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Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder characterized by motor symp-
toms resulting from the loss of dopamine-producing neurons in the brain. Currently, there
is no cure for the disease which is in part due to the heterogeneity in patient symptoms,
trajectories and manifestations. There is a known genetic component of PD and genomic
datasets have helped to uncover some aspects of the disease. Understanding the longi-
tudinal variability of PD is essential as it has been theorised that there are different trig-
gers and underlying disease mechanisms at different points during disease progression.
In this paper, we perform longitudinal and cross-sectional experiments to identify which
data modalities or combinations of modalities are informative at different time points. We
use clinical, genomic, and proteomic data from the Parkinson’s Progression Markers Ini-
tiative. We validate the importance of flexible data integration by highlighting the varying
combinations of data modalities for optimal stratification at different disease stages in
idiopathic PD. We show there is a shared signal in the DNAm signatures of participants
with a mutation in a causal gene of PD and participants with idiopathic PD. We also show
that integration of SNPs and DNAm data modalities has potential for use as an early
diagnostic tool for individuals with a genetic cause of PD.

Introduction
Parkinson’s disease (PD) is a heterogenous, progressive, multisystem neurological disor-
der that affects the nervous system. It is most commonly characterised by a range of motor
symptoms, primarily involving difficulties with movement, however a wide variety of non-
motor symptoms also exist. PD has a complex pathophysiology, but these disease pathways
culminate in the gradual death of neuronal cells, causing a deficit in dopamine [1].

One notable aspect of PD is the variability between individuals with the disease. PD is
characterised by core motor syndromes of tremor, rigidity, bradykinesia and postural insta-
bility. The onset, trajectory and experience of these symptoms among people varies greatly.
For example, some patients experience a rapid progression to disability and others following a
relatively benign course [2]. While PD medications do not cure the disease, they do help with
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some of the day-to-day motor symptoms, however the time period for which they are effective
varies between patients also [3].
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Identification of mutations in single genes have aided the understanding of PD with
approximately 30% of cases being attributed to a patients’ genetics [4]. For example, specific
variants in the LRRK2, GBA, and PINK1 genes are associated with PD [3]. This motivates
the use of omic measures for uncovering novel insights into the pathology of PD. Omic data
modalities capture genetic and/or biomolecular profiles; analyses of these data has resulted
in many novel findings in PD. Craig et al. (2021) found early alterations between the gene
expression of PD patients and healthy individuals [5]. Similarly, Kern et al. (2021) found
that non coding RNA’s can have diagnostic and prognostic power in PD individuals [6].
These mutations in single genes are not 100% penetrative, and despite these advances, recent
GenomeWide Association Studies of PD have had conflicting results. Walters et al. (2023)
found no genome wide significant loci for PD in the China Kandoori Biobank with a popula-
tion of 105,408 Chinese individuals [7]. Conversely, in a population of 2478 Chinese individ-
uals, Pan et al. (2023) found 19 associations with PD including genome wide significant loci
in LRRK2, SNCA, and GBA [8]. Currently, there is no known exogenous or genetic trigger for
all PD patients that causally results in the loss of dopaminergic cells.

An explanation that has been hypothesised is that the disease mechanisms of PD change
over time [1]. Longitudinal variability poses significant challenges in both the biological
understanding and treatment of PD. This heterogeneity necessitates a flexible approach that
can incorporate multiple sources of information at a given stage of PD. The Parkinson’s Pro-
gression Markers Initiative was created for this reason. It consists of longitudinal clinical,
genomic, and imaging data from over 900 PD cases, 800 Prodromal (PL) (cases without
a clinical diagnosis for PD, but early indicators that they will go on to develop it) and 230
Healthy Control (HC).

We propose a flexible integrative approach which can include both genomic modalities
and the longitudinal component of the PPMI dataset. Previous multi-modal research has
achieved good prediction accuracy using the PPMI dataset. Chan et al. (2022) achieve perfect
disease stratification using a model which incorporated multiple omic and image datasets [9].
A review by Gerraty et al. (2023), on multi-modal integration approaches in the PPMI dataset,
found that clinical and neuroimaging datasets were the most commonly used modalities [10].
They further identified that few machine learning focused papers use the longitudinal struc-
ture of the PPMI study. A possible reason for this is due to restricted patient coverage when
incorporating image data. Chan et al. identify that the dataset they utilised is small and heav-
ily skewed to PD patients [9]. Given the time-consuming nature and expense of collecting
image data, this is not surprising.

In this analysis, we integrate omic datasets such as mRNA and SNPs with clinical and pro-
teomic information using a flexible network taxonomy that allows retention of the maximum
number of patients. We represent the integrated modalities as a Patient Similarity Network
(PSN) and use an Graph Convolutional Network (GCN) architecture for disease stratification.
We group patients into those with a mutation in a known causal gene for PD, those who have
a sporadic onset of the disease, and finally a combination of both. In each case we attempt to
classify individuals as either having PD, being PL, or a HC. We perform experiments cross-
sectionally across 4 time points over the course of the first three years of a patient’s disease
post diagnosis. We assess the best combination of modalities at each time point and contrast
the findings between the three groups. Finally, we train longitudinal models on a subset of
genetic PD patients who have data at all time points. The goal of this experiment is to assess
if the learnt disease signatures remain consistent across the 4 time points.
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1. Methods
Multi-Omic Graph Diagnosis (MOGDx)
MOGDx, shown in S1 Fig, is a flexible tool to integrate multiple omic measures and perform
classification tasks. It uses a patient similarity measure to identify patients who have simi-
lar molecular, epigenetic, and demographic disease characteristics and performs node clas-
sification using a GCN.The performance of MOGDx was benchmarked on cancer data and
achieved state-of-the-art performance compared to similar research [11].

There are two main components in the MOGDx framework; PSN generation and Graph
Convolutional Network with Multi-Modal Encoder training and classification. A single PSN
is built per modality. Feature selection is performed, and similarity is measured between these
features using Pearson correlation, where suitable, otherwise Euclidean distance. Each PSN
is constructed from the similarity matrix using the k nearest neighbours algorithm. Similar-
ity Network Fusion (SNF) is then used to combine individual PSN’s into a single network. As
is common practice, all patient information is used to construct the network, with train, val-
idation and test labels created during the training phase of the GCN-MME [12,13]. In this
approach, non-informative features are discarded during the similarity calculation to discour-
age uniform similarity scores for modalities such as DNAm which will have a large number of
redundant or similar features.

The fused PSN and the modalities are input into the GCN-MME for training and classifi-
cation. Each modality is compressed using a two layer encoder. The first layer of the encoder
is of fixed length, with the second layer being tuned to each modality by performing a hyper-
parameter search. The compressed encoded layer of each modality is then decompressed to
a shared latent space using mean pooling. This methodology follows similar encoder archi-
tectures established in other works [14,15]. Median imputation is also performed at the sec-
ond layer of each encoder to retain patients if they are missing from that modality. The shared
latent space corresponds to the patient node features, which are combined with the PSN and
input into the GCN for classification. The GCN-MME is trained under the semi-supervised
setting for graph neural networks outlined by Hamilton (2020) [16]. For a detailed description
of the MOGDx architecture, please refer to Ryan et al. 2023 [11].

MOGDx is a suitable tool to perform analysis on the PPMI dataset due to its flexibility. It
can integrate any number of modalities, whilst simultaneously retaining the maximum num-
ber of patients possible, in contrast to other existing methodologies. As discussed by Chan et
al. (2022) and as per Table 1, there are fewer HC participants [9]. Moreover, not every par-
ticipant will be present in each modality at each time point. In order to avail of the full PPMI
dataset, a method which can incorporate the maximum number of participants is required.
MOGDx achieves this by utilising SNF and imputation to retain patient nodes without a large
degradation in performance [11]. MOGDx also provides a high level of interpretability. Due
to the flexibility of integration, ablation experiments can be performed to identify the most
predictive modalities. As feature selection is performed in the MOGDx pipeline, these fea-
tures can be further analysed to identify important pathways, traits or interactions of the
target application.

PPMI dataset
Data was obtained from the publicly available PPMI dataset [17]. The participant count
per year, modalities analysed and number of raw features per modality are summarised
in Table 1. In total, 6307 samples from 2188 participants were included in the analysis.
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Table 1. Breakdown of PPMI dataset by number of participant and modality features.
Parkinson’s Disease (PD) Prodromal (PL) Healthy Control

(HC)
Total

Genetic Idiopathic Genetic RBD Hyposmia
Participant Count
Year 0 465 631 633 97 91 270 2187
Year 1 244 448 423 50 35 203 1403
Year 2 282 365 705 36 22 180 1590
Year 3 198 360 348 36 19 166 1127
Total 1189 1804 2109 219 167 819 6307
Modality Raw Feature Count Feature Count post Processing Method of Feature Selection

Genetic +
Idiopathic

Genetic Idiopathic

mRNA 52338 29791 24251 33664 padj < 0.05
miRNA 40194 3206 2995 3152 padj < 0.05
SNP 841 20 20 20 None
DNAm 805434 300k 300k 300k |𝜔| > 0
Protein 4785 4785 227 4785 |𝜔| > 0
Clinical 6 6 6 6 None
MDS-UPDRS 88 63 63 63 |𝜔| > 0
padj is the false discovery rate in differential expression. |𝜔| is the absolute coefficient weights in penalised elastic net regression.

https://doi.org/10.1371/journal.pcbi.1012857.t001

Participants in the analysis were identified as PD, PL or HC and by disease subtype of genetic,
idiopathic, Rapid eye movement Behaviour Disorder or hyposmia.

The four genomic measures analysed, namely Messenger RNA, Micro RNA, DNAMethy-
lation (DNAm) and Single Nucleotide Polymorphisms, were generated from whole-blood
samples by PPMI. Each genomic dataset was further processed in a complimentary bioin-
formatics pipeline, if available. For example, DNAm was normalised using the wateRmelon
package in R [18]. See Ryan et al. (2023) for more detail on how specific genomic modali-
ties were handled [11]. In general, processing included the removal of zero variance or miss-
ing features, normalisation, imputation of missing values and conversion from categorical to
numerical features. The top 300k most variable CpG sites were retained to allow computation
on this dataset to fit into memory. For the same reason, a principal component analysis was
performed on the SNPs dataset to reduce the dimensionality of the dataset, and the first 20
PC’s were retained.

Genomic datasets were supplemented with additional measures of 1472 Cerebral Spinal
Fluid (CSF) protein markers extracted from participants and clinical descriptors. Clinical
descriptors included individual phenotypes of age, sex and years of education; These were
supplemented with measures for smoking, alcohol and BMI generated from DNAm profiles
[19]. These DNAm profiles were derived from models trained on up to 5087 individuals in a
national study in Scotland and tested on two separate cohorts also based in Scotland [19]. The
Movement Disorder Society Unified Parkinson’s Disease Rating Scale by Goetz et al. (2008)
is a measure of disease severity in those with PD and PL [20]. This scale combines measures
relating to both motor and non-motor symptoms of PD. It consists of both self-assessment
and clinical assessments and is a proxy of disease stratification [20]. It was used as a baseline
comparative model to identify if the biological signal for PD found in the blood is stronger
than clinical assessment using MOGDx. These modalities were similarly processed for feature
selection, conversion and normalisation.

As per Table 1, there were two methods for feature selection. Where suitable pairwise lin-
ear regression between the three strata was performed using the DESeq2 package in R [21].
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In other modalities, penalised elastic net regression was performed using the glmnet pack-
age in R [22]. Differentially expressed genes with a statistically significant FDR (padj < 0.05)
and logistic regression coefficients with an absolute weight greater than zero were used as
selected features in the similarity calculation. The number of features selected depended on
the subgroup being analysed. If no informative features were found, all features were retained.

Table 1 shows the participant availability per year. The time points cover the first three
years of the disease in the PD cohort. The first time point (labelled year 0) corresponds to
participants with PD who have had a diagnosis for less than 2 years, have not begun taking
any PD medication and are not expected to require PD medication for at least 6 months [17].
Those in the genetic subgroup of PD have a mutation in one of three genes: LRRK2, SNCA
or GBA. Idiopathic individuals do not have mutations in any of these three genes. PL partici-
pants have been identified as being of high risk for the disease, but have not yet met a clinical
threshold for diagnosis. The first time point, year 0, in this cohort corresponds to their enrol-
ment in the study. The genetic PL subgroup also have a mutation in one of the three afore-
mentioned genes as aligned with the genetic PD subgroup. As per Table 1 the PL participants
in the genetic subgroup far outnumber the participants in the RBD and hyposmia subgroups.
Participants in these groups have one of two non-motor symptoms associated with PD. RBD
is a sleep disorder and hyposmia is a smell disorder, both of which have been identified as
early indicators for PD [23,24]. HC participants were screened by PPMI to ensure they did
not meet the criteria for either PD or PL. As with PL, their first time point, year 0, aligns with
their enrolment in the PPMI study. PD idiopathic and PL genetic are the two most prevalent
subgroups in the dataset. As identified in Chan et al. (2022) there are fewer HCs compared to
PD and PL however the numbers presented in Table 1 show higher counts compared to their
analysis which was subset to participants who had image data available [9]. A distinguish-
ing factor of this analysis is the utilisation of the longitudinal data in the PPMI dataset. As
per Table 1, over time, the number of participants decreases across all strata and subgroups.
This is in part due to participant dropout (n = 401), missing samples for a participant at a time
point or the transition from PL to a clinical diagnosis for PD (n = 33). Summary of the criteria
for participant stratification and disease subgroups are summarised in S2 Fig.

Cross-sectional and longitudinal experiment design
In this analysis, we perform both cross-sectional and longitudinal experiments at 4 time
points over three years. In all experiments we classify whether participants have PD, are PL
or are a HC. We perform cross-sectional experiments on all participants, regardless of their
subgroup and on two subsets based on participants’ subgroup. The first subset, referred to as
genetic, includes PD and PL participants in the genetic subgroup. The other subset, referred
to as idiopathic, includes participants in the idiopathic PD, RBD and hyposmia subgroups.
HC participants are included in both subsets as a control. We use a brute-force approach,
testing all combinations of modalities in each experiment to identify the modalities at each
time point with the highest accuracies and F1 scores. For fairness of comparison, we train
each model independently and perform cross-validation on each model to obtain standard
errors for each models’ performance. We also account for differences in the number of par-
ticipants by using F1-score and comparing each model to a baseline, which only predicts the
most common class. In this manner, we can fairly attribute improved performance due to the
inclusion or exclusion of a modality. Where two models achieve comparable performance,
we report the model which includes the greatest number of participants. The top perform-
ing model at each time point, per subgroup is reported in Table 2 and shown in Fig 1 with all
model’s performance reported in S1 File.
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Table 2. Cross-sectional performance of MOGDx in different subgroup experiments.
Modalities Number of

Participants
Accuracy F1 score Improvement

in Accuracy
Genetic +
Idiopathic
(All)

Year 0 DNAm + SNP +
mRNA + miRNA

1515 0.630± 0.019 0.665± 0.017 0.110± 0.018

Year 1 DNAm 548 0.624± 0.020 0.667± 0.032 0.111± 0.02
Year 2 Clinical + DNAm 542 0.694± 0.037 0.717± 0.034 0.166± 0.037
Year 3 DNAm 493 0.712± 0.018 0.699± 0.048 0.146± 0.018

Genetic Year 0 DNAm + SNP 489 0.789± 0.036 0.753± 0.04 0.419± 0.036
Year 1 DNAm + SNP 443 0.867± 0.018 0.835± 0.02 0.472± 0.018
Year 2 DNAm + SNP 432 0.866± 0.031 0.837± 0.032 0.477± 0.031
Year 3 DNAm + SNP 365 0.841± 0.034 0.811± 0.038 0.403± 0.034

Idiopathic Year 0 SNP + miRNA 667 0.681± 0.031 0.752± 0.008 0.069± 0.031
Year 1 CSF + DNAm + SNP 582 0.720± 0.039 0.776± 0.035 0.122± 0.039
Year 2 CSF + Clinical +

DNAm
399 0.805± 0.022 0.770± 0.022 0.246± 0.022

Year 3 CSF + DNAm 360 0.764± 0.022 0.721± 0.021 0.183± 0.022

https://doi.org/10.1371/journal.pcbi.1012857.t002

In the longitudinal analysis, we repeat the best performing cross-sectional experiment on
the genetic PD (n = 70) and genetic PL (n = 84) subgroups. Once again, HC (n = 150) are
included as a control. This analysis is restricted to participants who are present at each time
point in at least one of the included modalities. Only the optimal combination of modalities
which maximised both accuracy and patient retention was analysed. This was identified by
averaging the F1 scores of each cross-sectional model across all time points. A model inte-
grating these modalities is trained and tested at each time point. These models are then tested
on unseen networks and modalities of the same patients but from the alternative time points.
Participants were split into training and test sets, thus performance for all models at all time
points are reported on the same test set. Networks were reconstructed during this phase using
only the features selected at the test time point. For example, when testing the year 3 network
at year 1, the network being tested is reconstructed only using the features selected at year 1.
This is undertaken to assess if the biological signal learnt at one time point is present at other
time points.

2. Results
Performance and evaluation
The performance metrics used to compare the classification performance of MOGDx were
accuracy, F1 score and improvement in accuracy. The F1 score was calculated by the mean
F1 score of each class, weighted by the size of that class. Improvement in accuracy is a met-
ric used to compare how much the accuracy improved compared to a baseline model which
only predicts the most common class. Stratified k-fold cross validation was performed with
5 randomly generated splits to obtain the mean and standard deviation metrics reported.
Within each split, the training set was further randomly split into training and validation sets
to produce an overall train/validation/test split of 68%/12%/20% respectively.

Amulti-modal approach is optimal when stratifying individuals with PD
over time
The optimal combination of modalities at each time point in each subgroup are reported in
Table 2 and shown in Fig 1 as the best model. Confusion matrices are also provided in S3–S5
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Fig 1. Performance of Best vs. Baseline (MDS-UPDRS) models at each time point. (A) Idiopathic & Genetic,
(B) Genetic, (C) Idiopathic. The best model in each subgroup at each time point corresponds to the combination of
modalities reported in Table 2. The performance of the MDS-UPDRS baseline models are reported in S1 File.

https://doi.org/10.1371/journal.pcbi.1012857.g001
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Figs for multi-modal performance assessment. The results from the cross-sectional exper-
iments favour a multi-modal approach. The power of flexible integration when stratifying
participants in the PPMI dataset with PD is apparent as all 6 modalities are included in at
least one experiment. In Table 2, only two experiments, years 1 and 3 with all participants
(genetic + idiopathic), do not integrate modalities. In Fig 1, performance in the combined
genetic + idiopathic and in the idiopathic subgroup alone are significantly poorer than the
MDS-UPDRS baseline model. Only the genetic subgroup achieves a consistent improve-
ment in accuracy greater than the MDS-UPDRS assessment. This could motivate the use of
these modalities for early disease diagnosis, as motivated below. The combination of CSF and
DNAm in the idiopathic subgroup shows promising performance, particularly later in the dis-
ease course. Comparing to a model trained on the MDS-UPDRS assessment is a difficult task,
given it consists of clinical assessment scores of both motor and non-motor symptoms [20].
Thus, the results show encouraging performance when integrating combinations of modalities
in subgroups of PD.

Disease signatures for PD can be learnt from whole-blood samples and
protein markers in PPMI study participants
Table 2 shows there is an improvement in accuracy compared to a model which predicts the
most common class in all experiments. This improvement increases with time, indicating an
increased biological signal for PD as the disease progresses. In both genetic and idiopathic
subgroups, years 1 and 2 are the most predictive time points. This could indicate that these
time points are capturing both early and late signatures of PD. This is particularly evident in
the idiopathic subgroup, where there is a change in predictive modalities over time, with com-
mon modalities early and late in the disease. The SNPs modality is predictive early, whereas
protein CSF markers along with DNAm are more prominent in later stages. This supports
the work of Wüllner et al. (2023) who found that there may be different disease mechanisms
at different stages of PD and highlights the necessity of flexible modality integration [1]. The
caveat is that the prediction accuracy at year 0 in this subgroup is low.

Conversely, in the genetic subgroup, the modalities which are most predictive do not
change with time. SNPs are a fixed description of participant’s genetic status [25] and the sub-
population of participants that carry pathogenic mutations with varying penetrance in the
PD and PL groups are likely to share other features across their genomes that influence the
extent and nature of the onset of PD symptoms. The ability of SNPs derived signatures alone
to distinguish between PD/PL and HC participants in our study but not between PD and PL
participants supports this idea. We demonstrate that this further separation can be achieved
by inclusion of an additional modality, in this case DNA methylation. Whether the biological
signal learnt changes over time requires further work to understand the drivers of variability
in DNAm at each time point. The integration of these two modalities outperforms the MDS-
UPDRS baseline, highlighting the predictive power of using whole-blood samples to extract
genomic information relating to a neurological disease. Overall, we show there are disease
signatures early, but particularly late, in the blood of individuals with PD, despite it being a
neurological disorder.

There are possible shared DNAm signatures in the idiopathic and genetic
disease subgroups of PD
As per Table 2, there is a clear genetic driver in participants who have a mutation in a causal
gene of PD. This highlights the homogeneity between participants in this subgroup. Con-
versely, the idiopathic cohort is heterogenous, as this group combines participants with
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Table 3. Longitudinal experiments performance metrics.
Time Point Model Tested

Accuracy / F1 Year 0 Year 1 Year 2 Year 3
Time Year 0 0.816 / 0.785 0.803 / 0.774 0.816 / 0.781 0.803 / 0.769
Point Year 1 0.855 / 0.839 0.908 / 0.882 0.829 / 0.794 0.816 / 0.780
Model Year 2 0.868 / 0.844 0.789 / 0.756 0.855 / 0.820 0.829 / 0.800
Trained Year 3 0.921 / 0.899 0.921 / 0.908 0.934 / 0.916 0.974 / 0.965

https://doi.org/10.1371/journal.pcbi.1012857.t003

unknown and likely different causes of PD. Despite these significant differences between
participant subgroups, most experiments include DNAm as a predictive modality, with the
idiopathic subgroup at year 0 being the only experiment where it is not included. Given this
prominence, it indicates the presence of epigenetic modifications between PD, PL and HC
participants. When considering all participants (genetic + idiopathic), there is a mix of a
homogeneous and a heterogeneous group, which makes learning very difficult. Despite this,
there is a robust improvement in accuracy between 10% and 20% across all time points, as
per Fig 1. This suggests that there may be a shared signal between the two subgroups in the
DNAmmodality. A possible explanation for the decreased performance compared to the
two subgroups is that the additional information added by other integrated modalities is not
shared between the two subgroups. In order to confirm if the signal being learnt is similar,
more research needs to be conducted to identify the common discriminating DNAm features,
however our results suggests common signatures in the DNAm of genetic and idiopathic PD
participants.

An integrative model trained at a late disease stage could form a viable
early diagnostic tool for individuals with a genetic predisposition for the
disease
In the cross-sectional experiments, we show the metrics for classifying participants with a
mutation in a causal gene of PD to be very promising. As per Fig 1 and Table 2, the combi-
nation of DNAm and SNPs achieves a consistently high accuracy, F1 score and improvement
in accuracy. These results motivate the integration of these modalities for early disease detec-
tion. We performed longitudinal experiments on a subset of participants from the genetic
group who are present in either DNAm or SNPs at each time point. These experiments were
designed to identify the optimal time point to train such a diagnostic tool and if the disease
signal learnt early in the disease is present later and vice versa.

Table 3 highlights that an early PD detection model should be trained later in the disease
course. Both the accuracy and F1 scores increase with models that are trained at later time
points. Optimal performance was observed by the model trained at year 3. Poorest perfor-
mance was observed by the model trained at year 0, with the performance of models trained
at years 1 and 2 being comparable. S6–S9 Figs show the multi-modal performance of each
model at each time point. These figures highlight the improved discrimination between PD
and PL participants for models trained later in the disease course.

In Fig 2 the within class accuracy is reported at each time point with interconnecting bands
showing incorrect model predictions. We can see the model misclassifies more PD patients
as PL at earlier time points, as denoted by the thickness of the red band (Fig 2A). We also
assessed the longitudinal behaviour of the model to see whether it consistently identified the
disease class of participants as PD, PL and HC throughout the time course (Fig 2B). There
is a subset of ~35% PD participants who are the most difficult for the model to classify. This
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Fig 2. Patient stratification for model trained at year three. (A) Within class accuracy and predictions, with the interconnecting bands showing incorrect
model predictions and the thickness of the bands reflecting the number of patients misclassified. (B) The percentage of times the model correctly classified an
individual patient. The sharp decline in the PD class shows there is a subset of ~65% of PD participants who are more easily identified at all time points.

https://doi.org/10.1371/journal.pcbi.1012857.g002

subset only has either 1 or 2 correct classifications, whereas both the PL and HC classes main-
tain ~90% accuracy at all time points. The HC class is the easiest to predict. As mentioned,
both PD and PL participants have a genetic risk variant for the disease, thus, the SNPs modal-
ity can easily discriminate between them and the HC participants. The main differentiation
between the models is their ability to distinguish PD from PL participants. As mentioned,
the accuracy in predicting PD participants decays the further away in time you test the model
from when it was trained. This can be observed both by the sharp gradients of the PD par-
ticipants when assessing the number of consecutive correct predictions of the model and the
decrease in accuracy over time in Fig 2A. Conversely, the PL class have much more stable and
consistent predictions across all time points. This is evident in Fig 2A with the number of PL
participants correctly classified being less variable over time and the flatter gradients in the
consistency of predictions in Fig 2B.

In Table 3, we show there is a much stronger signal discriminating PD from PL participants
later in the disease course. This finding is expected as the PD participants, on average, will
have a more severe disease at year 3 than they will at year 0. What these results therefore show
is that by year 3 we have found a very accurate threshold for differentiating PD participants
from PL. When we then back-propagate this threshold by testing the model over time, we
find that the PL participants maintain a high predictive accuracy, but some PD participants
cross this threshold and are misclassified as PL. As stated, differences between these groups
can be largely explained by differences in their DNAm.Thus, we can attribute these findings
to epigenetic modifications occurring in participants with PD as their disease progresses.

3. Discussion
In this paper, we applied an integrative network framework and artificial intelligence to the
PPMI dataset. The PPMI dataset is an observational, international study, consisting of mul-
tiple data modalities, with the goal of identifying markers of PD to accelerate disease modi-
fying clinical trials [17]. We used clinical, genomic, and proteomic data to include numerous
patient samples and conducted cross-sectional and longitudinal stratification of participants
who have PD, have an early indication of developing PD (PL), or were a HC.
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We found that an integrative approach is optimal when performing disease stratifications
for PD. Our models show a strong preference for including multiple modalities. It is clear that
there is not adequate information in any one modality to accurately capture sufficient variabil-
ity in PD at all time points. This highlights the importance of integrating multiple sources of
information to capture different components of the heterogeneity in PD. Flexibility is also a
key characteristic of this framework. Our approach allows us to test all modalities individu-
ally and all combinations of modalities at each time point. This allows us to perform ablation
experiments to identify the most informative modalities at each time point.

The idiopathic subgroup contains individuals with no known cause or genetic associa-
tion with PD. This makes them a very heterogeneous group as there could be a vast number
of different disease mechanisms at play, which may not be captured by the clinical, genomic
or proteomic data. It is therefore unsurprising that the accuracies achieved when integrating
genomic data is lower, however our results show a disease signature is learnt when stratify-
ing this subgroup. For this subgroup, our model identified CSF as very informative. Unlike
whole-blood samples, that can only contain biomolecules that pass through the blood brain
barrier, data derived from CSF likely contains a richer biomolecular complement that more
closely mimics signatures in the brains of idiopathic PD participants. CSF was included in
three experiments in the idiopathic subgroup, despite it only being available in a relatively
low number of participants. Unfortunately, only one participant in the genetic subgroup had
a CSF sample available. Thus, it is unknown if CSF is informative in the genetic subgroup of
the PPMI dataset. As a result, it was not included in any genetic subgroup analyses and its
effect was likely obscured in the joint genetic and idiopathic analysis. It is known that CSF is
a good marker for PD as multiple CSF measures, in particular CSF 𝛼-synuclein, are known
to be good prognostic measures of PD [26]. The build up of 𝛼-synuclein is well established
in the pathology of PD, particularly later in the disease course, which mirrors our findings
of CSF being more predictive later in the analysis [3]. It is still possible that there is a genetic
cause of PD in this cohort and we also show that different genomics are informative at differ-
ent stages of PD in the idiopathic subgroup. This supports the theory, by Wüllner et al. (2023),
that the pathology or mechanisms of PD may change over time in this group and highlights
the importance of flexibility when integrating different modalities [1].

There is a clear genetic driver in participants who have a mutation in a causal gene of PD.
The genes of interest were LRRK2, GBA and SNCA, and are known to be associative with PD
[3,27]. The genetic influence on this group is far more prominent, and we show it can be dis-
tinguished with high classification accuracy using genomic data. A combination of DNAm
and SNPs was identified as the most informative at all time points, highlighting a robust sig-
nal contained in the integration of these modalities. These results reflect the homogeneity
between participants in this subgroup and the power of using a patient similarity approach.

There was a strong preference in all models for including DNAm irrespective of disease
subgroup. DNAm was included in most optimal models in the cross-sectional experiments.
This prominence indicates that DNAm is predictive of PD at all time points. Considering the
importance of DNAm in both genetic and idiopathic groups separately and combined sug-
gests that there could be an overlapping signal contained in this modality. As DNAm is a
measure of epigenetics, it suggests that there is common environmental or behavioural fac-
tors in both genetic and idiopathic groups which explains some aspect of their PD. Further
research to identify the main drivers of variability in DNAm in the two subgroups separately
and combined should be conducted to identify these factors.

We show that training a model which integrates SNPs and DNAm later in the disease
course could form a viable early diagnostic tool for individuals with a genetic association for
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PD. Genetic variance will be captured in the SNPs modality, thus making the HC partici-
pants easy to stratify. The variance which discriminates PD from PL is largely contained in
the DNAmmodality. DNAm is the process of binding methyl groups to sites in an individ-
ual’s DNA, resulting in alteration of expression [28]. It provides an epigenetic signature which
can be inherited, associated with a disease and, depending on the site, reversed. Conditional
to the DNA site affected, epigenetic modifications can occur slowly, meaning it can take a
number of years for the effect of PD to be seen in a participant. The PPMI dataset does not
take into account individual participant trajectories. For example, two participants with PD
may be recruited and diagnosed at the same time but can have different disease courses. These
facts mirror our findings that a better threshold for diagnosing PD is obtained later in the dis-
ease course. This is evident from our model, as we found the accuracy achieved when predict-
ing the PL class is robust when testing the model at earlier time points. Conversely, there is a
deterioration in classification accuracy of the PD group when testing the same model at ear-
lier time points due to PD participants being misclassified as PL. Thus, by year 3, it appears
the average disease state of a participant with PD in the PPMI dataset has progressed.

Diagnosing PD is a still an ongoing challenge of the disease, and being able to perform
accurate early diagnosis would be a major step forward in its management. Diagnosis of PD
in a clinical setting still involves the development of motor symptoms, by which time over
60% of dopamine neurons within specific regions of the basal ganglia may have been lost [29].
Pagan (2012) motivates that early detection can improve outcomes for PD patients by slow-
ing disease progression and limiting its effect on their quality of life [29]. In the PPMI study,
genomic data was generated using whole-blood samples from participants. The advantage of
using whole-blood samples is that they are minimally invasive and cost-effective. The disad-
vantage is that the biological signal may be quite weak for a neurological disorder in the blood
due to the blood-brain barrier. Despite these limitations, we have shown excellent accuracy
at all time points, making this a promising and viable approach to develop an early diagnostic
tool for PD.

There are limitations to the model presented in this analysis. It is preferable that the sen-
sitivity of the PD class rather than the specificity be accurate, as is the case here. If the sensi-
tivity is high it means that the model is more likely to misdiagnose a PL participant as a PD
which is preferable to misdiagnosing many PD participants. It cannot be determined how
accurate this model is prior to a clinical PD diagnosis. This analysis is limited by the longitu-
dinal time points of the PPMI dataset. Tracking the accuracy of this model for PL participants
who go on to develop PD is a promising avenue of future research to further develop an early
diagnostic tool. Further research also needs to be conducted in a dataset other than the PPMI
dataset to measure the robustness of these findings. There is potential for survivor bias in the
participants included in the longitudinal analysis due to the use of a GCN model. A GCN is
a transductive graph neural network algorithm, meaning all nodes have to be present during
training and testing [30]. As a result, all participants are required to be present at each time
point in order to be included in this longitudinal analysis. This leads to potential survivor bias,
as participants will have survived the disease until at least year 3 of this analysis. Future imple-
mentations should look towards inductive graph neural network algorithms which do not
require all nodes to be present during training. This will allow us to train models on unseen
datasets and include all participants at each time point, thus eliminating survivor bias.

4. Conclusion
This study highlights the importance of flexible integrative approaches to the analysis of PD.
We have shown that there is a signal for PD present in genomic and proteomic data obtained
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from whole-blood samples. We have shown this both in a homogeneous group with a clear
genetic driver for the disease and also in a more heterogeneous idiopathic group. We have
achieved non-zero improvements in accuracy which are comparable to the MDS-UPDRS
assessment baseline in the idiopathic group and significantly improved on this baseline in
the genetic group. We have done so with models that do not account for the effects of medi-
cation or individual PD participant trajectory. We have identified DNAm as an informative
omic measure in all individuals with PD and have proposed a model which could be used as
an early diagnostic tool for individuals with a genetic predisposition for the disease. In sum-
mary, our research shows that an integrative network framework can be used to perform
longitudinal stratification in PD.

Supporting information
S1 Fig. Graph convolutional network - multi-modal encoder architecture (GCN-MME).
The GCN-MME takes as input a fixed network and any number of modalities. The nodes in
the network correspond to patients, and each patient is present in at least one modality. The
modalities are encoded for dimensionality reduction using a two layer encoder. After the sec-
ond layer, median imputation is performed to include patients missing from that modality but
included in the network and at least one other modality. There is a shared latent embedding
between the encoders, and the imputed second layers of each encoder are joined using mean
pooling. This shared latent embedding forms the node features for the GCN. Patient classifica-
tion is performed using the GCN with the loss back propagated through the entire GCN, thus,
training each encoder in series with the GCN.
(TIF)

S2 Fig. Breakdown of clinical diagnosis criteria and disease subtypes.
(TIF)

S3 Fig. Confusion matrix for best MOGDxmodels from idiopathic and genetic combined
subgroups at each time point.
(TIF)

S4 Fig. Confusion matrix for best MOGDxmodels from genetic subgroup at each time
point.
(TIF)

S5 Fig. Confusion matrix for best MOGDxmodels from Idiopathic Subgroup at each time
point.
(TIF)

S6 Fig. Confusion Matrix for MOGDxmodel trained at Year 0 and tested at all time
points.
(TIF)

S7 Fig. Confusion Matrix for MOGDxmodel trained at Year 1 and tested at all time
points.
(TIF)

S8 Fig. Confusion Matrix for MOGDxmodel trained at Year 2 and tested at all time
points.
(TIF)

S9 Fig. Confusion Matrix for MOGDxmodel trained at Year 3 and tested at all time
points.
(TIF)
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S1 Table Optimal latent dimension embeddings per modality.

Table 4.
MMEModality Reduced Dimension
mRNA miRNA DNAm CSF Clinical SNP MDS-UPDRS
32 16 32 16 4 8 8

https://doi.org/10.1371/journal.pcbi.1012857.t004

S1 File. Supplementary file of all model experiment results.
(CSV)

S2 File. Supplementary description of MOGDxmodel.
(PDF)
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