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Abstract
The COVID-19 pandemic highlighted the importance of non-traditional data sources,
such as mobile phone data, to inform effective public health interventions and moni-
tor adherence to such measures. Previous studies showed how socioeconomic char-
acteristics shaped population response during restrictions and how repeated interven-
tions eroded adherence over time. Less is known about how different population strata
changed their response to repeated interventions and how this impacted the resulting
mobility network. We study population response during the first and second infection
waves of the COVID-19 pandemic in Chile and Spain. Via spatial lag and regression
models, we investigate the adherence to mobility interventions at the municipality level
in Chile, highlighting the significant role of wealth, labor structure, COVID-19 incidence,
and network metrics characterizing business-as-usual municipality connectivity in shap-
ing mobility changes during the two waves. We assess network structural similarities in
the two periods by defining mobility hotspots and traveling probabilities in the two coun-
tries. As a proof of concept, we simulate and compare outcomes of an epidemic dif-
fusion occurring in the two waves. While differences exist between factors associated
with mobility reduction across waves in Chile, underscoring the dynamic nature of pop-
ulation response, our analysis reveals the resilience of the mobility network across the
two waves. We test the robustness of our findings recovering similar results for Spain.
Finally, epidemic modeling suggests that historical mobility data from past waves can
be leveraged to inform future disease spatial invasion models in repeated interventions.
This study highlights the value of historical mobile phone data for building pandemic pre-
paredness and lessens the need for real-time data streams for risk assessment and out-
break response. Our work provides valuable insights into the complex interplay of factors
driving mobility across repeated interventions, aiding in developing targeted mitigation
strategies.
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Author summary
Population response to public health interventions during the Covid-19 pandemic exhib-
ited strong heterogeneities associated to socio-economic factors, labour structure and
demographics in multiple countries. As multiple waves of infections occurred, local
authorities had to rely on repeated interventions, which eventually eroded population
adherence to mobility restrictions, playing an important role in the evolution of local
epidemics. Here we aim at explaining how municipalities in Chile responded to two
different intervention periods in Chile in terms of their socio-demographic profiles,
epidemiological data and centrality metrics computed in the pre-intervention mobility
network. We find a significant association for network metrics in explaining mobility
reductions in the two periods of intervention, and despite differences of response in
terms of specific demographic profiles like age and gender, we show that the structure
of the Chilean mobility network from the pre-intervention period remained almost
unaltered across waves. From a public health perspective, our work has important impli-
cations for pandemic preparedness since it shows the advantage of re-using historic
mobility data for informing epidemic models to respond to future health threats.
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Introduction
The COVID-19 pandemic has significantly impacted people’s social and behavioral lifestyles
worldwide [1–3]. Indeed, people’s routines were affected by government-imposed restric-
tions aimed at mitigating the virus spread, as well as by individual decision-making processes
[4–6]. In both cases, adherence to non-pharmaceutical interventions (NPIs) varied signif-
icantly across the population and it was shaped by several factors, including social, demo-
graphic, economic variables, and epidemiological conditions [5,7–9]. Historically, mobility
data have been largely leveraged to inform spatial transmission models and perform importa-
tion risk assessment in such a complex framework [10–15]. In this context, large-scale mobil-
ity datasets became critical non-traditional tools routinely employed to measure and ana-
lyze the effects of non-pharmaceutical interventions (NPIs) aimed at curbing the spread of
SARS-CoV-2 on individual behaviors [16–20].

This was possible thanks to the wide availability of data from tech giants and telecommuni-
cations companies, providing real-time insights into population activity potentially linked to
the virus transmission. However, in the post-pandemic era, data accessibility is undermined
by the end of Data for Good programs, hampering our capacity to leverage up-to-date data
streams. As a result, the lack of data inevitably hinders our capacity to build sustainable tools
for pandemic preparedness and to respond to new epidemics in a timely fashion [21]. Given
their high value and ability to account for population-level heterogeneities in adherence to
public health interventions, it is thus crucial to profit from the historical mobile phone data
collected during the pandemic and to explore the possibility of re-using them for future anal-
yses and modeling [22,23]. There is a critical need to better understand and integrate human
behavioral change into our models to better inform future population-tailored strategies.

Previous works studied the resilience of mobility patterns following shocks, such as
extreme weather events [24,25], epidemics [2,15,26–28] or both [29]. Recent findings high-
lighted how demographic differences were associated to loss of adherence to repeated inter-
ventions [30,31] and to delayed recovery of baseline mobility patterns [27] jointly with local
GDP and population density [29], whereas some aspects of individual level visitation patterns
were never recovered [2], with different spatial and temporal impacts on urban and rural
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areas[28]. Recent insights proved that mobility network connectivity of US counties remained
almost unaltered during the first COVID-19 wave[22]. However, little is known about how
demographic-associated behavioral change due to repeated interventions may have impacted
the resulting mobility network structure, and this effect must be quantified.

In this study, we harness large-scale mobile phone data from Chile and Spain, two coun-
tries with different social segregation located on two different continents, collected during
the COVID-19 pandemic in a consistent fashion. First, we characterize the changes in the
mobility response of Chilean municipalities to interventions issued during the first and sec-
ond waves of COVID-19 by relying, on top of the variables already considered in the litera-
ture (such as wealth, labor structure, and demographics), on additional metrics derived from
the baseline mobility network. Our results suggest consistency of most factors across waves
despite the variability of a few others. We perform a network analysis to characterize the
mobility network’s resilience to interventions during the two COVID-19 waves in Chile and
Spain. Relying on epidemic modeling, we explore the possibility of reusing historical mobility
data to inform disease spatial invasion models of new epidemics.

Our findings represent a step towards enhancing pandemic preparedness by enabling the
re-use of non-traditional data sources, like mobile phone data, for predicting population
response in health emergencies. Our work sheds light on the dynamic nature of population
behavioral change to repeated interventions [30–32], and contributes to the design of tailored
public health policies in response to infectious diseases.

Materials and methods
Mobility data in Chile
OnWednesday, March 18, 2020, the Government of Chile announced the State of Alarm
[33], issuing non-pharmaceutical interventions (NPIs) as school closures and mobility restric-
tions on a set of municipalities, followed by further measures in the next weeks. The coun-
try passed to a tiered system of NPIs in July 2020 [34], but a fast resurgence of COVID-19
cases led the Government to announce a tightening of mobility restrictions on all regions on
April 1, 2021 [35]. For readability, we define the first two weeks of March 2020 as the baseline
period, b, representing the ”business as usual” mobility network. We let f be the first wave, the
four weeks following March 16, 2020, and s to be the second wave, the four weeks following
April 1, 2021. Our study focuses on the weekly average mobility flows in these periods.

Telefónica Chile provided mobility data for Chile in the form of eXtended Detail Records
(XDRs). This dataset records the starting time of a data-packet exchange session between a
device belonging to an anonymized user and geolocated cell phone towers. The dataset covers
the period fromMarch 1, 2020, to April 28, 2021. To minimize noise in the data due to spu-
rious stops not representative of a destination, e.g., devices stopping for a few minutes due to
traffic, we defined stays as devices connecting to the same tower for at least 30 minutes. We fil-
tered out data points not complying with this condition and obtained a dataset representing
users’ stays. We assigned cell towers to comunas (Chilean municipalities) using their coordi-
nates, and we counted as trips all devices switching to a new tower placed at least 500 meters
away. We discarded trips between two towers placed within the same municipalities; here, we
only focused on external mobility.

Mobility data in Spain
A national mobile phone operator collected mobility data for Spain, treated [36] and pub-
lished by the Ministry of Transport, Mobility and Urban Agenda of Spain,MITMA in a
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public and online repository [37]. The data describe the daily movements of individuals
between Spanish municipalities from February 21, 2020, to March 18, 2021. Municipalities
are mapped into a coarser spatial division in which small rural municipalities with low pop-
ulation density are grouped to include areas not covered by antennas [36]. This data collec-
tion is based on individuals’ active events, e.g., users’ calls, together with passive events, in
which the user’s device position is registered due to changes in the cell tower of connection.
Similarly to the data treatment we performed for Chile, these trips were aggregated using
users’ movements between consecutive stays of at least 20 minutes in the same area, disre-
garding trips of less than 500 meters [36]. Here, we focus on external mobility. Hence, we dis-
carded all records regarding trips within the same municipality, i.e., the diagonal of the OD
matrices.

Sociodemographic, epidemiological and mobility network metrics
for Chile
Chile is characterized by a high level of disparity in socio-economical traits, a high vari-
ability of climate conditions from North to South, and a strong urban-rural divide, with the
Metropolitan area of Santiago representing the most densely populated area of the coun-
try. This is reflected in high heterogeneities of wealth, educational level, median age, active
working population, and labor structure across Chilean comunas. In the context of the
COVID-19 pandemic, a complex interplay between the above spatial heterogeneities and
the epidemic characterized the population response to interventions, with the demographic
strata of the population behaving differently. To tackle these differences, we focused on
the inter-municipal mobility post-interventions in two separate periods in Chile. Finally,
we analyse the resulting mobility network of Chile during the two post-intervention peri-
ods and test the validity of our findings in an analogous case study in Spain. We refer the
reader to S1 Text for the Spanish case study results and details on the resilience metrics
employed.

Specifically for Chile, we collected most of the socio-demographic variables defined at
municipality level from the Chilean ‘Instituto Nacional de Estadistica’ (INE) [38], while the
municipal development index (IDC) was provided by the Universidad Autónoma de Chile
(UAC) [39]. As an illustrative example, among the variables obtained from the INE, the con-
tinuous variable urbanization defined as the percentage of the population living in urban-
ized areas, allows us to analyze the extent to which Chile’s urban-rural divide shaped pop-
ulation responses to interventions. The IDC is a composite index that encodes information
on the development and welfare of each municipality. Epidemiological data, i.e., confirmed
cases, active cases, deaths, and PCR tests by municipality of residence, were collected and
made available by the Chilean Ministry of Science [40]. We extracted two variables, namely
COVID-19 confirmed cases and PCR tests performed at municipality level, and aggregated
these records at a weekly level to minimize noise due to reporting delays and weekends. To
better represent the epidemic phases at municipality level, we averaged these data over the
four weeks of the two waves periods. We extracted deaths records from the database of the
Department of Statistics and Health Information (DEIS) and the Ministry of Health [41],
encoding the number of COVID-19 related deaths in each municipality. See Table 1 for a
comprehensive list of all variables collected.

To compare mobility between the first and second wave 𝛿2M defined in Eq 3, we defined
case increment as the relative increment of the variable new cases between the second and first
wave, instead of the incidence of cases.
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Table 1. All variables collected. List of all variables collected in our dataset by description, type, and source. The list
includes the socio-economic, epidemiological, and network metrics extracted from the mobility data. ∗: variable was
discarded post VIF test. Sources legends refer to [38] for INE, [39] for UAC and [40] for MinCiencia.
Variable Description Type Source
log(pop) logarithm base 10 of the population static INE
pop density population per square meters static INE
age median of the population age static INE
urbanization percentage of population living in urbanized

areas
static INE

gender ratio number of males divided by the number of
females

static INE

schooling median of schooling years of the population static INE
primary share of workers employed in the first sector static INE
secondary∗ share of workers employed in the second sector static INE
tertiary share of workers employed in the tertiary sector static INE
dependency ratio of non-employable over employable

population
static INE

employed share of employed population (above 15 years
old)

static INE

IDC municipal development index static UAC
new cases weekly total incidence of COVID-19 new

reported cases
dynamic MinCiencia

active cases∗ weekly average incidence of COVID-19 active
cases

dynamic MinCiencia

new deaths weekly total mortality of COVID-19 dynamic DEIS
test rate weekly average of PCR tests per 1000

inhabitants
dynamic MinCiencia

out-strength pc Sout, baseline out-strength per capita
(outbound trips pc)

static extracted

in-strength pc∗ Sin, baseline in-strength per capita (inbound
trips pc)

static extracted

out-path-length∗ ⟨lout⟩, baseline outbound-path-length
(peripherality)

static extracted

in-path-length ⟨lin⟩, baseline inbound-path-length
(peripherality)

static extracted

clustering c, baseline clustering coeff. (neighbors
interdependence)

static extracted

betweenness bc, baseline betweenness centrality (key for
connectivity)

static extracted

https://doi.org/10.1371/journal.pcbi.1012802.t001

Mobility data analysis
For both countries, we extracted weekly (and daily) origin-destination (OD) matricesMij,w

(Mij,d) encoding the total number of trips between municipalities i and j that occurred in
week w on day d. These matrices define a time-dependent weighted directed network where
nodes are municipalities, links are mobility routes, and link weights are the number of trips
occurred in the considered time interval. The weekly aggregated OD matrices will be the main
object of study of our work, whereas the daily OD matrices will only serve as a sensitivity test
on the time scale of aggregation.

We defined the weekly averaged flows for the three periods as follows:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

M̄ij,b = 1
2 ∑w∈bMij,w

M̄ij,f = 1
4 ∑w∈fMij,w

M̄ij,s = 1
4 ∑w∈sMij,w

(1)
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We computed for each municipality i the relative outbound mobility drop in the first and
second waves with respect to the baseline as:

ΔMi,f =
∑j≠i M̄ij,f –∑j≠i M̄ij,b

∑j≠i M̄ij,b
ΔMi,s =

∑j≠i M̄ij,s –∑j≠i M̄ij,b

∑j≠i M̄ij,b
(2)

Negative values of ΔMi,f reflect reductions in mobility from the baseline.
Analogously, we defined 𝛿2Mi for each municipality i as the relative change of the total

outgoing mobility from i observed during the second wave with respect to the first wave:

𝛿2Mi =
∑j≠i M̄ij,s –∑j≠i M̄ij,f

∑j≠i M̄ij,f
(3)

Negative values represent lower outgoing flows from municipality i during the second
wave with respect to the first wave. To account for municipalities centrality and interdepen-
dence in the baseline period (”business as usual”) network encoded by M̄ij,b, we defined stan-
dard network metrics, see Table 1 (we refer the reader to S1 Text Section Network metrics
for their mathematical definition). These metrics, computed on the baseline mobility net-
work, intrinsically capture physical connectivity and infrastructural limitations, which influ-
ence typical traffic patterns under a business-as-usual context. Infrastructural constraints are
thus implicitly reflected in the baseline mobility data and are encoded in the network metrics
employed as covariates.

Regression model
Spatial lag and linear regression models are performed exclusively on the Chilean case study.
First, we measured the Moran index [42] of the mobility drop ΔMi,P of each Chilean munic-
ipality i in Chile in the two periods P∈ {f, s}, first and second wave respectively, to measure
the influence of neighboring areas on the mobility change of Chilean comunas. We defined
spatial proximity of municipalities using a binary Fuzzy contiguity matrix [43,44]W, such
thatWij = 1 if and only if comunas i and j are neighbours. We found a Moran index of mobil-
ity change in the first wave period of IMf = 0.36 (pv < 0.001) and in the second wave period of
IMs = 0.22 (pv < 0.001). Hence, we employed a Spatial Lag model [45] to explain each munici-
pality i outbound mobility drop ΔMi,P (Eq 2) from the baseline period in the first and second
waves, P∈ (f, s) respectively. The model takes the general form:

𝚫MP = 𝝆W𝚫MP + 𝛽XP + 𝜖 (4)

where XP is the covariates matrix. The model covariates are the baseline mobility network
metrics (e.g. strength, clustering coefficient, betweenness centrality), sociodemographic vari-
ables (e.g. population density, gender and age distribution, urbanization level, labor struc-
ture), and COVID-related variables (e.g. incidence of new cases). As part of the epidemiologi-
cal variables, the second wave model features two additional covariates, namely the number of
deaths and the test rate, that were unavailable in the first wave. We refer the reader to Table 1
for a detailed description of the model variables. Differently from a linear model, an addi-
tional term weighted byW𝚫MP takes into account possible spatial autocorrelations, where
W is the spatial proximity matrix defined above. The magnitude of the regression coefficients
𝜌,𝛽 and their statistical significance are computed using a maximum likelihood estimator
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[44–46]. A statistically significant coefficient 𝜌means that spatial effects are present and the
response of municipalities to NPIs is also influenced by neighbouring areas.

To compare the two different waves, we implemented a linear regression in which the
dependent variable is now the relative change of the total outgoing mobility observed during
the second wave with respect to the first wave, 𝛿2M defined in Eq 3:

𝛿2M = 𝛽X + 𝜖 (5)

Where X is again the covariates matrix. In this case the magnitude and statistical signif-
icance of the regression coefficients have been computed using an ordinary least squares
estimator.

We standardized the covariates and performed a variance inflation factor test (VIF) [47] to
avoid multicollinearity among the covariates. We excluded from all regressions four variables,
namely active cases, out-path-length, in-strenght pc, and secondary as their VIF scored over 10.

Spatial invasion model
We define a spatial invasion model on the networks on the first and second wave period,
namely M̄ij,f, M̄ij,s. We simulate an epidemic invasion starting in the municipalities of Santiago
Airport in Pudahuel and register the arrival times at municipality level for the next 28 days.
We run ns = 500 simulations and compute the average arrival time for each comuna, restrict-
ing to those who were invaded at least 20 times in all simulations, to compute averages on a
minimal sample for each location. The model is a simplified SI (Susceptible-Infected) model
in which municipalities can have two states at each time step, Im ∈ {0, 1}, Im = 1 for invaded
municipalities and Im = 0 for susceptible ones, we do not account for the internal transmission
dynamic. We defined the force of invasion from a municipality i on susceptible locations j as:

𝜆ij = 𝛽 Ii (1 – Ij) ( pij + pji) (6)

where 𝛽 defines the probability of infection per contact, Ii = 1 and Ij = 0 in order to allow for
invasion, and pij and pji are the traveling probabilities accounting for the mixing of i and j
comunas. In the remainder of the paper, we set 𝛽 = 0.5. Additional details on the definition of
the traveling probabilities pij,P, are provided in S1 Text Section Traveling probabilities defini-
tion, together with an alternative definition in S1 Text Section Alternative parametrization of
the invasion model.

Results
Mobility response to interventions in Chile
We focused on Chile’s first and second wave of COVID-19 infections (see Methods for peri-
ods definitions). The two intervention periods differed significantly in terms of the number
of restricted municipalities and the outbound mobility flows, as shown in Fig 1. While the
first month of intervention in the first wave only involved a few comunas and had a significant
impact on the outbound mobility, the first month of interventions in the second wave had a
lower impact on the intensity of outbound mobility flows, despite involving the vast major-
ity of Chilean comunas. We hypothesize that municipalities with different demographic pro-
files, cases incidence, and centrality in the baseline mobility network responded differently
to interventions. We investigate the association of socioeconomic, epidemiological, and pre-
intervention network metrics with mobility change with respect to the baseline via spatial lag
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Fig 1. The first and second wave in Chile. On top: weekly median mobility change with respect to the baseline
(purple solid line), and respective 95% interval across municipalities (purple shaded area). The dashed-dotted
green curve represents the number of municipalities under restrictions, while the vertical areas correspond to the
first (red) and second (yellow) waves. On the bottom, the map of three macro-regions of Chile shows municipali-
ties under restrictions. The color code represents municipalities according to the NPIs they experienced. We make
the distinction for adoption only in the first wave (light blue, 1w NPI), only in the second wave (green 2w NPI), in
both waves (yellow, both) and neither (dark blue, no NPI). Administrative boundary data were obtained from BCN
(https://www.bcn.cl/siit/mapas_vectoriales/index_html).

https://doi.org/10.1371/journal.pcbi.1012802.g001
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models to account for spatial autocorrelations. Most interestingly, we want to assess whether
the response to the second period of interventions was associated with the same factors or if
some ceased to explain population response. To do so, we employ a linear regression model to
explain the two periods mobility differences.

First and second COVID-19 waves. The spatial lag model achieves high predictive per-
formance for the first wave in terms of R2 = 0.53 and Kendall Tau, 𝜏K = 0.53. The detailed
results are reported in the left column of Table 2. For some covariates – e.g. wealth (encoded
as IDC) and labor structure – we recover the results already observed in the literature [7,9],
showing that wealthier municipalities with higher employment in the tertiary sector achieved
stronger mobility reductions than others. On top of this, our results enlist additional variables
associated with mobility changes:

• the mobility reduction correlates positively with COVID-19 incidence and with the
baseline municipalities betweenness centrality;

• the mobility reduction correlates negatively with the baseline neighbors’ interdepen-
dence (clustering coefficient), the outbound trips per-capita (out-strenght pc) and average
peripherality (path-length);

• the spatial autocorrelation coefficient is a statistically significant determinant, revealing
the importance of municipalities neighbours influence.

Table 2. Correlates of mobility change across the two waves in Chile. Tables in the first and second columns: first and
second wave.The spatial lag model coefficients, 𝛽 for covariates and 𝜌 for spatial lag from Eq (4) are reported with
their 95% confidence interval and the goodness of fit measured by R2 and the Kendall’s Tau (𝜏K) coefficient between
observed and predicted mobility drops. Table in the third column: comparison between waves. Linear regression
coefficients 𝛽 and respective 95% confidence interval for the model of Eq (5). For all models, the goodness of fit is
reported at the bottom of the table, and we report significance as: ∗∗∗=99.9%, ∗∗ = 99%, ∗ = 95%. Cases increment is
employed only in the linear regression in place of new cases, on the rightmost table. Positive coefficients represent
higher mobility flows associated with higher covariates.

First wave Second wave Waves difference
Coeff. [0.025 0.975] Coeff. [0.025 0.975] Coeff. [0.025 0.975]

intercept -0.24∗∗∗ -0.29 -0.21 -0.21∗∗∗ -0.24 -0.18 -0.0 -0.08 0.08
age 0.01∗ 0.0 0.03 0.00 -0.02 0.02 -0.21∗∗∗ -0.32 -0.1
urbanization 0.04∗∗∗ 0.03 0.07 0.06∗∗∗ 0.04 0.09 -0.17∗ -0.32 -0.01
gender ratio -0.01 -0.04 0.0 0.00 -0.02 0.03 0.24∗∗ 0.07 0.4
dependency -0.04∗∗∗ -0.06 -0.02 -0.07∗∗∗ -0.1 -0.05 -0.05 -0.22 0.12
schooling -0.01 -0.04 0.01 0.00 -0.02 0.04 0.12 -0.07 0.31
primary 0.00 -0.02 0.02 -0.03∗ -0.07 -0.01 -0.31∗∗ -0.5 -0.12
tertiary -0.08∗∗∗ -0.11 -0.06 -0.11∗∗∗ -0.15 -0.08 0.24∗ 0.02 0.46
pop density 0.01 -0.01 0.03 0.02∗ 0.0 0.05 0.12 -0.02 0.25
log(pop) 0.01 -0.01 0.03 -0.01 -0.05 0.01 -0.53∗∗∗ -0.72 -0.35
IDC -0.03∗∗ -0.06 -0.01 -0.04∗ -0.08 -0.01 0.31∗∗ 0.1 0.52
new cases -0.01∗∗ -0.03 -0.0 -0.00 -0.02 0.01
clustering 0.02∗∗ 0.01 0.05 -0.00 -0.03 0.02 -0.4∗∗∗ -0.56 -0.24
betweenness -0.01∗∗ -0.03 -0.0 -0.01 -0.03 0.0 0.06 -0.04 0.16
in-path-length 0.04∗∗∗ 0.03 0.05 0.10∗∗∗ 0.09 0.12 0.18∗∗∗ 0.08 0.27
out-strength pc 0.03∗∗∗ 0.02 0.05 0.01∗ 0.0 0.04 -0.25∗∗∗ -0.35 -0.15
𝜌 (spatial lag) 0.35∗∗∗ 0.24 0.46 0.19∗∗∗ 0.09 0.3
deaths 0.00 -0.01 0.01
test rate 0.00 -0.01 0.02
cases increment -0.01 -0.1 0.08

Pseudo R2 = 0.53 Pseudo R2 = 0.58 Adjusted R2 = 0.49
𝜏K = 0.53∗∗∗ 𝜏K = 0.38∗∗∗ 𝜏K = 0.38∗∗∗

https://doi.org/10.1371/journal.pcbi.1012802.t002
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The second wave period model suggests consistent correlates with respect to the first
wave model, namely labour structure, urbanization, municipality development, baseline
period mobility network metrics, i.e., peripherality (inbound path-length), outbound trips
per capita (out-strength) and spatial autocorrelation. However, there are some differences
between the two waves periods correlates: epidemiological variables, clustering and between-
ness centrality are not statistically significant in the second wave, see the second column in
Table 2.

Differences across waves. We aim to define the factors associated with the altered popu-
lation response in the second wave with respect to the first wave, hence describing behavioral
changes in response to repeated interventions. To approach this question, we employed a lin-
ear regression to explain the relative change of outgoing mobility observed during the second
wave with respect to the first wave 𝛿2Mi (see Methods). Here, we replaced the variable new
cases with cases increment to account for the relative change of cases incidence across waves.

The model achieves an adjusted R2 = 0.49 and a statistically significant Kendall’s Tau coeffi-
cient of 𝜏k = 0.38.

Our findings evidence that, with respect to the first wave, in the second wave period:

• higher mobility is observed in the municipalities with higher development index (IDC)
and more active population employed in the tertiary sector;

• lower mobility is associated with higher urbanization indices , higher population,
higher percentage of women, and higher age profiles.

Interestingly, we do not observe a significant role played by the increment of cases incidence.
In S1 Text Section Sensitivity to NPI dummy variables, we performed a sensitivity test on

the inclusion of NPI covariates in the spatial lag models, finding that correlates significance
and performance of the model are substantially unaltered (see Tables A and B in S1 Text).

Network resilience
The analysis carried on in the previous section shows a wide overlap of factors associated with
mobility reductions and a significant role played by network metrics computed on the base-
line mobility network. These quantities are static in time and refer to the configuration of the
pre-interventions mobility network. Their significance thus suggests a remarkable resilience
of the mobility network structure that we investigated by focusing on the change of mobility
hotspots and origin-destination flows across the two waves periods.

Hotspots and traveling probabilities analyses. To compare the node features of the two
networks, i.e. first and second wave mobility networks, we defined as hotspots the municipal-
ities with the highest outbound mobility flows in each of the three periods using the Loubar
method [48]. We identified hotspots by considering the total outbound mobility of each
municipality, as this measure plays a critical role in shaping the structure of the mobility net-
work. The total outbound mobility directly affects the traffic load on network links, influenc-
ing the network overall structure and its resilience in time. Details on the Loubar method are
provided in S1 Text Section Hotspots definition and an alternative hotspots definition account-
ing for mobility per-capita is provided in S1 Text Section Alternative definition of mobility
hotspots). In each period, we defined three levels of hotspots ranked by their (decreasing)
mobility outflows and subdivided the municipalities into three sets. For each level, we adopted
the Jaccard similarity index J to compare the overlapping hotspots across the three periods.
The results are summarized in Fig 2.
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Fig 2. Resilience of mobility hotspots across epidemic waves in Chile.Heatmaps showing the Jaccard similarity J for three hotspot levels across
the three periods, i.e., baseline, first, and second wave. Level increases from left to right, with Level 1 encoding comunas with the highest mobility
flows.

https://doi.org/10.1371/journal.pcbi.1012802.g002

The results evidence a large overlap at all three levels for all three periods. Interestingly, the
hotspot configuration appears to be significantly stable between the first and the second wave,
suggesting a significant correlation in the network structure.

To compare the link features of the two networks, we defined the probabilities of traveling
from any municipality i to j as pij,P =

M̄ij,P
∑k≠i M̄ik,P

, where P∈ {b, f, s}, i.e. baseline, first or second
wave period. Fig 3A and 3B show that the highest probability routes, on the top right of the
plots, are highly correlated across the three periods, and hence, the probability of traveling
over the major routes out of municipalities in Chile is highly similar across periods. On the
other hand, minor routes, laying on the bottom left corner of plots, are characterized by lower
flows and show high differences across waves.

A more in-depth analysis, highlighting additional resilient features of the mobility network
over time, is provided in S1 Text Section Further insights on the network features associated
with network resilience.

Spatial invasion modeling. As a proof of concept, we run an epidemic model to simu-
late the spatial invasion of an infectious disease arriving at Santiago’s airport on both the first
and the second wave mobility networks. The model is a susceptible-infected (SI) model, where
locations can only get infected once, and the probability of invasion depends on the mobil-
ity flows between areas (see S1 Text Section Traveling probabilities definition). We register the
average arrival time of the disease at the municipality level obtained by running ns = 500 sim-
ulations and show the comparison for the two waves mobility networks. In Fig 3C, we show
how structural similarities in the two epidemic waves mobility networks do not affect sensi-
bly the outcomes of the predicted arrival times at municipalities. In Fig 3C, we observe a high
correlation between arrival times of the first 14 days of simulations, which reflects the good
correlation of the highest traveling probabilities pij in Fig 3A and 3B. On the other hand, the
uncorrelated arrival times in the third week of simulations, in the top right corner of Fig 3C,
reflect the higher degree of variability between minor routes in the first and second waves, i.e.
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Fig 3. Epidemic modeling on Chile’s two waves mobility networks. (a) Traveling probabilities pij computed from the first
wave network against those computed on the second wave network. (b) Traveling probabilities pij computed from the second
wave network against those computed on the baseline network. The grey dashed line is the identity diagonal. The quantity Sr
denotes the Spearman’s correlation coefficient computed on traveling probabilities. (c) Average arrival times tm at munici-
palities resulted from the epidemic model run on the first and second wave static networks describing the average mobility
flows observed in each period, and (d) on the dynamic networks. The dashed grey line is the line x = y, and Sr is Spearman’s
correlation coefficient computed between the two modeled average arrival times.

https://doi.org/10.1371/journal.pcbi.1012802.g003

the lowest traveling probabilities pij from any comuna i, shown in Fig 3A and 3B. This result
highlights how the main routes of mobility between comunas were preserved well across the
two waves, while the highest level of variability was registered in the secondary routes, rep-
resenting a lower share of outbound travels from municipalities. As a sensitivity test, we per-
formed the same simulation over a dynamic version of the mobility networks, in which the
two waves networks account for the daily flows between municipalities (see S1 Text Section
Traveling probabilities definition). In Fig 3D, we show how results prove robust for tempo-
ral aggregation. In the S1 Text Section Alternative parametrization of the invasion model, we
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tested an alternative parameterization of mobility data into the epidemic model that best
accounts for mobility reduction scenarios, proving the robustness of our results.

Validity of results in further countries
To check for the validity of our findings regarding the resilience of the mobility network
across repeated interventions during the Covid-19 pandemic, we repeated the same method-
ology and analyses on the Spanish dataset and recovered consistent results for the Spanish
case study in the three periods analogously defined (see S1 Text Section Spanish network
resilience). In Fig A in S1 Text, we found a high overlap of mobility hotspots across the three
periods, specifically with all Jaccard indexes above 60%, while in Fig B in S1 Text, we found a
high correlation of traveling probabilities from Spanish municipalities, with Spearman corre-
lations above Sr = 0.89 between first and second waves networks and Sr = 0.92 between second
wave and baseline networks. Note that Spain counts with a higher number of municipalities
with respect to Chile, 8132 vs 346 respectively, meaning that results are robust to different
spatial configurations of the mobility network.

Discussion
We focused on the municipality-level mobility response to COVID-19 first and second-wave
interventions in Chile, where we observed consistent factors associated with post-intervention
mobility reduction across the two periods. These factors included network metrics encod-
ing mobility patterns from the baseline pre-interventions period. This provides evidence that
both mobility networks resulting from two separate interventions in two periods share sim-
ilar structural aspects. We looked into the structural features of the two periods’ mobility
networks and found that, despite changes in the behavioral response to interventions asso-
ciated with specific demographic profiles, the two networks exhibited strong structural sim-
ilarities. We characterized the similarity between the mobility networks of the first and sec-
ond COVID-19 waves in Chile in terms of mobility hotspots overlap to account for node fea-
tures and traveling probabilities correlations to account for the link features of the network.
We expanded our analysis to the Spanish case study. By leveraging an open mobility dataset
provided by the Spanish Ministry of Transportation [36,37], we reproduced our analyses on
the Spanish case study in the three periods analogously defined (baseline, first, and second
wave). Our approach proved robust since we observed strong structural similarities between
the mobility network of the second and first waves in Spain.

This resilience suggests that certain areas and routes are critical to explaining mobility
despite varying restrictions and changes in public behavior. This has strong implications for
epidemic modeling: since the major mobility routes are preserved across waves, they encode
preferential pathways of spatial invasion, as proved by the essentially unchanged disease
arrival times predicted by the model on the two periods networks. This finding adds to pre-
vious knowledge on the impact of mobility network heterogeneity on the predictability of
disease spread at international level [49], in which major air travel routes determine a higher
probability of spatial invasion. Observing a resilient mobility network at sub-national level,
hence preserving major traveling probabilities across interventions, yields high predictability
of spatial invasion patterns within the country beyond the initial epidemic phase. This obser-
vation can be exploited to design a priori sentinel locations for epidemic surveillance of new
strains, which represent the most at-risk of invasion locations in the country.

The spatial lag models reveal several key factors associated with mobility reduction dur-
ing the first and second waves. Our analysis recovers some known relations already observed
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in the literature, such as the role of the labour structure [7], the urbanization level, active
population, and local incidence [9].

Unlike previous studies, our modeling approach accounts for network metrics of munic-
ipality centrality in the baseline mobility network, which play a significant role in the pop-
ulation response to interventions in both waves. The positive correlation between mobility
reductions and betweenness centrality suggests that the most central municipalities were also
the most responsive to interventions. This is relevant because these municipalities are likely
the most important in the long-range disease spread, hence playing as bottlenecks for inva-
sion patterns. Lower mobility reductions are instead associated with higher clustering – hence
pertaining to groups of densely connected interdependent municipalities –, higher inbound
path length – hence peripheral comunas –, and with higher amount of trips per capita. This
behavior can be attributed to peripheral locations with a higher economic dependency on
neighboring municipalities in granting essential services to the population. During the sec-
ond wave, besides the still determinant socio-economic variables, the only network significant
correlates were the inbound path length and the per capita out-strength: peripheral munici-
palities with typically higher trips per capita had lower mobility reductions than others.

Accounting for the effect of NPIs explicitly in the regression models required arbitrary
choices on their parameterization. The two waves were characterized by two distinct restric-
tions, a binary system in the first wave and a tiered system in the second. Moreover, they are
characterized by a very low variance in both waves as shown in Fig 1. A sensitivity test on
the inclusion of NPI variables revealed the robustness of covariates significance (see S1 Text
Section Sensitivity to NPI dummy variables).

Our analyses further show the key differences in several variables when explaining the
mobility variations between the first and second waves. Factors like age, gender, and popu-
lation did not impact the post-intervention mobility change with respect to the baseline, but
they were associated with a change in response in the second wave with respect to the first.
Scarcely populated rural and peripheral areas, with a higher development index that are more
populated by men of younger age exhibited higher mobility levels in the second wave with
respect to the first wave. This indicates that dynamic population response to repeated inter-
ventions may be more strongly associated with certain demographic profiles rather than being
common to the overall population.

Finally, the study finds significant spatial autocorrelation in mobility responses. This sug-
gests that municipalities did not act or react independently to interventions but were influ-
enced by neighboring areas. This observation underscores the importance of considering
spatial dependencies in pandemic response strategies.

Our work shows that, despite population behavioral change to repeated interventions
in areas with specific demographic profiles, centrality metrics, and clustering in the pre-
intervention mobility network, urbanization, development, and labour structure, the overall
mobility network exhibits relatively high resilience to shocks driven by NPIs. From a public
health perspective, this resilience can be exploited to improve surveillance and inform inter-
ventions with historical mobility data, predicting areas at the highest invasion risk and allow-
ing efficient allocation of resources to anticipate local outbreaks. These findings have strong
implications for pandemic preparedness since, in this context, data readiness can be built
without depending on real-time data streams.

Limitations
In this study, we did not consider local incidence stratified by demographic traits, which
could have altered the population response of specific groups in the two waves.
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While the mobility network we studied for the three periods, i.e. baseline, first, and second
waves, is the result of an average over the first month post-interventions weekly flows, mobil-
ity is a dynamic process that can exhibit local, both spatially and temporally, fluctuations
due to local holidays, seasonality, weather events, and regional climate. We chose to average
weekly flows of four weeks post-interventions to minimize the effect of any of these factors
on our analyses. In Fig 3D, we prove how our results are robust to temporal aggregation of
mobility flows, i.e., considering the original dynamic network of daily mobility flows.

Our study did not address whether critical mobility routes identified in our analyses were
critical or not to explain the observed epidemic outcomes during the COVID-19 pandemic in
Chile. Specifically, our analysis did not address whether the routes identified as most critical
were indeed the ones most affected by the pandemic or whether the municipalities connected
by these routes experienced the greatest epidemic impact. Answering such questions is chal-
lenging with the data employed in this study, and more reliable data sources would be needed
to provide a robust and accurate assessment. Additional details and explanations of these lim-
itations, along with a preliminary analysis that could be further explored in future works, are
provided in the S1 Text Section Further epidemic impact insights.

This study did not consider variables related to Chilean climate regions. Further research is
needed to account for climate impact on the resulting population response to NPIs.
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