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Abstract

Modern computational methods are revealing putative transcription-factor (TF) binding sites at an extraordinary rate.
However, the major challenge in studying transcriptional networks is to map these regulatory element predictions to the
protein transcription factors that bind them. We have developed a microarray-based profiling of phage-display selection
(MaPS) strategy that allows rapid and global survey of an organism’s proteome for sequence-specific interactions with such
putative DNA regulatory elements. Application to a variety of known yeast TF binding sites successfully identified the
cognate TF from the background of a complex whole-proteome library. These factors contain DNA-binding domains from
diverse families, including Myb, TEA, MADS box, and C2H2 zinc-finger. Using MaPS, we identified Dot6 as a trans-active
partner of the long-predicted orphan yeast element Polymerase A & C (PAC). MaPS technology should enable rapid and
proteome-scale study of bi-molecular interactions within transcriptional networks.
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Introduction

The arrival of complete genomes and microarray technology

has fueled a revolution in computational predictions of transcrip-

tional regulatory elements, both through inter-species comparative

genomics [1,2] and mapping sequence to gene expression [3].

Application of these approaches to well-studies systems such as

Saccharomyces cerevisiae has revealed the majority of previously-

known TF binding sites, in addition to many novel predictions

with strong evidence of function. As the list of high-confidence cis-

regulatory element predictions grows, a more rapid and efficient

approach is needed for the identification of proteins that bind

these elements and connect them to the transcriptional regulatory

network. Current biochemical and genetic methods of transcrip-

tion factor identification are laborious and time-consuming. DNA

affinity chromatography [4] requires chromatographic experience

and biochemical skill, and typically entails several rounds of

purification, requiring a significant investment of both time and

input protein (due to losses) to isolate a single transcription factor

[5–9]. Yeast one-hybrid and two-hybrid screens [10] to discover

protein-DNA and protein-protein interactions are time-consuming

and susceptible to both false positives and false negatives requiring

extensive follow-up, especially when transcription factors are the

potential interactants [11,12]. Protein-binding microarrays [13,14]

are dependent upon choosing the right proteins for analysis and

the ability to purify a functional epitope-tagged form of those

proteins for use as a protein-binding microarray probe.

Phage display has been previously used to study protein-DNA

interactions, but this work has focused mainly on the binding of

specific zinc fingers to associated DNA nucleotide triplets [15–18].

Only a limited number of studies have used phage display libraries

to enrich for a natural nucleic acid binding protein by selection

against a specific nucleic acid target sequence [19–21].

We have developed a technology for identifying proteins that

specifically bind predicted transcriptional regulatory elements

(Figure 1). Our approach, called MaPS (for Microarray profiling of

Phage-display Selections), selects a diverse (,108) phage-display

library of genomically encoded peptides for binding to surface-

immobilized double-stranded DNA containing a DNA motif

sequence of interest. After enrichment for a specific DNA-protein

interaction, the bound phage are amplified, and can be used for

more rounds of selection in order to further enrich the library for

specific interactors. Typically, after the appropriate number of

rounds of selection, the inserts from the enriched phage can be

sequenced individually to identify the interacting proteins.

However, in typical selections, the high level of background

requires many rounds of phage display enrichment, followed by

sequencing of sufficient number of plaques to develop a consensus

sequence [22–24]. This leads to the selection of phage with only

the highest binding affinities at the expense of lower-affinity but

biologically relevant interactions. To bypass these limitations, we

have developed a simple strategy that effectively ‘sequences’ the

entire population of selected phage through PCR-amplification of

inserts, labeling and hybridization to a microarray containing all

the open reading frames (ORFs) encoded in the genome.

We have chosen a T7 phage system to display peptides between

300–1000 (with a mode of 500) amino acids in length. The T7
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phage system offers multiple advantages over other display

vehicles, such as Lambda or filamentous phage. The lytic T7

bacteriophage does not have to be exported through the bacterial

inner membrane, placing fewer restrictions on the proteins that

may be expressed than the more common phage display vector

M13 [25,26]. Other advantages of T7 include extreme robustness

to environmental conditions, high capsid-fusion valency (up to 415

per phage), and rapid replication rate.

One of the strongest computationally predicted cis-regulatory

elements in yeast is the Polymerase A & C (PAC) motif which was

initially identified as a conserved sequence found in the upstream

region of RNA polymerase I & III subunit genes [27]. Computa-

tional analysis of expression data found PAC, in conjunction with the

Ribosomal RNA Processing Element (RRPE), to be highly enriched

in the upstream regions of a cluster of genes enriched for RNA

polymerase I & III transcription, RNA splicing, translation initiation,

and other RNA metabolism functions [28]. These sequences are

well-conserved among related yeast species [1,29,30], and their

presence is highly predictive of the expression pattern of their

downstream genes [31]. The transcription factor Stb3 was recently

identified as the trans factor that binds RRPE [32], but to date no

PAC-binding protein has been identified, despite numerous attempts

[32–34].

Here we show that our MaPS technology allows for rapid and

proteome-scale survey of sequence-specific protein-DNA interac-

tions. We show that across a variety of test cases, corresponding to

known TF-binding sites, MaPS identifies the cognate TF

regulators. Moreover, in the most challenging application, we

used MaPS to discover the transcription factor that specifically

interacts with the PAC element.

Results

Phage Display Selection of a Transcription Factor Is
Sequence-Specific and Salt-Dependent

In proof-of-principle experiments, the DNA-binding domains

(DBD) and complete ORFs of RAP1 and MCM1 were cloned into

T7 phage and tested for enrichment from the background of a

phage display peptide library encoding restriction-digested yeast

genomic DNA fragments (see Materials and Methods). Rap1 and

Mcm1 were chosen as well-characterized transcription factors

whose target genes [35,36], recognition sequences [5,37], specific

dissociation constants [38,39], DNA binding domains [40,41], and

crystal structures [42,43] had been previously determined.

A library consisting of T7 phage displaying Rap1 and Mcm1

was mixed on an equal-titer basis with a T7 phage library

containing fragments from a yeast genomic DNA complete

restriction digest. This library was selected against biotinylated

double-stranded oligonucleotides (bRAP1 and bMCM1) consisting

of native sequences from upstream of open reading frames

RPS21B (YJL136C) and MSG5 (YNL053W) and centered around

the pairs of Rap1 and Mcm1 binding sites, respectively. Two

rounds of selection were performed against three different

amounts of target bDNA in buffers of three different salt

concentrations, and the results of the selection determined by

parallel PCR-amplification of phage inserts from liquid culture

obtained from the second round of selection (Figure 2).

A band corresponding to the RAP1 DBD clone was present as a

result of selection against the oligonucleotide containing Rap1

binding sites (1 pmol) under all three salt conditions. This band

was not visible in both the starting library (input) and selections

with no oligonucleotide present (0 pmol). The intensity of the

Figure 1. An overview of Microarray profiling of phage-display
selection technology. (A) 1–3 kb fragments of yeast genomic DNA
are cloned into T7 bacteriophage to create a translational fusion
between the capsid protein and the peptide sequence encoded by the
insert. (B) The library of phage are exposed to immobilized target DNA
molecules and non-binding phage are washed away. Bound phage are
eluted, amplified in liquid culture, and the process is repeated over
multiple rounds. The sequence content of the enriched phage
population is determined by PCR amplification of the inserts, labeling,
and hybridization to a yeast ORF microarray.
doi:10.1371/journal.pgen.1000449.g001

Author Summary

Specific interactions between protein transcription factors
(TFs) and their DNA recognition sites are central to the
regulation of gene expression. Inter-species conservation
of these TF binding sites (TFBS), and their statistical
enrichment in sets of co-expressed genes, facilitates their
large-scale prediction through computational sequence
analysis. A major challenge in characterizing these putative
TFBS is the identification of the proteins that bind them.
We have developed a new approach to this problem by
expressing random genomically encoded protein frag-
ments as fusions to the capsid of bacteriophage T7. We
select this diverse phage-display ‘‘library’’ for binding
surface-immobilized instances of the TFBS in the form of
short double-stranded DNA. This in vitro selection strategy
leads to the enrichment of phage whose capsid-fusion
peptides interact with the specific DNA sequence. Because
each phage carries the DNA encoding the peptide fusion,
the identity of the enriched phage can be determined
through population-level PCR amplification of DNA inserts
and their hybridization to DNA microarrays. Here, we show
that this technology efficiently reveals the identity of
proteins that bind known and novel predicted regulatory
elements. Its application to a predicted yeast element
(PAC) reveals Dot6 as one of its interaction partners, both
in vitro and within the yeast nucleus.

Phage-Display Mapping of Protein-DNA Interactions
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band, implying level of enrichment, was dependent upon the

amount of oligonucleotide added; the intensity of the band was

reduced when only 0.1 pmol of oligonucleotide was used. The

band was absent under all three salt conditions when the

oligonucleotide selected against contained Mcm1 binding sites

instead of Rap1 (data not shown), indicating that the enrichment

was sequence-specific, rather than merely due to the presence of

double-stranded DNA. No band corresponding to the entire RAP1

ORF clone was visible in any of the lanes in which a RAP1 DBD

band was present, implying that the complete ORF failed to enrich

by selection. This may be due to the under-representation of this

clone in the library, due to a bias against large inserts proportional

to the size of the translated product [26].

The intensity of the RAP1 DBD clone bands across the three salt

conditions, for a given amount of target oligonucleotide (1 pmol),

rose from a minimum in the low-salt condition to a maximum in

the intermediate condition, before falling again at the highest salt

concentration. This is consistent with greater competition at salt

concentrations below physiological levels (100–200 mM NaCl),

from phage displaying peptides with nonspecific DNA binding

affinity [44]. At salt concentrations above physiological conditions-

and approaching that used to elute transcription factors in DNA

affinity chromatography [6]-sequence specific affinity is reduced,

resulting in washing away of phage bearing sequence-specific

interactors.

No band corresponding to either the MCM1 DNA binding

domain clone or to the MCM1 ORF clone appeared from the

selection against the oligonucleotide containing Mcm1 binding

sites (data not shown). The bands corresponding to these two

clones were visible in the selection against the Rap1 target

oligonucleotide (Figure 2), but they appeared at a constant

intensity regardless of the amount of DNA present at a given

salt concentration, and even at a similar intensity in the starting

library (input). We believe that the failure of these doped MCM1

clones to enrich by DNA affinity selection was due to the close

proximity of the Mcm1 DNA-binding domain to the capsid

protein. The RAP1 DBD clone encodes an additional 50 amino

acids before the start of the actual binding domain, which may

provide flexibility to the domain relative to the phage capsid. On

the other hand, only 16 amino acids are encoded between the

cloning junction and the MADS box homology region that

mediates Mcm1 binding. This is likely insufficient to allow the

Mcm1 DNA-binding domain to move into optimum DNA-

binding configuration relative to the capsid, as supported by

evidence presented later.

Identification of Known Transcription Factor–DNA
Interactions from a Complex Yeast Proteome Library

A diverse phage display library was constructed using yeast

genomic DNA partially digested by restriction enzymes that

recognize 4 bp restriction sites and leave blunt ends. The library

was based on genomic DNA fragments to avoid the bias against

low-abundance transcripts in cDNA libraries and the considerable

time and labor necessary for constructing a complete ORF library,

while at the same time achieving a sub-genic resolution capable of

isolating critical domains. The genomic DNA was partially

digested with the selected restriction enzymes to produce the

greatest possible number of fragments directly ligatable into the T7

genome with no further enzymatic manipulation. The T7 phage

Figure 2. The Rap1 DNA-binding domain is enriched in a
sequence-specific and salt-dependent manner. A phage display
library was affinity selected against indicated quantities of double-
stranded DNA containing Rap1 binding sites under indicated salt
conditions. Results from PCR of input phage library (input) or after
second round of selection are shown. The intensity of a band is
proportional to its abundance in the library. Lanes designated RAP1
indicate results of specific PCR against a single phage with the RAP1
DNA-binding domain known to be in the library and the red arrows
mark the expected size of this clone. Gel-isolation and sequencing of
the selected bands at this location confirmed that they correspond to
this clone. The blue arrows point out the PCR products corresponding
to the MCM1 DNA-binding domain (lower band) and MCM1 ORF (upper

band). The remaining bands show variable enrichment as a function of
salt concentration and likely represent non-specific enrichment during
the selection.
doi:10.1371/journal.pgen.1000449.g002

Phage-Display Mapping of Protein-DNA Interactions
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genome was altered to accommodate these fragments, adding a 9-

glycine linker and a variable 0–2 base pair frame-shift between the

capsid protein and the insert site.

The genomic DNA phage display library was affinity-selected

against the oligonucleotide bRAP1, a PCR product containing the

sequence from the pair of Rap1 binding sites to the start of

RPS21B (bRAP1–322), and a PCR product containing the entire

upstream region of RPS21B (bRAP1–734). The library was

selected for three rounds under 100–200 mM NaCl conditions,

and PCR monitoring of the liquid lysate demonstrated the

enrichment of discrete clones. PCR products were labeled and co-

hybridized with a genomic reference. The mean percentile rank

values for each ORF were calculated for one selection against

bRAP1 and two each against bRAP1–322 and bRAP1–734

(Figure 3), with a high mean rank resulting from consistently high

enrichment against all three targets. The ORF with the highest

mean rank, and the only ORF .98th percentile, was RAP1

(YNL216W). The clone corresponding to this insert was also

sequenced, and shown to contain a 1-kb fragment of RAP1 that

included the DNA-binding domain, ligated in frame with T7 gene

10.

The genomic DNA phage display library was also selected

against the oligonucleotide bMCM1 and a PCR product

containing the entire upstream region of MSG5 (bMCM1–401).

These targets contained a region with two Mcm1 binding sites

flanking a Tec1 binding site [33]. As with the Rap1 binding site,

after three rounds of selection, the phage inserts were amplified

and profiled through microarray hybridization. The mean

percentile rank of the two selections revealed TEC1 as the most

highly ranked ORF and MCM1 as the 4th most highly ranked

ORF. When the clones corresponding to these inserts were

sequenced, they were shown to contain in-frame ligations of the

entire MCM1 ORF, and a 1.3-kb fragment of TEC1 that included

the DNA-binding TEA/ATTS domain. Moreover, the MCM1

clone included the 87 bp immediately upstream of the ATG,

resulting in an additional 29 amino acids, plus the 9-glycine linker,

between the T7 capsid and the MADS box that mediates DNA

binding. This success implies that the direct clone had failed to

enrich in the earlier test because the protein was too close to the

phage capsid for proper orientation/activity. Most importantly,

given that Mcm1 binds DNA as a dimer in vivo, its enrichment here

clearly demonstrates that dimerization is not an absolute obstacle

in the application of MaPS, and that relatively weak, yet specific,

protein-DNA interactions can be discovered.

As an additional proof-of-principle, the phage display library

was selected against the oligonucleotide bRPN4, derived from

upstream sequence of PRE7 (YBL041W) centered around the

Rpn4 binding site, and including a second Rpn4 site in tandem

with the native. Three rounds of selection repeatedly resulted in a

single clone bearing a 1.5-kb insert (Data not shown). Microarray

analysis was not performed because of the absence of other clones

and the consistency of the result. Sequence analysis confirmed that

the insert contained the 39 third of RPN4, including the region

encoding the zinc-finger DNA-binding domain.

Discovery of the PAC-Element Binding Transcription
Factor

After the proof-of-principle validations presented above, we

asked whether MaPS was able to discover the novel transcription

factor associated with the computationally predicted cis-regulatory

element PAC. To this end, the phage display library was affinity-

selected against bPAC/RRPE, an oligonucleotide centered

around the PAC and RRPE sites upstream of RPC82 (YPR190C),

bPAC-320, a PCR product of the entire upstream region of

RPC82, and bPAC4, a concatemer of four predicted genomic PAC

sequences with high computational motif scores, computed using

the probabilistic profile captured by the PAC Position Weight

Matrix [31]. Three rounds of selection resulted in the enrichment

of multiple bands (data not shown). PCR products from two

selections against bPAC-320 and one each against bPAC/RRPE

and bPAC4 were labeled and co-hybridized to microarrays with a

genomic reference, and the mean percentile ranks calculated. The

highest percentile rank belonged to YMR130W, an uncharacter-

ized gene with a predicted hydrolase domain, but the second-most

highly ranked ORF was DOT6 (YER088C). We focused on Dot6

as the most likely candidate PAC-binding protein based on

previous evidence for a role in transcriptional regulation and

because YMR130W also ranked relatively highly in selections for

Rap1 (9 percentile) and Mcm1/Tec1 (11 percentile). Isolation and

sequencing of the corresponding clone confirmed the in-frame

ligation of an 800-bp fragment of DOT6, including the DNA

binding domain.

Dot6 is a protein with a predicted myb DNA binding domain

whose binding site could not be identified by chromatin IP [33].

Over-expression of Dot6 reduces silencing at rDNA loci [45], a

side effect consistent with the induction of transcription of RNA

polymerase I. Both Stb3 and Dot6 have been characterized as

binding components of the Rpd3 histone deacetylase complex

[46,47], which has been shown by chromatin IP to bind genes with

PAC and RRPE elements in their upstream regions [48].

To establish that Dot6 is indeed a PAC-binding protein, we

performed gel shift assays using recombinant Dot6 and oligonu-

cleotides bearing PAC elements. The DNA binding domain of

Dot6 was cloned into the pGEX vector and purified by GST tag

from E. coli, and the purified protein was tested for binding to

bPAC4 probe (Figure 4). The probe produced additional shifted

bands in the presence of protein purified from the Dot6-expressing

strain, but not from the strain containing the empty vector,

suggesting that the shift was Dot6-specific. This interaction is

sequence specific, being successfully competed by ,200-fold

excess of unlabeled competitor (PAC4), but requiring a ,107-

fold excess of competitor with point mutations in each of the PAC

elements (XPAC4).

Figure 3. MaPS identifies RAP1 as the gene whose product
interacts with the Rap1 binding site. The yeast genomic DNA
phage display library was selected for three rounds against a double-
stranded oligonucleotide and PCR products of an upstream region
containing Rap1 binding sites. The selected population of phage were
profiled through microarray hybridization. Displayed is the distribution
of the mean percentile rank for five independent such selections
performed. The ORF corresponding to Rap1 had the highest mean
percentile rank out of a total of 6242 ORFs queried on the array.
doi:10.1371/journal.pgen.1000449.g003

Phage-Display Mapping of Protein-DNA Interactions
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Dot6 Binds In Vivo to Promoters with PAC Sites
We have conducted several studies to assess whether Dot6

contributes to regulation of expression in yeast of genes containing

PAC motifs. In a series of genetic studies to be reported elsewhere

(Lippman and Broach, unpublished observations), we have shown

that deletion of DOT6 has little effect on expression of genes with

PAC sites in their promoters during steady-state growth in rich

media. Accordingly, Dot6 is not required for expression of such

genes under normal growth conditions. However, we observed

that Dot6 in conjunction with its paralog Tod6 are required for

efficient repression of such genes during nutrient starvation or

upon inactivation of the major nutrient responsive signaling

pathways, mediated by PKA or TORC1. These studies suggest

that Dot6 and Tod6 are redundant repressors of transcription of

PAC-containing genes and that they are inactivated by nutrient

induced signaling to enhance expression of PAC-site containing

genes upon nutrient stimulation.

In a second series of experiments, we used chromatin

immunoprecipitation to examine whether Dot6 binds in vivo

to promoters of genes that contain PAC motifs. Given our

genetic observations described above, we would anticipate that

Dot6 would likely be bound to PAC-containing promoters only

under conditions of attenuated nutrient signaling. Accordingly,

we assayed for Dot6 DNA binding in cells subjected to carbon

starvation, focusing on three genes, YDL063c, MRD1 and

YTM1, whose promoters contain 5, 4, and 3 PAC sites,

respectively. Transcription of these three genes is substantially

repressed upon inhibition of PKA signaling in a DOT6 strain but

this repression is attenuated by at least 3 fold in dot6D cells

(Lippman and Broach, unpublished data). We measured the in

vivo association of Dot6 with these promoters, as well as with the

promoter of a control gene, GAP1, that lacks any PAC sites, by

determining the relative amount of promoter DNA immunopre-

cipitated from a strain expressing a TAP-tagged version of Dot6.

These values were then normalized to the relative amount of

ACT1 promoter DNA immunoprecipitated in the same exper-

iment. As shown in Figure 5, promoters for the three genes

containing PAC-sites were enriched 12–30 fold over the ACT1

promoter following immunoprecipitation from the strain ex-

pressing TAP tagged Dot6. Significantly less DNA from these

promoters was immunoprecipitated from a strain expressing the

untagged Dot6 and the small amount precipitated was not

enriched relative to the ACT1 promoter. Finally, the control

promoter GAP1 was not enriched in the immunoprecipitate from

the tagged strain. These results are consistent with the conclusion

that Dot6 specifically associates with promoters containing PAC

sites in vivo.

Discussion

As both the number of predictions of biologically significant

nucleic acid sequences and the number of laboratories making

these predictions increases, a rapid and accessible method is

needed by which investigators can quickly identify their cognate

interacting proteins. The most commonly used approach for

identifying nucleic acid-interacting proteins, DNA affinity chro-

matography, while effective at isolating transcription factors, has

considerable up-front costs in material and biochemical expertise

not available to most laboratories. Our MaPS technology utilizes

phage display, in vitro affinity selection, and microarray display in

order to rapidly survey the proteome for sequence-specific

interactions with a DNA sequence of interest. Another major

advantage of MaPS is the ability to simultaneously discover

multiple transcription factors that interact with a region of DNA

hundreds of base pairs in length. This capability should allow

rapid high throughput characterization of the large fraction of

non-coding DNA that is under selection for regulatory control. In

addition, MaPS allows a laboratory to move quickly and easily

from cis-regulatory motif prediction to identification of the

interacting trans-factor without the need for specialized equipment

or skills. Where possible, we have made use of commercially

available systems and the most common molecular biological

techniques in order to maximize the accessibility of the

technology.

As with other technologies that are based on molecular libraries

of complex genomes, successful identification of transcription

factors, using MaPS, relies on high-coverage representation of the

coding portion of the genome. We have shown that the use of

genomic fragment libraries is a feasible solution in an organism

Figure 4. The Dot6 protein is a sequence-specific PAC element
binding factor. Gel shift assay was performed with Dot6 DNA-binding
domain and DNA containing PAC elements. Purified recombinant GST-
Dot6 was incubated with 50 fM biotinylated probe containing 4 copies
of the PAC element (bPAC4). Unbiotinylated competitor (PAC4) had
identical sequence to the probe, or mutations in each copy of the PAC
element (XPAC4).
doi:10.1371/journal.pgen.1000449.g004

Figure 5. Dot6 binds to PAC-containing promoters in vivo.
Chromatin immunoprecipitation was performed on extracts of strain
Y3648 (TAP-Dot6) and B4741 (untagged) as described in Materials and
Methods. Quantification of these data provided the percent of input
DNA for the promoters of each of the indicated genes recovered in the
immunoprecipitate. Shown are the fold enrichment of those values
relative to the percent input DNA for the ACT1 promoter recovered in
the same immunoprecipitate. PCR quantification was performed in
triplicate with less than 20% variation among replicates of individual
samples.
doi:10.1371/journal.pgen.1000449.g005

Phage-Display Mapping of Protein-DNA Interactions
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with high gene density (S. cerevisiae). However, our success-rate of

70% for identifying known TF-DNA interactions, at least partly,

reflects incomplete coverage of the yeast proteome in our phage-

display library. The utilization of well-curated ORF collections or

normalized cDNA libraries should partly address this challenge in

the case of more complex metazoan genomes with much lower

gene density. Another challenge is the competition for specific

enrichment of TF-DNA interactions by phage whose capsid

fusions interact with the solid phase or DNA non-specifically. In

addition, some peptide fusions may provide phage with higher

reproductive fitness relative to the rest of the library. The

exponential amplification of these super-fit phage after every

round of selection may also interfere with sequence-specific

enrichment of TFs. Experiments presented here show evidence

for enrichment of such false-positives. For example, although the

highest and the fourth highest ORF signals belonged to the known

cognate TFs in the Mcm1/Tec1 selection, the second (GDS1) and

third (MET8) were likely false positives. The gene GDS1 encodes a

mitochondrion localized protein of unknown function and MET8

encodes a bifunctional dehydrogenase and ferrochelatase involved

in seroheme biosynthesis. As would be expected for non-specific

enrichment, GDS1 was also ranked high in the selections against

the PAC element (3rd highest) and Rap1 binding sites (112th

highest).

The isolation of Dot6 as a PAC element binding protein

illustrates the power and unique advantages of our whole-

proteome in vitro approach. Transcription reporter experiments

[49] and association with the Rpd3 histone deacetylase complex

[46,48] imply that Dot6 acts as a repressor of PAC-regulated

genes, whose repression is removed under favorable growth

conditions. Since both yeast one-hybrid and chromatin IP are

normally performed during log-phase growth, the in vivo conditions

made it unlikely that the Dot6-PAC element interaction could

have been detected.

Successive rounds of selection provide us with increased

discriminatory power in a manner similar to multiple columns in

DNA affinity chromatography. Because the phage are regener-

ated before each selection round, it is free of material losses

typically seen in affinity chromatography. Despite the require-

ment for multiple rounds, MaPS has rapid turnaround. It was

possible to conduct two rounds of selection per day, such that a

full PCR readout from three rounds of selection was available by

the end of the second day. Because results from the second round

were adequate for use on the microarray, it was possible to have

fully processed data returned by the third or fourth day. This

system is also easily amenable to automation with robotic liquid

dispensers and automatic plate washers performing the liquid

handling.

Materials and Methods

Yeast Strains
Strain Y3648 expressing Dot6-TAP was obtained from Open

Biosystems (Huntsville, AL) and an isogenic untagged strain,

BY4741, was obtained from Research Genetics.

Preparation of Recombinant T7 Phage and the Short-
Fragment Genomic DNA Library

T7 phage displaying Rap1 or Mcm1 were prepared by PCR

amplification and cloning of the yeast genes into the T7 genome.

Sequences encoding the DNA-binding domains and complete

open reading frames of RAP1 (amino acids 289–618 and 1–878)

and MCM1 (amino acids 1–135 and 1–286) were amplified from

S. cerevisiae genomic DNA using primers that added EcoRI sites

to the ends of the PCR products. After EcoRI digestion (which

truncated the MCM1 ORF to amino acids 1–187 at an internal

EcoRI site) the PCR products were mixed on an equimolar basis

and cloned into the EcoRI site of the T7Select 10-3b phage

vector. Approximately 0.17 mg of ligation product was packaged

with an aliquot of T7 packaging extract (Novagen) and amplified

in liquid culture as described [50]. Packaging reaction yield and

amplified titers were determined by plaque assay as described

[50].

A simple library of T7 phage containing short fragments

(,100 bp) of S. cerevisiae genomic DNA was prepared as a

background from which to select Rap1- and Mcm1-expressing

phage. Genomic DNA was completely digested with Tsp509I,

which leaves 59 overhangs compatible with EcoRI. The Tsp509I

fragments were cloned into the EcoRI site of 10-3b phage vector,

packaged, and amplified in the same way and in parallel with the

Rap1 and Mcm1 PCR products above.

Construction of T7 Phage Containing a Gly9 Linker
A short sequence encoding a nine-glycine linker and 0 bp,

+1 bp, or +2 bp frameshift was introduced into T7Select 10-3

between the capsid protein gene and the SmaI site. Synthetic

oligos encoding a sequence of 9 glycines, followed by 0–2 extra

bases, were annealed to their complements to create double-

stranded oligos with BamHI and SmaI half-sites at their ends,

cloned into the corresponding sites of T7Select 10-3b DNA, and

packaged. Samples of individual plaques were resuspended and

heated for 10 min at 65uC in 100 mL TE buffer, followed by PCR

with primers T7SelectUP and T7SelectDOWN, which flank the

T7Select multiple cloning site. Plaques producing PCR products

of the correct size were amplified in liquid culture, and successful

incorporation of the inserts was confirmed by bidirectional

sequencing. Cultures of the correct sequence were stored as T7

strains G9.0, G9.1, and G9.2.

Construction of Yeast Genomic DNA Libraries
A complex T7 phage display library of the yeast proteome was

created from partial restriction digest fragments of S. cerevisiae

gDNA. Genomic DNA was partially digested with AluI, BstUI,

HaeIII, HpyCH4V, or RsaI to produce fragments distributed

around a mode of 1.5 KB, and the fragments were size-selected by

gel purification to a range of 1–3 KB. Fragments from digestion

using each of the restriction enzymes were cloned into the SmaI

site of T7 G9.0, T7 G9.1, and T7 G9.2 DNA in separate

reactions. 1–4 mg of DNA from each ligation reaction was

packaged using T7 packaging extracts, and the number of phage

produced by each packaging reaction was estimated by plaque

assays. The presence and size of inserts was determined by PCR of

random plaques with primers T7SelectUP and T7SelectDOWN.

Individual packaging reactions were amplified at a multiplicity of

infection of ,1025 in log-phase Escherichia coli BLT5615 culture,

made to 0.5 M NaCl after lysis, and clarified by centrifugation.

Amplified lysates were pooled to provide the same number of

copies of each independent clone from each combination of

restriction digest and vector DNA, and the pooled lysate was

aliquoted and stored at 280uC. The final library was estimated to

contain 6.16107 independent clones, of which 75% were

recombinant, at ,6500 copies/mL.

Preparation of Target bDNA
Target double-stranded oligonucleotides containing putative cis-

regulatory motifs had native sequences from upstream of chosen

genes. These sequences were chosen based on the strength of the

motif’s position weight matrix score and the level of correlation of
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the associated gene’s expression profile to that of the cluster from

which the motif was derived [31]. Short (#70 bp) biotinylated

double-stranded target oligonucleotides were prepared by anneal-

ing a 59-biotinylated oligonucleotide to its complementary

oligonucleotide in an equimolar ratio. Long ($200 bp) biotiny-

lated double-stranded DNA targets were prepared by PCR of S.

cerevisiae ORF upstream regions using one biotinylated and one

unbiotinylated primer.

Phage Selections
Biotinylated target DNA (5 pmol) was bound to the wells of a

StreptaWell High Bind strip (Roche) in 200 mL Binding Buffer

(30–300 mM NaCl, 20 mM Tris pH 7.5, 2 mM KCl, 1 mM

EDTA, 0.15 mg/mL purified BSA (NEB)) and salmon sperm

DNA (10 mg, Invitrogen) for 30 min. T7 phage library (361010

pfu, ,500 copies/clone) was added to the well and phage-DNA

binding permitted for 60 min. Wells were washed five times with

300 mL of Wash Buffer (30–300 mM NaCl, 20 mM Tris pH 7.5,

2 mM KCl, 1 mM EDTA, 0.1% Tween-100) to remove

unbound phage. Bound phage were eluted by incubating

30 min in 300 mL of Elution Buffer (1 M NaCl, 20 mM Tris-

Cl pH 7.5, 2 mM KCl, 1 mM EDTA). Eluted phage (150 mL)

were amplified in BLT5615 log phase culture (5 mL) until lysis

(,2 hr), and the lysate was clarified by centrifugation. Clarified

lysate was used as the phage input to the next round, and

changes in the phage population due to selection were tracked by

PCR of the lysate using the T7SelectUP and T7SelectDOWN

primers.

Microarray Display of Phage Population
DNA was prepared by direct labeling of T7 liquid culture

PCR products using Cy3-dUTP (GE Healthcare), Klenow

fragment (NEB) and the T7SelectUP and T7SelectDOWN

primers, or of yeast genomic DNA using Cy5-dUTP, Klenow

fragment and random hexamer mix (GE Healthcare). Labeled

probes were purified using the CyScribe GFX Purification Kit

(GE Healthcare), aliquots of Cy5-labeled genomic DNA were

mixed as a reference with each Cy3-labeled T7 product and

concentrated.

Yeast whole-genome spotted ORF microarrays (Microarray

Centre, Toronto, ON) were pre-hybridized as described [51], and

hybridized as recommended by the vendor [51,52]. Microarrays

were scanned on an Agilent 2565 Microarray Scanner, and the

TIFF files processed using GenePix 5.

Median feature and background intensities in both the Cy3

sample channel and Cy5 reference channel for every spot were

analyzed by custom Perl scripts. Background-corrected intensities

were calculated in each channel for those spots that met minimum

signal requirements, with the intensities expressed as a fraction of

the total signal intensity in each channel. The final intensity value

for each ORF was calculated by averaging the ratio of sample

channel to reference channel intensities across the replicate spots

for each ORF on each array.

Gel Shift Assay
Dot6 was isolated by recombinant expression and GST affinity

purification. Sequence encoding the Myb homology domain of

Dot6 (amino acids 22–278) was amplified from S. cerevisiae genomic

DNA using primers that added SmaI and NotI sites to the ends of

the PCR product. The PCR product was cloned into the

corresponding sites of expression vector pGEX4T-3, which

provides an N-terminal GST tag, and transformed into E. coli

strain BL21. Overnight cultures grown in LB broth+50 mg/mL

ampicillin were diluted 1:100 in fresh media, grown to an OD600

of 0.5, induced with 1 mM isopropyl-b-D-thiogalactoside, and

incubated an additional 1.5 hr. Cells were pelleted by centrifuga-

tion and lysed with BugBuster Protein Extraction Reagent

(Novagen) with 12.5 mg/mL DNaseI (Roche), 200 mg/mL lyso-

zyme (Roche), and complete protease inhibitor (Roche). GST-

Dot6 was purified from the soluble fraction remaining after

centrifugation using Microspin GST Purification Columns (Amer-

sham) according to the manufacturer’s protocols, eluted with

10 mM glutathione in 50 mM Tris-HCl (pH 8.0), and stored at

220uC.

Purified protein was incubated for 1 hr at room temperature

with 25 ng/mL salmon sperm DNA, 0.5 nM target bDNA, and 0–

500 mM unbiotinylated competitor DNA in 150 mM NaCl

Binding Buffer. The binding reactions were electrophoresed on a

5% polyacrylamide gel, transferred to nylon membrane, and

analyzed using a Lightshift Chemiluminescent EMSA Kit (Pierce)

according to the manufacturer’s protocols.

Chromatin Immunoprecipitation
We inoculated a 400 ml culture of SC+2% glucose to a density

of OD600 = 0.12 and grew the cells to OD600 = 0.4 at 30uC. Cells

were harvested by vacuum filtration and transferred to an equal

volume of prewarmed SC media containing no glucose and

incubated at 30uC for 80 minutes. Cells were fixed by addition

of formaldehyde to a final concentration of 1% and incubated

for 20 min at room temperature followed by incubation for

5 min with 0.25 M glycine. Cells were harvested by centrifuga-

tion, washed with ice cold PBS buffer, frozen in liquid nitrogen,

and stored in 280uC. We resuspended cells from frozen pellets

in pre-spheroplasting buffer (100 mM Tris pH 9.0, 10 mM DTT

added freshly), incubated the suspension at 10 min at room

temperature, harvested cells and resuspended them in spher-

oplasting buffer (50 mM KH2PO4/K2HPO4 pH 7.5, 1.0 M

sorbitol, 10 mM DTT added fresh) containing 0.25 mg/ml

zymolyase 100T (Seikagaku Corp, Japan). Cells were incubated

at 30uC until converted to greater than 95% spheroplasts (ca.

30 min) and then disrupted by vortexing with an equal volume of

glass beads. Lysates were sonicated using W-220 Ultrasonics

Sonicator at power setting of 2.5 for 8 cycles of 10 sec each. The

TAP-tagged protein and associated chromatin were immuno-

precipitated using IgG-Sepharose beads (Amersham) overnight

at 4uC. The chromatin cross-links were reversed by incubation at

65uC for 6 hrs and precipitated DNA was purified using QIAgen

PCR Cleanup Kit (Valencia, CA). Quantitative PCR analysis

was conducted using an Applied Biosystems 7900 instrument.

Primers for each gene were designed to be less than 100 bp and

to encompass all the PAC motifs present in the promoter of the

individual gene. The enrichment of occupancy at a gene’s

promoter was calculated as the ratio of the fraction of input

DNA present in the immunoprecipitate relative to the fraction

input of ACT1 promoter DNA present in the same immunopre-

cipitate.
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