
ID: pcbi.1012836 — 2025/3/12 — page 1 — #1

PLOS COMPUTATIONAL BIOLOGY

OPEN ACCESS

Citation: Amaral AVR, Wolffram D, Moraga P,
Bracher J (2025) Post-processing and weighted
combination of infectious disease nowcasts.
PLoS Comput Biol 21(3): e1012836.
https://doi.org/10.1371/journal.pcbi.1012836

Editor: Samuel V. Scarpino, Northeastern
University, UNITED STATES OF AMERICA

Received: August 02, 2024

Accepted: January 30, 2025

Published: March 3, 2025

Peer Review History: PLOS recognizes the
benefits of transparency in the peer review
process; therefore, we enable the publication of
all of the content of peer review and author
responses alongside final, published articles.
The editorial history of this article is available
here: https://doi.org/10.1371/journal.pcbi.
1012836

Copyright: © 2025 Amaral et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the
original author and source are credited.

Data availability statement: The nowcast data
for all individual models are available at

RESEARCH ARTICLE

Post-processing and weighted
combination of infectious disease
nowcasts
André Victor Ribeiro Amaral

 

 

1,2, Daniel Wolffram3,4, Paula Moraga1,
Johannes Bracher

 

 

3,4∗

1 CEMSE Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia, 2 School
of Mathematical Sciences, University of Southampton, Southampton, United Kingdom, 3 Institute of
Statistics, Karlsruhe Institute of Technology, Karlsruhe, Germany, 4 Computational Statistics Group,
Heidelberg Institute for Theoretical Studies, Heidelberg, Germany

∗ johannes.bracher@kit.edu

Abstract
In infectious disease surveillance, incidence data are frequently subject to reporting
delays and retrospective corrections, making it hard to assess current trends in real
time. A variety of probabilistic nowcasting methods have been suggested to correct for
the resulting biases. Building upon a recent comparison of eight of these methods in an
application to COVID-19 hospitalization data from Germany, the objective of this paper
is twofold. Firstly, we investigate how nowcasts from different models can be improved
using statistical post-processing methods as employed, e.g., in weather forecasting. Sec-
ondly, we assess the potential of weighted ensemble nowcasts, i.e., weighted combi-
nations of different probabilistic nowcasts. These are a natural extension of unweighted
nowcast ensembles, which have previously been found to outperform most individual
models. Both in post-processing and ensemble building, specific challenges arise from
the fact that data are constantly revised, hindering the use of standard approaches. We
find that post-processing can improve the individual performance of almost all consid-
ered models both in terms of evaluation scores and forecast interval coverage. Improv-
ing upon the performance of unweighted ensemble nowcasts via weighting schemes,
on the other hand, poses a substantial challenge. Across an array of approaches, we
find modest improvement in scores for some and decreased performance for most, with
overall more favorable results for simple methods. In terms of forecast interval cover-
age, however, our methods lead to rather consistent improvements over the unweighted
ensembles.

Author summary
Infectious disease surveillance data are often subject to reporting delays, which cause
recent data points to be incomplete. This leads to spurious dips towards the end of
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incidence time series, and hampers the real-time assessment of trends. Statistical now-
casts aim to predict how many cases will still be added to the record and thus reveal
current trends. In an application to COVID-19 hospitalization data from Germany, we
study two extensions to classic disease nowcasting. Firstly, as it is known that nowcasts
often have systematic shortcomings, such as biases or too narrow uncertainty inter-
vals, we develop statistical post-processing methods inspired by similar approaches
from meteorology. We find that these lead to quite consistent improvements in now-
casting performance. Secondly, previous research has shown that simple unweighted
averages of nowcasts from different models can achieve more robust performance than
individual models. We assess if this can be further enhanced by weighting member mod-
els in a data-driven manner. Here we find that it is very challenging to improve upon
unweighted averages. We discuss possible reasons for this phenomenon, which in the
forecasting literature is known as the “forecast combination puzzle”.

https://github.com/KITmetricslab/
hospitalization-nowcast-hub. The code used to
reproduce the results presented throughout this
paper is available at https://
github.com/avramaral/ensemble_learning.
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1. Introduction
Real-time surveillance plays a critical role in monitoring and analyzing the spread of infec-
tious diseases, but the availability of timely and accurate data remains a challenge. The nature
of data collection and reporting introduces delays, which cause recent data points to be
incomplete and trends difficult to assess. Statistical nowcasting methods can be employed to
predict by how much recent values will be corrected upwards.

Such methods have been extensively employed in various infectious disease settings,
including dengue [1–3], HIV [4] and outbreaks of gastrointestinal diseases [5]. During the
COVID-19 pandemic, the topic received increased attention [6–9] as many countries and
health authorities faced similar challenges. The present work builds upon a systematic com-
parison of nowcasting methods in a real-time application to German COVID-19 hospitaliza-
tion incidences [10]. For this study, a complete set of daily probabilistic nowcasts from eight
models and over a six-month period (from November 2021 to April 2022) was compiled,
which we use to study two related research questions.

Firstly, we develop statistical post-processing methods for infectious disease nowcasts, sim-
ilar to existing methods from weather forecasting [11,12]. Post-processing aims at correcting
systematic shortcomings of predictions from individual models, like biases and dispersion
errors. In our case study, underdispersion of forecasts, i.e., too narrow prediction intervals,
was the most common shortcoming of models. In order to suitably transform model outputs,
an additional statistical model is fitted to past nowcast and observation pairs. Secondly, we
address ensemble nowcasts, which combine different individual nowcasting models. Simple
unweighted nowcast ensembles have been found to perform favourably in [10], raising the
question whether further improvements can be achieved by weighting different models in a
suitable manner. Data-driven weighting of ensemble members is an active area of research in
infectious disease forecasting [13–15]. For instance the US CDC have used weighted forecast
ensembles to inform public health decision making during the COVID-19 pandemic [16].
To date, however, evidence on the benefits relative to simple unweighted ensembles remains
mixed [16,17]. This echoes the broader statistical literature, where it has been pointed out that
the estimation of ensemble weights comes at a cost which may not necessarily be outweighed
by the benefits [18].

In our application to German COVID-19 hospitalization incidences, we find that post-
processing of infectious disease nowcasts leads to quite consistent improvements across now-
casting methods and horizons. This holds both for nowcast calibration in terms of interval
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coverage rates and for score-based evaluation. Data-driven weighting of nowcast ensem-
bles, on the other hand, proves to be a very challenging task. Exploring a variety of weighting
methods, we find consistent improvements in calibration. In terms of evaluation scores, how-
ever, we obtain modest improvements for some approaches, and considerable deterioration
of performance for others. The more successful weighting schemes tend to be simple, while
added complexity rarely translates to improvements.

The remainder of this paper is structured as follows. In Sect 2, we describe our applied
setting and highlight the challenges of dealing with incomplete data. In Sect 3, we intro-
duce the notation used throughout the paper, present the post-processing and ensemble
modeling approaches, and discuss the specific challenges posed by data revisions. Sect 4
shows the obtained results based on the previously introduced post-processing and ensem-
ble methods applied to the German COVID-19 hospitalization data. Lastly, in Sect 5,
we discuss our results and comment on the limitations and possible extensions of our
work.

2. Motivation: COVID-19 hospitalizations in Germany
For illustration we briefly sketch our applied nowcasting setting, to which we will return in
Sect 4. We are concerned with the 7-day COVID-19 hospitalization incidence [19]. These data,
updated daily by Robert Koch Institut [20], played an important role in pandemic planning in
Germany especially in fall and winter 2021/2022. Temporarily, this indicator even served to
determine the necessary level of non-pharmaceutical interventions via a set of thresholds [21].
The 7-day hospitalization incidence is defined as the number of new COVID-19 cases regis-
tered by local health authorities over a 7-day period which ultimately led to a hospitalization.
Hospital admission is not required to have taken place during the same 7-day period and may
in fact occur considerably later. This somewhat unintuitive definition, which was chosen as
“a compromise between timeliness and data quality” [22], implies that hospitalization counts
are not aggregated by the day of admission, but by the day of case registration (see Sect 2.1 of
[10] for a more detailed account). As a consequence, the delay problem described in Sect 1 is
particularly pronounced for this indicator: an additional delay between the date of case reg-
istration and the date of admission is added on top of the actual reporting delay for the hos-
pitalization. This results in strongly incomplete values of the hospitalization incidence for
recent dates, and a characteristic dip at the end of the time series. As detailed in [10], data are
corrected upwards over prolonged periods of time, and may still change months after initial
reporting.

Fig 1 illustrates the nowcasting task and nowcasts generated in real time using three differ-
ent methods. The black lines show data as available when the respective nowcast was issued.
The red line shows a later version of the time series including retrospective completions. Light
grey lines show unrevised data where for each date only the initial value reported on that
same date is shown (implying that the latest value of the black and grey lines coincide). Now-
casts, i.e., predictions of completed incidence values, are shown as coloured bands. These have
been collected in the German COVID-19 Nowcast Hub (https://covid19nowcasthub.de), a
collaborative modelling project involving eight independent modelling groups. The Nowcast
Hub aimed to provide reliable assessments of recent trends via daily updated nowcasts, but
also to conduct a systematic methods comparison [10]. The analyses in the present paper will
be based on the study period of this comparative evaluation (November 29, 2021, through
April 29, 2022). Overall, we consider eight different individual (i.e., stand-alone) models from
the project, which are described briefly in Sect A in S1 Text. Moreover, unweighted median
and mean ensembles are available, see Sect 3.5.1.
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Fig 1. Illustration of the nowcasting task and nowcasts from three different models (KIT, LMU, and a mean ensemble) on February 01, March 01, and April 01,
2022, respectively. Black lines show data as available in real time on the respective forecast date, with the characteristic dip due to delays. The red line shows the data
as completed later (40 days after the end of the displayed period). Point nowcasts and 50% and 95% uncertainty intervals are shown in colors.

https://doi.org/10.1371/journal.pcbi.1012836.g001

As can be seen from Fig 1, different methods produce nowcasts with different characteris-
tics. The KITmodel, shown in the left panel, issued rather wide uncertainty intervals, while
the intervals from the LMUmodel (middle panel) were considerably more narrow. The right
panel shows the mean ensemble nowcast, which represents an unweighted combination of all
eight models and has uncertainty intervals of medium width.

3. Methods
In this section, we introduce basic concepts and notation on probabilistic disease nowcasts
and their evaluation. Moreover, we describe the methods employed for post-processing and
ensemble forecasting, and discuss the particularities arising from the fact that observations are
subject to revisions.

3.1. Notation for probabilistic nowcasting
Denote by x1,… , xT, a daily time series of interest. In our application, xt is a rolling sum over
trailing 7-day windows, but is nonetheless indexed by days. We assume that xt is not directly
observable in real time. Instead, on day t, we observe a preliminary version xtt. This value
is subsequently revised each day, with xt+dt denoting the value as available on day t+d. We
assume that data are only subject to revisions up to D days after the fact, so that

xt = xt+Dt .

In our application, we use D = 40, and as revisions arise from delayed reports they are typ-
ically upwards. The hospitalizations added to the record with a delay of d days correspond to
the increment xt+dt – xt+d–1t . It is common to arrange the increments in a reporting triangle [7],
but for our purposes it is more straightforward to use the above notation.

At time t⋆, the nowcasting task consists in predicting xt⋆ ,… , xt⋆–D+1, i.e., the final val-
ues of those data points which are still subject to revisions. Nowcasts are typically based
on the corresponding partial data xt

∗

t∗ ,… , xt
∗

t∗–D+1, but may also take into account other
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information available at t∗. Throughout the paper, we will consider probabilistic now-
casts, stored as quantiles at pre-defined levels 𝛼1,… ,𝛼A (in our application, these are
0.025, 0.1, 0.25, 0.5, 0.75, 0.9, 0.975). For each level 𝛼, we denote the predictive 𝛼 quantile for
xt issued by modelm at time t⋆ by

qt
⋆ ,𝛼,m
t .

In the following, we refer to day t∗ as the “nowcast date” and day t as the “target date.”
Moreover, we denote by h = t – t⋆ the horizon of the nowcast, meaning that on day t∗, a now-
cast horizon of h = 0 days refers to target date t∗, h = –1 day refers to the previous day t∗ –1
and so on. Consequently, for nowcast horizon h = 0, only the initial reports are known at the
time of nowcasting, while for h = –1 reports with one day of delay are already available etc.
Note that unlike in classical forecasting settings, the horizons are negative in nowcasting, and
to enhance readability we will usually write “1 day back” rather than “horizon h = –1 day” etc.

3.2. Evaluation metrics
Post-processing and ensemble weighting typically require assessing the historical predic-
tive performance of different models. To this end, we will employ the weighted interval score
(WIS, [17]), which has been widely used to evaluate quantile-based predictions during the
COVID-19 pandemic (e.g., [23]). Denote by F a predictive distribution issued for a quantity x,
and by {q𝛼1 ,⋯, q𝛼A} the available quantiles of F. TheWIS is built upon the piece-wise linear
quantile score [24], also known as the “pinball loss.” For quantile level 𝛼, it is given by

QS𝛼(q𝛼, x) = 2 ⋅ [1(x≤ q𝛼) – 𝛼] ⋅ (q𝛼 – x),

where 1 denotes the indicator function. TheWIS is defined as the average quantile score
across levels,

WIS(q𝛼1 ,… , q𝛼A , x) = 1
A

A
∑
a=1

QS𝛼a(q
𝛼a , xt).

TheWIS is negatively oriented, i.e., smaller values are better. It represents a quantile-based
approximation of the continuous ranked probability score (CRPS; [24]) and can be inter-
preted as a probabilistic generalization of the absolute error. It is a proper scoring rule, mean-
ing that it encourages honesty of forecasters. As detailed in [17] and Sect B in S1 Text, the
WIS can be split into components for forecast spread, overprediction, and underprediction.
This will be used to characterize biases and dispersion errors of different models.

As in [10], we use relative WIS values with respect to a naïve baseline model to put average
scores into perspective. Here, the naïve baseline simply consists in setting all nowcast quan-
tiles to the currently known incomplete data value (i.e., our baseline corresponds to simply
ignoring reporting delays). The relative WIS is defined as

Relative WIS of modelm = average WIS achieved by modelm
average WIS achieved by the baseline model

.

E.g., in meteorology it is common to report skill scores, which correspond to
“1 – relative WIS”. We here prefer the relative WIS as it is easily displayed along with average
scores using a second axis.
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In addition to score-based evaluation, we assess the probabilistic calibration of now-
casts via interval coverage fractions (i.e. fraction of cases in which prediction intervals
contained the true value). These are reported for the central 50% and 95% prediction
intervals.

3.3. Including preliminary observations in nowcast evaluations
In nowcasting, information on the target quantity accumulates more gradually than
in classical forecasting. On day t∗, the WIS thus cannot be evaluated for target dates
t∗ –1,… , t∗ –D+ 1, even though some new information on xt∗–1,… , xt∗–D+1 has already accu-
mulated, with, e.g., xt∗–D+1 usually almost exactly known. Simply ignoring the respective
nowcasts in performance assessment would mean giving up on information which due to its
recency may be particularly relevant. We will assess the two following approaches to integrate
it into our post-processing or ensemble weighting methods.

• Simple imputation: In order to complete the partial observations xt
∗

t∗–1,… , xt
∗

t∗–D+1
on day t∗, an obvious strategy is to use up-to-date nowcasts. We thus employ pseudo-
observations defined as

x̃t
∗

t = qt
∗ ,0.5,mean
t .

We use predictive medians from the unweighted mean ensemble, denoted by mean,
which we know has rather reliable performance [10]. Intuitively speaking, rather
than comparing nowcasts issued during the last D–1 days to the truth, we assess how
strongly they already had to be revised in light of new data.

• Imputation with uncertainty:The simple imputation approach neglects the uncer-
tainty remaining in the mean ensemble nowcasts. In a second, more sophisticated
approach, we compare past nowcasts to all quantiles qt

∗ ,𝛼1 ,mean
t ,… , qt

∗ ,𝛼A ,mean
t . This can

be done using a generalization of the WIS described in Sect C in S1 Text. It is inspired
by a similar generalization of the CRPS which has been suggested by [25] to account for
observation errors in meteorological forecast evaluation.

3.4. Post-processing individual models
We now address the improvement of nowcasts from individual models via statistical post-
processing. To this end, we employ a simple re-scaling approach. Specifically, at nowcast time
t∗, the predictive 𝛼 quantile issued by a given model for target time t is transformed as

qt
∗ ,𝛼,post
t = xt

∗

t + 𝜙t∗–t,𝛼 × (qt∗ ,𝛼t – xt
∗

t ) , (1)

where we suppressed the indexm for the model. Scaling is thus only applied to the differ-
ence between the currently known value xt

∗

t and the predicted qt
∗ ,𝛼
t . In our application, we

will constrain 𝜙h,𝛼 > 0, which ensures that the nowcast quantile cannot fall below the already
known number of hospitalizations. In the most general formulation, the scaling 𝜙h,𝛼 is spe-
cific to the quantile level 𝛼 and the nowcast horizon h. While we also consider a more parsi-
monious formulation where a shared 𝜙𝛼 is used across horizons, we always keep it specific to
𝛼. The reason is that in case of of dispersion errors, corrections need to be upward for some
quantile levels and downward for others.
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The value of 𝜙h,𝛼 is determined via score minimization over a training periodR, i.e., it is
chosen such that the objective

∑
r∈R

QS𝛼(xr, qr+h,𝛼,postr ) (2)

is minimized. The setR includes days t∗ – R,… , t∗ – D for which definitive observations are
available. In our main analysis we use D = 40 and R = 90 days if individual-model nowcasts
have been available for this long. Otherwise we set R to the maximum feasible number, which
we ensure to be at least 70. Depending on the strategy chosen to handle incomplete data,R
may in addition contain days t∗ –D+1,… , t∗ –1, for which pseudo-observations are employed
in the evaluation. In the case of imputation with uncertainty, we use the previously mentioned
adaptation of the quantile score from Sect C in S1 Text. As in [16], we determine 𝜙h,𝛼 via a
grid search.

3.5. Combination of nowcasting models
To combine nowcasts fromM models into an ensemble we use mappings of the form

qt
⋆ ,𝛼,ens
t = f(qt

⋆ ,𝛼,1
t ,… , qt

⋆ ,𝛼,M
t ),

i.e., the ensemble quantile is computed from the respective member quantiles at the same
level. In the following, we elaborate on different specifications of f, from simple unweighted
to sophisticated data-driven schemes. As discussed e.g., in [16], the space of possible formula-
tions and parameterizations is vast. Our rationale is to explore a set of distinct, but reasonably
simple approaches which could be operated in practice.

3.5.1. Unweighted combination The simplest approach is given by unweighted aggrega-
tion, as in the mean ensemble given by

qt
∗ ,𝛼,ens
t = 1

M

M
∑
m=1

qt
∗ ,𝛼,m
t . (3)

Paralleling [10], we will also consider a median ensemble, which uses the median rather
than the mean to aggregate quantiles from different models. We opt for direct aggregation of
predictive quantiles, also called Vincentization [26], as the available submissions consist exclu-
sively of quantiles. This makes it difficult to compute, e.g., linear pools or other forms of mix-
ture distributions. Vincentization is commonly used in collaborative disease forecasting (see
e.g., [16]), and more details on its properties can be found in [27].

3.5.2. Post-processing-based approaches An obvious approach to improve upon the
unweighted ensemble is to harness the post-processing methods described in Sect 3.4. As the
order of post-processing and combination of forecasts is not interchangeable, we consider two
approaches:

• Post-process, then combine: If post-processing can improve upon individual mod-
els, one may expect a combination of post-processed models to be superior. We thus
consider unweighted mean and median ensembles of the post-processed members.

• Combine, then post-process: Alternatively, the different models can be combined
to an unweighted mean or median ensemble first, which is subsequently subject to
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post-processing. This is computationally cheaper as post-processing only needs to be
run once.

3.5.3. Direct inverse-score weighting A second rather straightforward strategy consists
in “direct inverse-score weighting” (DISW). We here generalize Eq (3) to

qt
∗ ,𝛼,ens
t =

M
∑
m=1

wt∗–t,𝛼,m × qt
∗ ,𝛼,m
t

while choosing the weights in a heuristic manner, setting

wh,𝛼,m =
1

QSh,𝛼,mR

∑M
i=1

1
QSh,𝛼,iR

. (4)

Here, QS
h,𝛼,m
R is the average quantile score for modelm, quantile level 𝛼 and horizon h

days during the training periodR from Eq (2). The rationale is that models with good histori-
cal performance (low average scores) should receive larger weights. As in Sect 3.4, we will also
assess a version with weights wm,𝛼 shared across horizons. Inverse-score weighting has been
used for COVID-19 forecasts in [28], where in turn it had been borrowed from the meteo-
rological literature [29]. An advantage of this approach is that it does not require any costly
optimization.

3.5.4. Adjustable inverse-score weighting Direct inverse score weighting has two obvi-
ous limitations. Firstly, it makes a strong assumption on how weights should depend on past
WIS scores. Secondly, as it is a convex combination of the models, no correction for biases
shared by all members is possible. If, for instance, all member models show a downward bias,
then so will the ensemble. We therefore render the approach more flexible by introducing
two additional parameters 𝜙h,𝛼 and 𝜃h,𝛼. We will refer to this as “adjustable inverse-score
weighting” (AISW). Combining ideas from Eqs (1) and (4), we set

qt
∗ ,𝛼,ens
t = xt

∗

t + 𝜙t∗–t,𝛼 ×
M
∑
m=1

wt∗–t,𝛼,m × (qt∗ ,𝛼,mt – xt
∗

t )

with weights defined as

wh,𝛼,m =
( 1
QSh,𝛼,mR

)
𝜃h,𝛼

∑M
i=1 (

1
QSh,𝛼,iR

)
𝜃h,𝛼 .

Here, 𝜙t∗–t,𝛼 can shift predictive quantiles up and down. As in the post-processing scheme
from Sect 3.4, scaling is only applied to the predictions of yet-to-observe hospitalizations,
while the current count xt

∗

t is not modified. If only one model is available, the approach is
thus equivalent to Eq (1). The parameter 𝜃h,𝛼 steers how strongly weights depend on past per-
formance. A value of 0 implies equal weighting as in Eq (3) (meaning that a simplified version
of AISW with 𝜃h,𝛼 = 0 is the same as the post-processed mean ensemble from Sect 3.5.2). Pos-
itive values of 𝜃h,𝛼 mean that more weight is given to models with good past performance. For
𝜃h,𝛼 = 1, the weights correspond to the DISW approach (4). Again, we also apply a simplified

PLOS Computational Biology https://doi.org/10.1371/journal.pcbi.1012836 March 3, 2025 8/ 24

https://doi.org/10.1371/journal.pcbi.1012836


ID: pcbi.1012836 — 2025/3/12 — page 9 — #9

PLOS COMPUTATIONAL BIOLOGY Post-processing and combination of infectious disease nowcasts

version where parameters are shared across horizons. The weights and scaling parameter are
determined via score optimization and a grid search as in Eq (2).

This approach is a variation of the one from [16]. It keeps the number of parameters mod-
erate and circumvents identifiability problems arising from strong correlations between quan-
tiles from different models (indeed, unconstrained quantile regression was poorly behaved in
our application). While [16] use an exponential transformation exp(𝜃h,𝛼 × QS

h,𝛼,m
R ), we opted

for a power relationship (1/QSh,𝛼,mR )𝜃
h,𝛼
. This way, Eq (4) nests into the general formulation.

We compared the exponential and power formulations in exploratory analyses and found
them to behave similarly.

3.5.5. Top-nmodel selection An alternative to explicit weighting is to restrict the ensem-
ble to a pre-specified number n of models which have shown the best performance (or, put
differently, to eliminateM–nmodels with weaker performance). At time t∗ and for each
quantile level 𝛼 and horizon h, we thus order models according to the average quantile
score QS

h,𝛼,m
R . Then, the n best-performing models are retained and averaged into a mean or

median ensemble without further weighting. We will explore different values of n, i.e., remove
weaker models one by one. As for the other approaches, we will also consider a simplified
version where all horizons are treated jointly.

4. Application to German COVID-19 hospitalizations
We now provide details on the COVID-19 hospitalization nowcasting task from Sect 2 and
highlight differences to previous work. This is followed by a performance assessment for the
various proposed methods. To keep the presentation structured, we provide some interpreta-
tion of the results already in the respective subsections rather than the discussion part.

4.1. Technical description of the nowcasting task
Nowcasting horizons, stratification and target. Paralleling [10], we will consider now-

casts up to 28 days back, i.e., at horizons h = 0,… , –28 days. These are available at the national
level, for the 16 German states and for 7 age groups (0–4, 5–14, 15–34, 35–59, 60–79 and 80+
years; pre-defined by RKI). We consider delays up to D = 40 days, i.e., nowcasts for target date
t aim to predict and are evaluated against

xt = xt+40t . (5)

As mentioned in Sect 3.2, nowcasts are stored as a set of quantiles at levels 0.025, 0.1, 0.25,
0.5, 0.75, 0.9, 0.975.

Study period. We consider nowcasts generated in a daily rhythm from November 29,
2021, to April 29, 2022. As all data-driven post-processing and ensembling methods require
some historical pairs of nowcasts and observations for training, we hold out the first 70 days
of this period. The performance evaluation is conducted over the remaining time period
(February 8, 2022 through April 29, 2022; i.e., 81 days). By leaving out 70 days, we ensure
that a minimum of 30 days of complete data is available for training the post-processing and
ensembling
methods.

Revision of nowcasting target definition. We note that in [10], a different target defi-
nition was used, and we provide a brief justification for this change. The previous definition
for target date t was the incidence value including all revisions made up to August 8, 2022
(i.e., 100 days after the last nowcasting date). With tmax as the index of August 8, 2022, this
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corresponds to

xt = xtmax–t
t .

This was meant as a “final value”, based on the assumption that no further revisions would
occur after this date. In reality, however, the data kept being revised upwards [10, Sect 3.7].
This is disadvantageous as revisions could accumulate over a longer time for target dates early
in the study period (tmax – t = 181 days, for February 8, 2021) and were thus overall stronger
than for later target dates (tmax – t = 100 days, for April 29, 2022). As already discussed in [10],
we therefore consider Eq (5) a more suitable and well-defined target. We opted for D = 40 as
this was the maximum delay most modelling teams assumed in their statistical analysis. For
the ILM team, who used D = 84, we obtained adjusted nowcasts with a matching maximum
delay.

4.2. Performance of original nowcasts fromWolffram et al. (2023)
We start by briefly summarizing the performance of the eight individual models and two
ensembles from [10] in our adapted setting. Fig 2 shows nowcasts issued by different mod-
els over time for two horizons (0 and 14 days back). Fig 3 displays average WIS values and
interval coverage fractions for national-level and stratified nowcasts. Note that the ILM and
RKI teams did not report nowcasts for states and ages groups, respectively. This figure is sim-
ilar to Fig 13 from [10], but refers to our shortened evaluation period. For a more detailed
account, we present results per age group along with comments for interpretation in Sect D in
S1 Text.

The mean and median ensembles achieve substantially better average WIS than all indi-
vidual models. Also, their prediction intervals, while not reaching nominal coverage, are
better calibrated. Most individual models have considerably too low interval coverage frac-
tions (right column). This reflects overly narrow prediction intervals, as also indicated by the
small dispersion components of the WIS. This pattern is particularly pronounced for the LMU,
RIVM and RKImodels, while the KITmodel is somewhat better calibrated (see also Fig 2).
The SZmodel has a large underprediction component of the average WIS, suggesting a down-
ward bias. We note that the WIS values for the stratified targets are lower on average because
the WIS is scale-dependent.

4.3. Performance of post-processed individual models
We employed the methods from Sect 3.4 to post-process the nowcasts from all eight individ-
ual models. In our main analysis, we used a maximum of R = 90 days for training. In Fig B in
S1 Text, we present results for a maximum of R = 60 days and without any maximum value
for R (finding that the improvements in average WIS when using data from more than R = 90
days are minor). Varying the analytical options described in Sect 3.3, we investigated the post-
processing approach with four different settings (see upper part of Table 1). These differ in
how yet incomplete observations are included into the training set (Sect 3.3) and whether the
scaling parameters are shared across horizons. For each version, we introduce a label which
we will use for referencing in the following (set in typewriter font).

The average WIS and coverage proportions for the post-processed models are presented in
Fig 4 for PP4 and Figs C–E in S1 Text for the other settings. Quite consistently across post-
processing specifications and models, the average WIS values decrease, the WIS components
are more balanced and the coverage rates are closer to the nominal values. Comparing Figs
C (PP1) and D (PP2) in S1 Text, we see that including yet incomplete observations into the
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Fig 2. National-level nowcasts 0 and 14 days back for the eight individual models, by target date.The red line shows the nowcasting target, i.e., the number of
COVID-19 7-day hospitalization cases after 40 days of retrospective corrections. The grey lines show the reported incidence counts at the time of nowcasting, i.e., after
0 (top) and 14 days (bottom), of retrospective corrections. Blue shaded areas represent nowcast intervals. This figure parallels Figs 5 and 6 from [10].

https://doi.org/10.1371/journal.pcbi.1012836.g002

training set is beneficial, yielding improved WIS performance for almost all models. The more
sophisticated imputation with uncertainty (PP3, Fig SF5) considerably increased computa-
tion times, but compared to simple imputation (PP2) had limited impact on the nowcasts and
their performance. The more flexible version PP4 with separate handling of different horizons
(Fig 4) results in slightly better overall performance.

We discuss results in more detail for the LMU and SZmodels which, as mentioned in
Sect 4.2, have specific dispersion errors and biases. For LMU, we notice that the spread com-
ponent of the WIS is larger than before, implying wider prediction intervals. We illustrate this
for same-day nowcasts with h = 0 in Fig 5 (first row, left column; consider the respective panel
of Fig 2 for comparison). The score improvements are consistent over nowcast horizons and
dates (Fig 5, first row, middle and right columns). For the SZmodel, although the overall WIS
is not drastically improved, the underprediction component is much smaller and the cover-
age rates are better than before. As can be seen for nowcasts 14 days back in the second row
of Fig 5, the post-processed SZ nowcasts no longer display a clear bias. The improvement in
WIS values is pronounced for more distant horizons, while for short horizons there is actually
a minor deterioration.

For the other models (Figs F–K in S1 Text), there are improvements in average WIS, but
they are less consistent over time and nowcast horizons. This holds especially for the KIT
model. As mentioned in [10], the main shortcoming of the KITmodel is an insufficient
handling of weekday patterns, leading to different biases on different days of the week. This
aspect cannot be corrected by our simple scaling approach.
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Fig 3. Model performance of original models and ensembles from [10]. Left: WIS (averaged over time points and horizons), split into components for under-
prediction, spread, and overprediction. A second axis at the top of the plot shows relative WIS with respect to a naïve baseline of no delay correction (see Sect 3.2).
Middle: WIS by nowcast horizon (averaged over time points). Right: Empirical coverage proportions (averaged over time points and horizons). The results are
reported for the national level (top row) and averaged across states (middle row) and age groups (bottom row).

https://doi.org/10.1371/journal.pcbi.1012836.g003
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4.4. Performance of ensemble approaches
We now turn to the performance of weighted nowcast ensembles. For the various approaches
presented in Sect 3.5, we again varied the way yet incomplete observations are used and
whether parameters are shared across horizons; see the summary in the bottom part of
Table 1. Note that due to extensive computing times, only a subset of approaches was applied
to the stratified nowcasts (marked with a star symbol, ⋆). As before, we used a maximum
value of R = 90 and assessed sensitivity to R = 60 and no upper limit on R (Fig M in S1 Text).
The performance of the various combination approaches is summarized graphically in Fig 6
for the national level and Fig 7 for age strata and states. A graphical display of nowcasts pro-
duced by selected approaches is given in Fig 8. The results are discussed in subsections paral-
leling the structure of Sect 3.5.

Table 1. Post-processing and combination approaches assessed in Sect 4. All methods are fitted to national-level
data, methods marked with a star symbol (⋆) are moreover applied to stratified data (age groups and states). The
“Label” column contains a short identifier used for brevity in the remaining text and figures.
Post-processing
Method Sec. Label Settings
Re-scaling 3.4 PP1 Scaling parameter 𝜙𝛼 shared across horizons while discarding

incomplete observations
PP2 Scaling parameter 𝜙𝛼 shared across horizons with simple

imputation
PP3 Scaling parameter 𝜙𝛼 shared across horizons with imputation

with uncertainty
PP4 Scaling parameter 𝜙t∗–t,𝛼 varying over horizons with simple

imputation
Combination
Unweighted 3.5.1 Mean Mean ensemble⋆

Median Median ensemble⋆

Post-processing-
based

3.5.2 Post-Mean Mean ensemble of post-processed models (PP4)

Post-Median Median ensemble of post-processed models (PP4)
Mean-Post Post-processed (PP4) mean ensemble
Median-Post Post-processed (PP4) median ensemble

DISW 3.5.3 DISW1 Weights w𝛼,mt shared across horizons, discarding incomplete
observations

DISW2 Weights w𝛼,mt shared across horizons, simple imputation⋆
DISW3 Weights w𝛼,mt shared across horizons, imputation with

uncertainty
DISW4 Weights wh,𝛼,m

t varying over horizons, simple imputation⋆

AISW 3.5.4 AISW1 Weights w𝛼,mt and scaling parameter 𝜙𝛼 shared across
horizons, discarding incomplete observations

AISW2 Weights w𝛼,mt and scaling parameter 𝜙𝛼 shared across
horizons, simple imputation⋆

AISW3 Weights w𝛼,mt and scaling parameter 𝜙𝛼 shared across
horizons, imputation with uncertainty

AISW4 Weights wh,𝛼,m
t and scaling parameter 𝜙h,𝛼 varying over

horizons, simple imputation⋆

Select-n 3.5.5 Select-n-
Mean1

Mean ensemble, model selection shared across horizons,
simple imputation

Select-n-
Median1

Median ensemble, model selection shared across horizons,
simple imputation

Select-n-
Mean2

Mean ensemble, model selection independent for horizons,
simple imputation

Select-n-
Median2

Median ensemble, model selection independent for horizons,
simple imputation

https://doi.org/10.1371/journal.pcbi.1012836.t001
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Fig 4. Performance of post-processed (PP4) individual-model nowcasts compared to the original versions, national level. Left: WIS (averaged over time points
and horizons). Right: Coverage proportions (averaged over time points and horizons). In the left and right panel, circles (○) represent the results for the original
models before post-processing, i.e., as in Fig 3.

https://doi.org/10.1371/journal.pcbi.1012836.g004

4.4.1. Unweighted ensembles As already evoked in Sect 4.2, the unweighted mean and
median ensembles outperform all individual models in terms of average WIS, and most of
them in terms of interval coverage. Even after post-processing (Sect 4.3), the average WIS of
all individual models remains inferior to the unweighted ensembles. For the following, the
two unweighted ensembles can thus be seen as the baseline upon which more sophisticated
combination approaches should improve.

4.4.2. Post-processing-based approaches The results achieved by unweighted averag-
ing of post-processed nowcasts (Post-Mean and Post-Median) and post-processing of
unweighted ensembles (Mean-Post and Median-Post) are similar, i.e., the order of post-
processing and averaging does not seem to be decisive. In terms of interval coverage, both
perform favourably. As can be seen from the WIS decomposition in the left panel of Fig 6,
this is achieved by a widening of nowcast intervals (see the increased spread components).
In terms of average WIS, however, the post-processing-based approaches are not only out-
performed by the unweighted ensembles mean and median, but even some post-processed
individual models. This is surprising given that post-processing improved the performance of
all individual models.

While it is hard to provide any definitive explanation for the observed decrease in per-
formance, one possible reason is that post-processing reduces the diversity of the ensemble.
It is often argued that ensembles work best if their members are diverse and contribute dis-
tinct signals [30]. By applying the same post-processing scheme to all members, or by glossing
over the ensemble nowcast with a single post-processing method, characteristics of the post-
processing method may dominate the ensemble characteristics, and diversity may be compro-
mised. As illustrated in Fig L in S1 Text, this is indeed the case in terms of pairwise approx-
imate integrated quadratic distances between model nowcasts (see Sect C in S1 Text on this
metric). In the case of post-processing the unweighted ensembles, it is also possible that the
margins for improvement by simple re-scaling are too modest in order to outweigh the cost of
estimating scaling factors (see also Sect 4.4.4).

4.4.3. Direct inverse score weighting The four considered variations of the direct
inverse-score weighting overall perform similarly to the unweighted ensembles, with some
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Fig 5. Illustration of post-processed nowcasts and their performance. Left column: Same-day nowcasts for the post-processed LMUmodel (top) and nowcasts 14
days back for the post-processed SZmodel (bottom). All nowcasts are at the national level and based on the post-processing scheme PP4. Middle column: Average
WIS before and after post-processing, by nowcast horizon. Right column: WIS (averaged over horizons) before and after post-processing, per target date. The two
dashed vertical lines represent December 30, 2021, i.e., the earliest target date, and February 8, 2022, i.e., the first nowcast date of the evaluation period. Scores before
February 8 (greyed out) only partly enter into the reported average scores (with nowcasts referring to this period but issued on February 7 or before excluded).

https://doi.org/10.1371/journal.pcbi.1012836.g005

modest improvements. The variant DISW4 (weights varying over horizons, simple imputa-
tion) has the lowest average score, but by a margin that should not be interpreted as a mean-
ingful difference. For the nowcasts stratified by age group and state, the results are overall
similar, see Fig 7. As we will see in the following, the simple DISW approaches overall achieve
the best performance of all considered combination approaches.

The uncertainty intervals of the DISW ensembles are somewhat wider than in the
unweighted ensembles; consider again the spread components in the left panel of Fig 6 as well
as the illustration of nowcasts in Fig 8. This results in improved calibration at the national
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Fig 6. Performance of unweighted and weighted ensemble approaches at the national level. Left: WIS (averaged over time points and horizons). For reference,
vertical lines indicate the performance of the best individual model with (dotted line) an without post-processing (solid line; in both cases RIVM). Middle: WIS
(averaged over time points) by nowcast horizon. Right: Coverage proportions (averaged over time points and horizons).

https://doi.org/10.1371/journal.pcbi.1012836.g006

and age group levels. Apart from this, however, the DISW forecasts look quite similar to the
unweighted mean nowcasts.

The weights assigned to the different models are quite close to uniform for the predic-
tive median, see the middle panel of Fig 9. For the 0.025 and 0.975 quantiles, weights are
more imbalanced and vary over time. The RIVMmodel, which tends to over-predict (see
WIS decomposition in Fig 3), receives little weight for the 0.025 quantile. The LMUmodel,
on the other hand, receives little weight for the 0.975 quantile, as it tends to underpredict.
This explains the aforementioned widening of prediction intervals. To illustrate the behaviour
when weights are only based on few historical nowcasts and observations, we also display the
initial period November 29, 2021, through February 7, 2023 (greyed out), which is excluded
from the evaluation. As could be expected, the weights fluctuate more strongly during this
period. Corresponding plots for the other DISW variations are shown in Figs N–T in S1 Text.

4.4.4. Adjustable inverse score weighting We now turn to the AISWmethod, which
unlike the DISW approach requires determining scaling and weighting parameters based on
past pairs of nowcasts and observations. In practice, this resulted in considerably increased
computational effort, but did not translate to gains in performance in terms of average WIS.
While the difference to the unweighted and DISW ensembles is not drastic, it is consistent
across specifications 1 through 4. The interval coverage rates are similar to those of DISW.

Fig 10 shows the estimated weights for setting AISW2. The corresponding plots for the
other AISW settings, along with the estimated weights aggregated by horizon or quantiles
(where applicable), are presented in Figs U–AA in S1 Text. Several observations can be made
from Fig 10. Firstly, the weights are less smooth over time than in Fig 9. In some instances,
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Fig 7. Performance of unweighted and weighted ensemble approaches at the state and age-group levels (averaged across strata). Left: WIS (averaged over time
points and horizons). Middle: WIS (averaged over time points) by nowcast horizon. Right: Coverage proportions (averaged over time points and horizons). Note
that due to extensive computing times, only a subset of approaches was applied to the stratified nowcasts (see Table 1).

https://doi.org/10.1371/journal.pcbi.1012836.g007

e.g., in early March for the 0.025 quantile, there are small jumps, which may indicate the pres-
ence of several local optima in the objective function (note that our grid search ensures that
we do not end up in a local optimum, but the global optimum can “jump” to a different local
optimum from one day to the other). For the 0.025 quantiles, the effective model weights (i.e.,
𝜙𝛼w0.025,m

t ) sum up to a value below one. The scaling parameter 𝜙𝛼 is thus below one and
leads to lower (more conservative) ensemble quantiles. For the predictive median, almost
no re-scaling takes place, while for the 0.975 quantile there is likewise some downscaling.
Compared to Fig 9, the differences between weights received by different models are exac-
erbated, i.e., the AISW ensemble emphasizes models with better historical WIS values even
more (meaning that the 𝜃h,w exceed one). This is especially pronounced for the 0.975 quantile,
where the RIVMmodel receives a large weight towards the end of our study period.

For nowcasts stratified by states and age groups (Fig 7), the performance of the AISW
approach is somewhat more favourable. For state-level nowcasts, in which case 16 times
more data are available to determine the weights in a data-driven way, the AISW achieves
minimally better scores than the unweighted ensemble and minimally worse than the DISW.
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Fig 8. Illustration of same-day nowcasts for the Mean, DISW4, AISW4 and Select-4-Mean2 ensembles. See
caption of Fig 5 for details on plot elements and Table 1 for details on the methods specifications.

https://doi.org/10.1371/journal.pcbi.1012836.g008
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Fig 9. Estimated weights for the 0.025, 0.5, and 0.975 quantiles based on the direct inverse-score weighting method DISW2 (weights shared across horizons, simple
imputation).Weights are shown for the national level. As in Fig 5, results preceding the actual evaluation period are greyed out.

https://doi.org/10.1371/journal.pcbi.1012836.g009

Fig 10. National-level weights for the 0.025, 0.5, and 0.975 quantiles based on the AISW 2method (weights and scaling parameter shared across horizons, simple
imputation). Due to the introduced scaling parameter 𝜙𝛼, the weights are not required to sum up to 1. The horizontal dashed line represents weight = 1.

https://doi.org/10.1371/journal.pcbi.1012836.g010

For age groups, in which case 6 times more data are available, the AISW ensembles again fall
behind the unweighted and DISW variations.

The results at the national and stratified levels indicate that the estimation of weighting
parameters may come at the cost of fluctuating and somewhat unstable ensemble weights. The
fluctuating nature of the weights may either indicate that there is not enough data to estimate
them reliably, or that there is not actually a temporally stable “right” configuration of weights.

4.4.5. Top-nmodel selection Lastly, we consider the ensembles based on selection rather
than weighting of members. As the user needs to specify the number n of maintained models
in advance, we assess the performance for all values n = 1,… , 8 (with n = 1 corresponding to
the selection of the top model only, and n = 8 corresponding to the unweighted ensemble).

In Fig 6, we show the results for n = 4, i.e., at each time point the better half of the models
(over the training period) is included in the ensemble, with selection performed separately
per horizon (Select-4-Mean2 and Select-4-Median2). A graphical illustration of
the respective nowcasts has been included in the bottom row of Fig 8. Despite some visually
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Fig 11. WIS (averaged over time points and horizons) for n = 1,… , 8 in the Select-n-Mean2 and Select-n-Median2models. Red circles show results
for model selection updated each day, as would be done in a real-time setting. For context, black circles show average values for all possible combinations of models
when keeping the selection fixed over time. The horizontal dashed line represents the average WIS achieved by the full ensemble with all eight member models.

https://doi.org/10.1371/journal.pcbi.1012836.g011

discernible differences to the unweighted ensembles (top panel), the average WIS values of
Select-4-Mean2 remain very close to those of the unweighted ensemble. Interval cover-
age rates are again somewhat improved. Fig 11 shows the overall WIS for the different values
of n = 1,… , 8 and the mean (left panel) and median (right panel) as the combination func-
tion. Red dots represent the results when the set of nmodels is updated every day, as would be
done in a real-time application. For context, we show the results for all possible combinations
of nmodels, keeping the selection of models constant over time, horizons and quantiles. Sev-
eral conclusions can be drawn from the plot. Firstly, performance overall improves the more
models are included into the ensemble, and only few model combinations at n = 3 through
7 achieve slight improvements over the full ensemble with n = 8. On the other hand, selec-
tion in real time (red dots) is always quite close to the optimum that could be achieved with
a time-constant model selection, and comes close to the full unweighted ensemble from n = 3
onwards.

In Fig AB in S1 Text, we present the corresponding results for the settings where the mod-
els are chosen jointly for all horizons (Select-n-Mean1 and Select-n-Median1).
Performance is overall somewhat weaker than when selection is done separately per horizon.

While again there is no clear improvement over the unweighted ensemble, our results
indicate that the effort necessary to maintain an ensemble model with numerous members
may be reduced by restricting it to a few well-chosen members after an initial performance
assessment.

5. Discussion
In this paper, we proposed and analyzed different post-processing and ensemble techniques
for the nowcasting of infectious diseases. In an application to COVID-19 hospitalization
numbers from Germany, we found that post-processing of individual models yielded per-
formance gains across almost all considered models and technical specifications. This held
both in terms of average WIS values and nowcast interval coverage. In this setting, we also
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found benefits in our proposed approaches to include yet incomplete data points into the fit-
ting of the post-processing model. Somewhat surprisingly, post-processing of unweighted
ensemble nowcasts did not yield improved performance, nor did post-processing of members
prior to ensembling. More generally, it proved very challenging to improve upon unweighted
mean and median ensembles. A straightforward direct inverse-score weighting approach led
to very minor improvements, while a more sophisticated approach with weights optimized
based on recent nowcast and observation pairs actually led to a decline in performance. Data-
driven restriction of the ensemble to models with good recent performance did not yield
improved performance either. On a more positive note, the results indicate that the size of the
ensemble, and thus the effort needed to maintain it, can be reduced without major losses in
performance.

In the present paper we attempted to cover a spectrum of methods of moderate complex-
ity which could be employed in practice. Many other extensions and alternative variations
could be explored (e.g., we did not attempt to weight post-processed member models). How-
ever, our general takeaway is that added complexity did not translate to improved perfor-
mance. Some more flexible approaches we explored, such as quantile regression with uncon-
strained weights for each model, proved to be intractable in our setting. To overcome this,
most of our approaches assumed that successful individual models should receive increased
weight, but this may not necessarily be the case. Other approaches to addressing collinear-
ity issues, such as clustering models into a small number of sufficiently distinct groups, could
be explored. Another promising avenue involves using machine learning methods that can
capture complex dependency structures while effectively counteracting overfitting.

More or less sophisticated weighting schemes being unable to outperform simple
unweighted ensembles is a common finding in the literature, and [31] have coined the term
“forecast combination puzzle” for this phenomenon. Various theoretical and empirical argu-
ments have been brought forward to explain it (e.g., [18,32]). The essence of these is that esti-
mated weights are often poorly identified and quite variable. This has a negative effect on per-
formance, which may exceed the cost of the bias inherent in uniform weighting. Estimation of
weights is thus less promising the closer the “true” weights are to uniformity.

A number of limitations of the present study need to be acknowledged. All our analyses
were conducted retrospectively rather than in real time. This introduces the risk of hindsight
bias and enabled us to explore approaches of higher computational cost than might have been
feasible in real time. Also, the evaluation period spans only roughly 12 weeks, and early on the
number of forecast and observation pairs available for training purposes was rather low. It is
possible that trained ensembles would work better with more training data available (though
it is not clear to which degree “old” training data will help improve nowcasts).

We moreover simplified our task in some respects and ignored a few challenges which
may arise in a real-time application. Firstly, occasional faulty submissions of individual mod-
els would need to be caught in operational use as they can strongly perturb weighted mean
ensembles (we note that median ensembles are more robust, but lend themselves less to
weighting). Similarly, missing submissions are not addressed. The considered post-processing
and combination methods were chosen such that they can relatively easily be extended to
account for missing submissions (see [16]), but it is unclear how this will affect the perfor-
mance of the ensemble.

Concerning the post-processing scheme, we note that our methods are unable to correct
some shortcomings of the original nowcasts which are easy to spot for the human observer.
Notably, the issues of the KITmodel related to weekday effects went uncorrected in our
scaling approach. Consequently, it was of little use to improve the KIT nowcasts.
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The fact that improved calibration (interval coverage) of post-processed and weighted
ensembles did not yield improved performance in terms of average WIS may also reflect
that this score is relatively insensitive to overconfident predictions (see discussion in [17]).
It would have been desirable to apply also other scores like the logarithmic score which is
known to penalize dispersion errors more severely. However, this was not feasible due to the
quantile-based format in which nowcasts were collected.

Supporting information
S1 Text Implementation details and supplementary results. Details on individual models,
detailed definitions of evaluation scores, supplementary figures on model performance.
(PDF)
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