant frequencies in cases and the reference group of randomly

ascertained individuals, the relative increase is 1.0. If a gene has 10

causal variants each with a genotypic RR = 2.0 and a frequency of

0.1% in the general population, under a dominant model there is a

1.96 relative increase in frequency of variants in cases compared to

a sample of randomly ascertained individuals; if the genotypic RR

is increased to 5.0, the relative increase almost doubles to 4.63

(Table 3). The relative increase in frequency of causal rare variants

with the same genotypic RR and population variant frequency is

greatest under the multiplicative model, followed by the additive

and dominant models with slightly smaller relative increases. For

the recessive model, the relative increase for identifying causal

variants in cases is very modest; for a gene with 10 casual variants

each with a frequency of 0.1% and a genotypic RR of 5.0, the

relative increase in frequency of causal variants is 1.04 (Table 3).

Figure 1. The probabilities of variant discovery for a gene with ten rare variants that have equal population frequency and reside
on separate haplotypes. Panels (A and B) display the probability of variant discovery in randomly ascertained samples when each of the variants
has a population frequency of 0.001 (Panel A) or 0.005 (Panel B). Panels (C and D) display the probability of discovering causal variants in samples of
cases when each of the ten rare variants has a genotypic RR = 2.0 under a dominant model and population frequency of 0.001 (Panel C) or 0.005
(Panel D).
doi:10.1371/journal.pgen.1000481.g001
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Due to the enrichment of causal variants in cases when the

underlying genetic model is multiplicative, additive or dominant,

sequencing causal genes in cases compared to sequencing a

randomly ascertained sample can substantially increase the

probability of causal variant discovery (Figure 1).

Rare Variants Discovery in Randomly Ascertained
Samples and Cases for Variants with a Mixture of
Frequencies

Although results assuming equal variant frequencies are easy to

interpret, they are not realistic. Therefore variant discovery was

also investigated using a more realistic distribution of rare variant

frequencies by generating the data using coalescent simulation.

Haplotype pools were generated under a neutral Wright–Fisher

model where the scaled mutation rate h~4Nem was set to 4. To

reduce the impact of randomness 100 haplotype pools were

generated with each pool containing 10,000 haplotypes. Since the

interest in this study is on rare variants, only those variants with

frequency $1% were investigated. The density of rare variants

which were generated using coalescent simulations is shown in

(Figure 2A). The distribution of rare variants is dominated by very

low frequencies; for example, 86% of rare variants have

frequencies ,0.5%. When sample size is small, the majority of

the rare variants are not observed in samples which are randomly

ascertained from the population (Figure 2B). For example, only

25% of the rare variants are observed in a sample of 100 randomly

ascertained individuals. When the sample size increases to 1,000

individuals, the proportion of discovered variants increases to

67%; even with this large sample size 33% of the variants are not

observed due to the large proportion of very rare variants

(Figure 2). Since the frequency distribution of variants is

independent of the scaled mutation rate h in coalescent

simulations, the proportion of variants discovered is approximately

the same for different h values (data not shown). To investigate

variants discovery in cases, half of the rare variants are randomly

chosen to be causal and it is assumed that all causal variants have

the same genotypic RR and the genetic model is additive (see

Methods). When a sample of cases is sequenced to discover rare

variants, the proportions of variants observed increase compared

to when a randomly ascertained sample is sequenced (Figure 2B).

For example, when the causal variants have a genotypic RR of 2.0,

31.1% of rare variants were observed in 100 cases and when the

genotypic RR is increased to 5, this proportion increases to 38.7%,

while for a randomly ascertained sample only 25.3% of the

variants were observed. Even for a large genotypic RR of 5 the

increase in the proportion of rare variant discovery is not dramatic

compared to when variant discovery is carried out in a randomly

ascertained sample (Figure 2). This is due to the fact that for

coalescent simulations very rare variants dominate and the

frequency of each rare variant in cases is still very low since this

frequency is roughly the population frequency of the rare variant

times its genotypic RR (see Table 3).

Type I Error for Rare Variants with Equal Frequencies
Due to the increased probability of detecting rare causal variants

in cases, it may be tempting to carry out discovery of variants in

cases and then genotype these variants in controls. We considered

the situation where variant identification is carried out in cases via

sequencing in a gene that is not involved in disease etiology and

these variants are genotyped in controls. The first scenario

considered is for a gene that has a fixed number of variants with

equal frequencies in the population. When the test of association is

carried out on the sample of cases and controls, type I error rates are

inflated unless the case sample size is sufficiently large (Table 4). For

example, for a sample of 100 cases and 100 controls, the false

positive rate is 0.067 at a level of 0.05 for a gene with 10 variants

each with a frequency of 0.001; the false positive rate increases to

0.257 for a gene with 20 variants. We also examined the type I error

rate when a definite number of variants are observed in cases, since

in reality the true number of variants within a gene is unknown. If

variant discovery is carried out in 100 cases and 5 variants are

discovered each with a population frequency of 0.1% and these 5

variants are genotyped in 100 controls, the probability of rejecting

the null hypothesis of no association is 0.38 (Table 5). When variants

were identified in both cases and controls, the type I error rate is well

controlled for varying sample sizes, number of variants and

frequencies (Tables 4 and 5). For the two situations described

where variant discovery is carried out in cases, type I error can be

even more inflated if two or three times the number of controls to

cases are genotyped (data not shown). Type I error inflation also

occurs when individuals with either high or low quantitative trait

values are sequenced to identify rare variants and individuals with

quantitative trait values from the other end of the spectrum are

genotyped. Type I error remains inflated, if variant discovery is

carried out in a subset which contains a greater proportion of cases

than controls or disproportionate numbers of individuals from one

end of the quantitative trait spectrum (data not shown).

Table 3. The relative increase in frequency of causal variants in samples of cases compared to samples of randomly ascertained
individuals.

RR Frequencya Multiplicative Dominant Additive Recessive

5 10 20 5 10 20 5 10 20 5 10 20

2 0.001 1.99 1.98 1.96 1.98 1.96 1.92 1.99 1.97 1.94 1.00 1.01 1.02

0.002 1.98 1.96 1.92 1.96 1.92 1.85 1.97 1.94 1.89 1.01 1.02 1.04

0.005 1.95 1.90 1.82 1.91 1.82 1.68 1.93 1.86 1.75 1.02 1.05 1.09

5 0.001 4.90 4.81 4.63 4.81 4.63 4.32 4.83 4.67 4.38 1.02 1.04 1.08

0.002 4.81 4.63 4.31 4.63 4.32 3.81 4.67 4.38 3.91 1.04 1.08 1.15

0.005 4.55 4.17 3.57 4.18 3.60 2.84 4.25 3.71 3.00 1.10 1.19 1.35

aFrequency of variants within the population.
The relative increase of causal variant frequency is shown for 5, 10, and 20 causal variants, each with equal population frequencies of 0.001, 0.002, and 0.005 and
genotypic RR of either 2 or 5 under a multiplicative, dominant, additive, and recessive model. The calculations were carried out under the assumption that the causal
variants reside on separate haplotypes.
doi:10.1371/journal.pgen.1000481.t003
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Type I Error for Rare Variants with a Mixture of
Frequencies

Coalescent simulation was used to generate rare variant data as

described in the Methods section. When simulation was used to

mimic the situation where variants discovery is performed in cases

and the controls are genotyped for those discovered variants,

inflated type I error at a level of 0.05 was observed for different h

values when the locus analyzed is neutral (Table 6). Since the

length of a simulated locus is proportional to the h value when the

size of a haplotype pool is fixed, the number of rare variants and

their total variant frequency increase with larger h values and

represent a longer locus or multiple loci (Table 6). Therefore the

type I error rate increases with increasing h values. For example,

the type I error rate is 0.124 for h = 4 and a sample of 100 cases

Figure 2. Distribution of the frequencies of rare variants and the average proportion of rare variants discovered in randomly
ascertained and case samples. Data were generated using coalescent simulation under the neutral Wright–Fisher model with a scaled mutation
rate h= 4. Panel (A) displays the distribution of rare variants with frequency #0.01 for 100 haplotype pools each with 10,000 haplotypes. Panel (B)
displays the mean proportion of variants discovered for randomly ascertained samples and for case samples of N = 100, 200, 500, and 1,000
individuals. Results are based upon 10,000 replicates. Case samples were generated with 50% of rare variants randomly chosen to be causal each with
a genotypic RR of 2 or 5 under the additive model.
doi:10.1371/journal.pgen.1000481.g002

Table 4. False positive rates for association studies when variant identification is carried out in only cases or in both cases and
controls for gene(s) with a fixed number of neutral variants.

M = 10 M = 20 M = 30

Discovery Sample N 0.001 0.002 0.005 0.001 0.002 0.005 0.001 0.002 0.005

Cases Only 100 0.067 0.140 0.115 0.260 0.346 0.235 0.447 0.562 0.374

200 0.144 0.132 0.055 0.350 0.273 0.083 0.553 0.430 0.113

500 0.107 0.055 0.048 0.219 0.079 0.049 0.334 0.104 0.049

1,000 0.057 0.047 0.050 0.078 0.048 0.050 0.102 0.048 0.050

Cases and Controls 100 0.039 0.043 0.051 0.042 0.050 0.050 0.046 0.050 0.050

200 0.045 0.049 0.049 0.049 0.048 0.050 0.048 0.050 0.050

500 0.050 0.049 0.050 0.049 0.050 0.050 0.049 0.050 0.050

1,000 0.051 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050

Results are shown for gene(s) with M = 10, 20, and 30 neutral variants with equal population frequencies of 0.001, 0.002, and 0.005, for N = 100, 200, 500, and 1,000 cases,
and an equal number of controls. The assumption is made that the variants reside on separate haplotypes. The upper panel shows the false positive rates when only
cases are used for variant discovery and the discovered variants are genotyped in controls. The lower panel shows the false positive rates when both case and controls
are sequenced to discover rare variants. Analyses were carried out using the Cochran–Armitage test for trend (see Methods). The false positive rates were evaluated for
an a= 0.05 and based upon 100,000 replicates.
doi:10.1371/journal.pgen.1000481.t004
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and 100 controls; it increases to 0.325 when h = 12 for the same

sample size of cases and controls (Table 6). For all h values, the

type I error rate decreases with increasing sample size and when

the sample size is 1,000 cases and 1,000 controls, the type I error

rate is very close to the a value of 0.05. For all sample sizes and h
values, when both cases and controls were used to discover rare

variants, no inflated type I error rates were observed (Table 6).

Since the data were generated using the neutral Wright–Fisher

model without recombination, it was investigated whether it is

valid to use larger h values for the situation where multiple loci are

combined to be analyzed. Two loci for each individual were

obtained from two independent haplotype pools each generated

using a scaled mutation rate h = 6. These results are very similar to

those obtained when individual genotypes were sampled from a

single haplotype pool generated using h = 12 (data not shown).

This is an indication that recombination between loci should have

little impact on the results.

Discussion

The 1,000 Genomes Project will bring to light a wealth of

information on human variation and should be able to capture a

vast majority of variants with a frequency of .1%. A detailed

catalog of variants should aid association studies of complex traits

to study variants which range from common to rare. It is

hypothesized that rare causal variants for complex diseases are

usually found in the frequency range between 0.1% and 1%,

although the boundaries are not absolutely defined [13]. The

1,000 Genomes Project will also identify very rare variants (e.g.,

frequency ,0.5%), however, the study’s ability to discover a

substantial proportion of very rare variants will be dependent on

whether or not very rare variants are shared across multiple

populations, because individual ethnic groups which are included

in the project will have a limited sample size, ,100 individuals.

Many rare variants have occurred in recent human history and

therefore they may not be shared among different populations.

Thus the 1,000 Genomes Project currently does not have an

adequate sample size to provide a comprehensive catalog of very

rare variants which could be selected for genotyping in association

studies of complex traits.

Although assuming equal variant frequencies is not realistic, it is

easier to interpret these results than when a mixture of variant

frequencies is used. To also investigate a more realistic situation

where variants have a mixture of frequencies, coalescent

simulation was used by generating haplotype pools under a

neutral Wright–Fisher model with the assumption of no

recombination. The simulation of haplotypes which reflect

evolutionary history of human populations has been well

researched and a neutral Wright–Fisher model is commonly used.

For genes the impact of recombination is negligible due to gene

length and genome-wide surveys [18] have shown that recombi-

Table 5. False positive rates for association studies when a
definite number of neutral variants are identified only in cases
or when variant discovery is carried out in cases and controls.

M = 5 M = 10

Discovery
Sample N 0.001 0.002 0.005 0.001 0.002 0.005

Cases Only 100 0.389 0.211 0.087 0.864 0.584 0.186

200 0.217 0.111 0.045 0.579 0.245 0.060

500 0.080 0.046 0.047 0.175 0.058 0.048

1,000 0.047 0.047 0.051 0.060 0.047 0.050

Cases and
Controls

100 0.040 0.038 0.047 0.050 0.052 0.051

200 0.040 0.045 0.047 0.053 0.049 0.050

500 0.042 0.051 0.048 0.05 0.048 0.049

1,000 0.051 0.052 0.050 0.052 0.050 0.050

The false positive rates are displayed for when M = 5 or 10 neutral variants with
equal population frequencies of 0.001, 0.002, and 0.005 were discovered in
cases (upper panel) or in both cases and controls (lower panel) for N = 100, 200,
500, and 1,000 cases with equal number of controls. It is assumed that each rare
variant resides on a separate haplotype. Analyses were carried out using the
Cochran–Armitage test for trend (see Methods). The false positive rates were
evaluated for an a= 0.05 and based upon 100,000 replicates.
doi:10.1371/journal.pgen.1000481.t005

Table 6. False positive rates for rare variant association studies when variants are identified only in cases or in both cases and
controls for variants with a mixture of frequencies.

Number of Casesa

Discovery Sample h Number of variantsb Frequencyc 100 200 500 1,000

Cases Only 4 21.0 0.0403 0.124 0.094 0.066 0.056

6 31.5 0.0628 0.178 0.122 0.076 0.062

8 41.9 0.0835 0.228 0.146 0.085 0.066

12 61.7 0.1160 0.325 0.205 0.106 0.075

Cases and Controls 4 21.0 0.0403 0.048 0.050 0.050 0.050

6 31.5 0.0628 0.050 0.047 0.049 0.049

8 41.9 0.0835 0.048 0.048 0.051 0.051

12 61.7 0.1160 0.049 0.049 0.049 0.051

aThe number of controls is equal to the number of cases.
bNumber of rare variants with frequency #1% observed per haplotype pool averaged over 100 haplotype pools.
cTotal frequency of rare variants with frequency #1% observed per haplotype pool averaged over 100 haplotype pools.
Coalescent simulations with scaled mutation rates h ranging between 4 and 12 were used to generate genotype data for rare variants with frequencies between 0.0001
and 0.01 for samples of N = 100, 200, 500, and 1,000 cases. The false positive rates are displayed when variant discovery is carried out in only cases via sequencing and
the discovered variants are genotyped in controls (upper panel) and when both cases and controls are sequenced to discover rare variants (lower panel). Analyses were
carried out using the Cochran–Armitage test for trend (see Methods). The false positive rates were evaluated for an a= 0.05 and based upon 100,000 replicates.
doi:10.1371/journal.pgen.1000481.t006
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nation events occur unevenly across the human genome, and

preferentially transpire outside gene boundaries. However, in

reality genetic regions may display different distributions of variant

frequencies than those obtained using coalescent simulation and

therefore rare variant discovery may exhibit different results.

If it is believed that very rare variants contribute to disease

etiology, sequencing of the study sample will be necessary to

identify them. Although causal variants will be enriched in case

samples, most genomic regions which are sequenced will not be

involved in disease etiology. If cases are sequenced and the

identified rare variants are genotyped in controls, this can lead to

an increase in type I error, with the estimate of the OR being

.1.0. The increase in type I error can also occur if the controls are

sequenced and the cases are genotyped since the genes are not

causative; in this situation the estimate for the OR will be ,1.0.

For situations where different proportions of cases and controls are

sequenced and the remaining samples are genotyped, type I error

may also be inflated. In a similar fashion, if to identify rare variants

the exons of a gene are sequenced in cases and only those exons

where rare variants were detected are sequenced in the controls,

type I error can also be inflated. The differences in the variant

frequencies between cases and controls are intrinsic to this study

approach and cannot be controlled for by permutation. This

inflation of type I error will not occur if the subjects that are used

for variant discovery are not included in the association study.

Whether or not an inflation of type I error occurs is dependent on

the size of the initial sample which is sequenced, variant

frequencies and the number of variants within the gene/genomic

region. If the analysis is done on a specific gene/region, the level of

type I error inflation is not monotonic with sample size or variant

frequency as shown in Table 4. The type I error is a function of

both the sample size and the difference in variant frequency

between cases and controls. For small sample sizes, although the

frequency difference between cases and controls is great the power

to detect the difference is low due to sample size. On the other

hand, for large sample sizes the variant frequency difference

between cases and controls is small and the power to detect these

small differences is also low, even though the sample size is large.

Therefore the greatest inflation of type I error occurs for a

moderate sample size and the exact sample size depends on the

population frequency of rare variants. Although a monotone

decrease in type I error was observed with increasing sample sizes

for the examples displayed in Table 5 and Table 6, monotonicity

was violated when smaller sample sizes were analyzed (data not

shown) demonstrating that monotonicity is not always the rule.

Since neither the frequencies of variants in a population nor the

number of variants within the gene/genomic region are known a

priori, it is not possible to elucidate whether or not type I error has

been inflated if variant discovery is carried out in a preponderance

of cases.

Collapsing of genotypes was used for the association tests. It is

also possible to analyze each variant separately, however for this

approach to have sufficient power extremely large sample sizes will

be necessary [12], with sample sizes increasing with decreasing

variant frequencies and genotypic RRs. Power is particularly low

when variants are either recent or de novo. Collapsing has been

shown to be a powerful approach to analyze rare and very-rare

variants [19] and therefore we used it in our analyses.

Since mutation rates are unlikely to vary in different

populations, it might be tempting to use the data from the 1,000

Genomes Project as a reference control population for various

studies of complex traits. However the aggregate frequencies of

rare variants in a genomic region may vary greatly from one ethnic

group to another [13,20] due to different evolutionary histories

including genetic drift and bottlenecks. There are a number of

examples where rare causal variants (e.g., variants in the CFTR,

BRCA1, and BRCA2 genes) have higher frequencies within the

Ashkenazi Jewish population compared to other European Jewish

and non-Jewish populations [21,22]. In addition to rare causal

variants having varying frequencies within ethnic groups, rare

neutral variants may also have diverse frequencies which can lead

to an increase of type I error if population substructure is not

adequately controlled [23]. In the study of rare variants, it is

currently unknown if a consensus panel of controls can be used; for

example, a European panel for complex trait association studies of

Europeans and individuals of European descent, or if more

stringent matching criteria are necessary. Additionally it has not

been investigated if implementing current statistical methods; for

example, principal components analysis [24] using common

variants will adequately control population substructure when

analyzing rare variant data.

Studies of rare variants for complex traits are beginning to

emerge and in the near future a large number of studies will be

carried out for a variety of common diseases. Although there are

many challenges in understanding the involvement of rare variants

in complex disease etiology, one benefit from the study of rare

variants compared to common variants is that rare variants have

higher genotypic RRs, not only making it easier to implicate them

in complex disease etiology but also the identification of rare

variants should have a greater impact on risk assessment, disease

prevention and treatment [13].

Methods

Probability of Observing Rare Variants That Are in
Linkage Equilibrium in a Randomly Ascertained Sample

Let the number of variants equal M and each variant site has

two alleles A and a with a minor allele frequency of p. It is

assumed that N individuals are sampled from a population where

Hardy-Weinberg Equilibrium (HWE) holds. If all variants in a

sample are successfully identified via sequencing (i.e., no false

negatives), the probability of observing a specific variant one or

more times within a randomly ascertained sample is

q~
P2N

i~1
2N
i

� �
pi 1{pð Þ2N{i

~1{ 1{pð Þ2N
. Under the assump-

tion of linkage equilibrium (LE) between variants, the probability

of discovering m or more different variants in the randomly

ascertained sample is fm~
PM

j~m
M
j

� �
qj 1{qð ÞM{j

,m~0,:::,M.

Probability of Observing Rare Variants That Are on
Separate Haplotypes in a Randomly Ascertained Sample

Usually rare variants are relatively young and reside on separate

haplotypes within a candidate gene or small genomic region and

additionally within small genomic regions there is little or no

recombination [16,17]. We assumed that within a gene rare

variants are on different haplotypes and there is no recombination.

In this situation, rare variants are not independent. Although they

are in complete LD (D’~1), the correlation between the variants is

extremely low; that is, r2~ D2

p1 1{p1ð Þp2 1{p2ð Þ~
{p1p2ð Þ2

p1 1{p1ð Þp2 1{p2ð Þ
&p1p2&0 where p1, p2 are the frequencies of two rare variants.

In this situation, under the assumption of HWE, the number of

variants with equal frequency observed in a sample follows a

multinomial distribution with parameter 2N and H~

p,p, . . . ,p,Qð Þ where H is a vector of size Mz1 and p and

Q~1{Mp are the frequencies of each rare variant bearing

haplotype and non-rare variants bearing haplotype, respectively. A

discrete Markov Chain (MC) was constructed to facilitate the

calculation of the probability of observing m or more variants in a
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sample of N individuals or 2N chromosomes. A sample of N
individuals can be treated as a realization of MC where the process

is that 2N chromosomes are sampled one at a time assuming

HWE. Let S~ 0,1, . . . ,Mf g denote the state space and let Sn~i
represent the event that i variants are observed at time n; that is,

when n chromosomes are sampled. When sampling the (n+1)th

chromosome, the transition from state Sn~i to Snz1~j occurs

when j~iz1 or j~i, corresponding to when one or zero

additional variants are observed. The transition matrix is

P~

0

1

2

3

:::

M

Q 1{Q 0 0 ::: 0

0 Qzp 1{Q{p 0 ::: 0

0 0 Qz2p 1{Q{2p ::: 0

0 0 0 Qz3p ::: 0

::: ::: ::: ::: ::: 0

0 0 0 0 0 1

2
666666664

3
777777775

where the column outside of the matrix are the states. Let the row

vector p of length M+1 denote the probability distribution of

observing k of M variants where k = 0,1,…,M. Then the initial

probability vector p0~ 1,0, . . . ,0½ �, denoting that no variants are

observed when no chromosomes are sampled. The probability

distribution of the number of variants observed in a sample of N

individuals is p~p0P2N and the probability of observing

m~0,1, . . . ,M or more variants is fm~
PM

i~m p i½ �, m~0,1,

. . . ,M.

Probability of Observing Variants That Are on Separate
Haplotypes in a Sample of Cases

Suppose each of M causal variants resides on a separate

haplotype and independently increases disease susceptibility (i.e.,

allelic heterogeneity model). Denote the haplotypes as

h0,h1, . . . ,hM with frequency q0,q1, . . . ,qM where h0 represents

the non-rare variants bearing haplotype and h1, . . . ,hM are high

risk haplotypes carrying rare variants. Let the penetrance of

genotype hihj be represented by fij ; that is, fij~p D hi,hj

��� �
. Define

the marginal haplotype penetrance of hi, denoted by wi, as the

probability of being diseased if an individual carries the haplotype

hi; that is, wi~p D hijð Þ~
PM

j~0 p D hi,hj

��� �
p hj

� �
~
PM

j~0 fijqj un-

der the assumption of HWE. The frequency of haplotype hi in

cases is qD
i ~wiqi=K~riqi where K~

PM
j~0 wjqj is the disease

prevalence and ri~wi=K is the ratio of relative increase of variant

frequency in cases compared to a randomly ascertained sample.

When it was assumed that all variants have the same genetic effect,

denote the penetrances of genotype h0h0, hih0 and hihj as f0, f1

and f2 respectively and define the genotypic RR c1~f1=f0 and

c2~f2=f0. For multiplicative, additive, dominant, and recessive

models, the RRs satisfy c2~c2
1, c2~2c1{1, c2~c1 and c1~1,

respectively.

Effect on Type I Error of Association Studies When Variant
Discovery Is Only Performed in Cases

Suppose rare variants are discovered in cases via sequencing

and then those variants are genotyped in controls. When the

sequenced gene is not involved in the etiology of the disease under

study, the variants observed in cases are independent of the cases

status. Conditional on the fact that a variant with frequency p has

been observed at least once in cases, the mean number of times the

variant is observed in cases at the marker is nA~
P

2N
k~1kP kð Þ

�
1{P 0ð Þð Þ~2Np= 1{P 0ð Þð Þ where k follows binomial (2N, p)

distribution for a sample of N cases and the mean number of times

that this variant is observed in the same number of controls is

n
A
~2Np. Since nAwn

A
, this may create false positive associa-

tions. Since analyzing variants individually is underpowered [12],

it is advisable to collapse multiple variants across the M markers at

the locus to increase power to detect associations [19]. In this study

the locus with multiple rare variants is collapsed in such a way that

the locus of one individual is coded using the number of rare

variants this individual carries; in this way multiple variants are

collapsed into a single number. The association test is used to test

whether one or more rare variants are associated with the disease.

Under the allelic heterogeneity model that multiple rare variants

cause the disease independently, it is expected that a locus with

more variants has a higher probability of being diseased and the

Cochran–Armitage test for trend is natural to use where the

ordered categories are the number of variants present at a locus.

The false positive rates were evaluated using simulated data

assuming rare variants reside on separate haplotypes. For

simplicity it was assumed all haplotypes have the same frequency

q and q~0:001, 0.002 and 0.005 were used as examples. For the

scenario where the number of variants at a locus within the

population is fixed, the genotype for each individual was

constructed by randomly sampling two haplotypes and then was

randomly assigned to either the case or control sample. This

process was repeated until the desired sample size was obtained for

both cases and controls. Only those variants which are observed in

cases are analyzed in the case-control dataset. For the situation

where both cases and controls are sequenced, the same procedure

was performed except that variants observed in either cases or

controls were included in the analysis. For the scenario where a

definite number of variants are observed in cases, the genotype for

each individual was constructed by randomly sampling two

haplotypes of length L~100 and then randomly assigned to

either the case or control sample. This process was repeated until

the desired sample size was obtained. Among the variants which

were observed in cases, a total of either M~5 or 10 variants were

randomly selected and then the M variants were analyzed in the

case-control dataset. In order to perform the simulation for the

situation where variant discovery is performed in both cases and

controls, M variants were randomly selected in the sample (cases

and controls) and then the M variants were analyzed in the case-

control dataset. For each study the analyses were repeated

R~100,000 times and the type I error rate was estimated for

the a level of 0.05 by calculating the proportion of replicates with p
values ƒa.

Rare Variants Discovery and Evaluation of Type I Error
Rates for Variants with a Mixture of Frequencies Using
Coalescent Simulation

Although the results are easier to interpret when all variants

have equal frequency, rare variants usually have a mixture of

frequencies at a locus within a population. To investigate the

variant discovery and type I error rates in a more realistic scenario,

coalescent simulator ms [25] was used to generate haplotype pools

to represent a population. The scaled mutation rate of a locus,

h~4Nem, was set to values between 4 and 12 to represent different

locus lengths, and 10,000 haplotypes were simulated for each

haplotype pool assuming no recombination within the locus. To

reduce randomness of coalescent simulation, 100 replicates were

generated for each h value. Since the interest is on rare variants,

only variants with frequencies between 1061024 and 1061022

were analyzed. To generate a sample, a haplotype pool was

randomly selected and all individuals’ genotypes are formed by

randomly pairing two haplotypes from this pool. For randomly

ascertained samples, N individuals were selected from the
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haplotype pool. For case samples, an individual was assigned case

or control status according to the penetrance of the genotype. It is

assumed that not all variants are causal and 50% of variants are

assigned to be causal with the same genotypic relative RR. The

penetrace of the genotype follows an additive model and is

calculated as m*c1*e0, where m is the number of rare causal

variants the individual carries at the locus, c1 is the RR of the

genotype carrying one causal variant versus the genotype carrying

no causal variants and c1 = 2 and 5 were used. This process is

repeated until the desired sample size was obtained. For either the

randomly ascertained sample or the case sample, variant discovery

is performed by examining each position of the locus and counting

the number of variants observed at the locus in the sample.

For evaluation of type I error, an individual was generated by

pairing two random haplotypes from a haplotype pool and was

randomly assigned to case or control status. The process was

repeated until the desired sample size was obtained. The type I

error rates were estimated based on 100,000 replicates for an a
level of 0.05 in the same manner as described in the previous

Methods section for the scenario where the number of variants at a

locus within the population is fixed.

Supporting Information

Table S1 The probability of identifying rare variants with equal

frequencies in samples of randomly ascertained individuals when

the rare variants residue on separate haplotypes.

Found at: doi:10.1371/journal.pgen.1000481.s001 (0.05 MB

DOC)
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