
ID: pcbi.1012790 — 2025/3/7 — page 1 — #1

UN
CO

RR
EC

TE
D

PR
O
O
F

PLOS COMPUTATIONAL BIOLOGY

OPEN ACCESS

Citation: Heng JA, Woodford M, Polania R
(2025) Efficient numerosity estimation under
limited time. PLoS Comput Biol 21(3):
e1012790. https://doi.org/10.1371/journal.pcbi.
1012790

Editor: Tobias U. Hauser, University of
Tübingen: Eberhard Karls Universitat Tubingen,
GERMANY

Received: October 13, 2023

Accepted: January 13, 2025

Published: March 7, 2025

Copyright: © 2025 Heng et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the
original author and source are credited.

Data availability statement: This work
analyzes the data from a previously published
dataset available on the Open Science
Foundation at https://osf.io/svcy5/. The code
produced in the work is available on the ETH
Zurich Research Collection at
https://doi.org/10.5905/ethz-1007-853.

Funding: This work was supported by a
European Research Council (ERC) starting
grant (ENTRAINER) to R.P. This project has

RESEARCH ARTICLE

Efficient numerosity estimation under
limited time
Joseph A. Heng

 

 

1,2, Michael Woodford3, Rafael Polania
 

 

1,2∗

1 Decision Neuroscience Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich,
Switzerland, 2 Neuroscience Center Zurich, Zurich, Switzerland, 3 Department of Economics, Columbia
University, New York, New York, United States of America

∗ rafael.polania@hest.ethz.ch

Abstract
The ability to rapidly estimate non-symbolic numerical quantities is a well-conserved
sense across species with clear evolutionary advantages. However, despite its impor-
tance, this sense is surprisingly imprecise and biased, and a formal explanation for this
seemingly irrational behavior remains unclear. We develop a unified normative theory of
numerosity estimation that parsimoniously incorporates in a single framework informa-
tion processing constraints alongside (i) Brownian diffusion noise to capture the effects
of time exposure of sensory information, (ii) logarithmic encoding of numerosity repre-
sentations, and (iii) optimal inference via Bayesian decoding. We show that for a given
allowable biological capacity constraint our model naturally endogenizes time perception
during noisy efficient encoding to predict the complete posterior distribution of numeros-
ity estimates. This model accurately predicts many features of human numerosity esti-
mation as a function of temporal exposure, indicating that humans can rapidly and effi-
ciently sample numerosity information over time. Additionally, we demonstrate how our
model fundamentally differs from a thermodynamically-inspired formalization of bounded
rationality, where information processing is modeled as acting to shift away from default
states. The mechanism we propose is the likely origin of a variety of numerical cognition
patterns observed in humans and other animals.

Author summary
Humans can estimate the number of elements in a set without counting. We share this
ability with other species, suggesting that it is evolutionarily relevant. However, this sense
is variable and biased. What is the origin of these imprecisions? We take the view that
they are the result of an optimal use of limited neural resources and limited processing
time. Because of these limitations, stimuli are encoded with noise. The observer then
optimally decodes these noisy representations, taking into account its knowledge of the
distribution of stimuli. We build on this perspective by incorporating stimulus presenta-
tion time directly into the encoding process. This model can parsimoniously predict key
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characteristics of our perception and outperforms quantitatively and qualitatively a pop-
ular modeling approach that considers resource limitations at the stage of the response
rather than the encoding.
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Introduction
The ability to rapidly represent and estimate non-symbolic numerical quantities is a fun-
damental cognitive function for behavior in humans and other animals, which may have
emerged during evolution to support fitness maximization [1]. Since the properties of
numerosity estimation started to be studied nearly a century ago, it has been commonly
observed that the representation and estimation of numerical quantities are imprecise and
biased [2]. Despite the importance of numerosity estimation for various cognitive processes
and ultimately survival, the questions remain: what are the origins of the observed variabil-
ity and biases in numerosity estimations? Are these deviations efficient and predictable when
organisms are urged to rapidly estimate numerical quantities?

Extensive empirical research in the representation and estimation of non-symbolic numer-
ical quantities has consistently reported and studied various features that characteristically
emerge during numerosity estimation, including: (i) subitizing small numbers [3]; (ii) over-
estimation of small numbers (outside the subitization range) and underestimation of large
numbers [4], with especially biased estimates in the case of larger numbers [5]; (iii) a coef-
ficient of variation that is approximately constant across all numerosities, a property termed
scalar variability [6]; and (iv) estimation acuity modulated by duration of stimulus presen-
tation and sensory reliability [7]. But do all the above-mentioned behavioral patterns have a
common origin?

The last decades have been marked by the development of models of behavior in which
perception has been proposed to be instantiated as a Bayesian inference process. This suggests
that our nervous system jointly considers the environmental (or contextual) distribution of
sensory stimuli and the unreliability of the signals perceived by the observer. This approach
has been instrumental in explaining in a parsimonious manner a variety of behavioral biases
including underestimation, overestimation, and the degree of variability of estimated mag-
nitudes and quantities [8]. However, this approach does not explicitly consider the different
sets of constraints that biological systems face when interacting with the environment. This is
a fundamental aspect to consider in any formulation that attempts to explain the behavior of
biological systems given the fact that organisms do not have unlimited biological resources or
unlimited time to process sensory information from the environment, and moreover, neural
computations are metabolically expensive [9]. Thus, it has been suggested that the observed
variability and biases in our estimations of our sensory world emerge from efficient processes
based on fundamental principles of encoding information from environments with statistical
regularities [10–14].

Here we argue that many of the above-mentioned behavioral features emerging during
numerosity estimation have a common origin: given biological constraints on information
acquisition, numerosity estimation emerges from a system that efficiently considers, first,
prior knowledge of the environment, second, information of the current numerosity being
evaluated, and third, the amount of time available to process such information.

We develop a unified normative model of numerosity estimation that parsimoniously
incorporates information constraints together with long modeling traditions of human and
animal psychophysical performance in psychology and neuroscience: (i) Brownian diffu-
sion noise to capture the effects of time exposure of sensory information [15], (ii) logarithmic
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encoding of numerosity representations [16], and (iii) optimal Bayesian decoding. As a result,
we show that for a given allowable biological capacity constraint, our model naturally incor-
porates time perception during noisy efficient encoding to predict the corresponding poste-
rior distribution of numerosity estimates via optimal Bayesian decoding. Here we refer to our
approach as the “sequential-encoding/Bayesian-decoding” model, henceforth SEB.

We also consider a second well-known approach for studying bounded rationality inspired
by principles of thermodynamics and statistical physics. This family of models assumes that
given a default state (e.g., a default distribution over possible responses) and a sensory stim-
ulus, the observer acts in a way such that they attempt to shift from the default state to a new
state that matches as closely as possible the value of the sensory stimulus. Bounded rational-
ity comes into play in the case of acting when only a given amount of change in information
(energy invested) between the default and new state can be afforded. This class of models has
been used in a wide range of applications [17–20], including recently to study how perceptual
estimation under limited time relates to cognitive capacity and action responses [21]. Here we
refer to this class of models as the “thermodynamically inspired model”, henceforth TIM.

A key contribution of our work is the formal demonstration that the two approaches that
we consider here (SEB and TIM) are in fact classes of models with completely different views
on bounded rationality. To avoid confusing them, we clarify their differences here. On the one
hand, variability in the estimation responses in SEB is attributed to sensing costs, which gen-
erate noisy sensory encoding. On the other hand, in instantiations of TIM applied to sensory
estimation, variability is generated by acting costs during response selection. Crucially, here
we demonstrate that these two approaches applied to numerosity estimation lead to appar-
ently similar but distinguishable quantitative and qualitative predictions that are identifi-
able and falsifiable. Our empirical tests applied to a large numerosity estimation data set pro-
vide a clear indication that humans follow a SEB rather than a TIM approach, meaning they
can rapidly and efficiently sample numerosity information over time via an efficient noisy
encoding and Bayesian decoding process.

Results
The presentation of our results is divided into three parts: First, we present our sequential-
encoding/Bayesian-decoding model (SEB) which parsimoniously endogenizes perceptual
exposure times in its likelihood function alongside parameters of the prior distribution for
a given biological capacity bound. Second, we introduce the thermodynamically inspired
model (TIM) applied to sensory estimation, and compare it with the SEB model. Third, we
apply rigorous quantitative and qualitative model evaluations based on a large publicly avail-
able human numerosity estimation dataset (n = 400 participants across four different experi-
ments).

A Bayesian model of numerosity estimation
Extensive behavioral and physiological work studying the representation of both non-
symbolic and symbolic numerical quantities strongly suggests that internal representations r
can be assumed to be encoded by a quantity that is proportional to the logarithm of the num-
ber n plus stimulus-independent random error that is assumed to be normally distributed and
unbiased [5,16,22]

r∼N(logn,𝜈2) . (1)
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However, a key contribution of our work is to formally study how these perceptual errors
may depend on stimulus duration t of the form

r∼N(m(n),𝜈2(t)) , (2)

which represents the likelihood in our Bayesian framework. Here, m(n) is an affine function
of log(n). Below, we will develop the theory by finding the parameters of the encoding process
that minimize the MSE between the inputs and the estimation. That is, we aim to optimize
the encoding function based on the variability of the representation which is a function of the
sensory representation as a function of stimulus duration t.

We assume the prior distribution to be a log-normal distribution from which the true
numerosity n is drawn to be

logn∼N(𝜇,𝜎2) . (3)

Note that 𝜇 and 𝜎 are the expected value and standard deviation of the random variable’s
natural logarithm, and not the expectation and standard deviation of n itself.

While the distribution of various quantities in linguistics, economics, and ecology appears
to be well-described by log-normal distributions [23], others have argued that power-law dis-
tributions approximately describe the empirical frequency of numbers in natural environ-
ments [24,25]. We note, however, that the two-parameter family of possible log-normal prior
distributions includes as a limiting case the power-law distributions (see S1 Note for proof). In
brief, we consider a normalized prior of the form

p(n)∝ exp(–𝛼(logn) – 𝛾(logn)2) , (4)

for some parameters 𝛼,𝛾 with 𝛾 ≥ 0. If 𝛾 > 0, this corresponds to a log-normal prior, with 𝜇 =
(1 – 𝛼)/(2𝛾), 𝜎2 = 1/(2𝛾). If instead 𝛾 = 0 but 𝛼 > 0, this corresponds to a power-law prior

p(n)∝ n–𝛼 . (5)

Thus, our model allows for the possibility that encoding and decoding are adapted to dif-
ferent priors that are learned for different contexts, rather than a single process being used in
all contexts. However, in the following theoretical developments, we consider a log-normal
prior for simplicity.

Here we assume that the objective of the decision-maker is to obtain numerosity estimates
n̂ that minimize the MSE when stimuli are drawn from the prior distribution. It can be shown
that this implies that conditional on n, the estimate n̂ will be log-normally distributed (S1
Note)

log n̂ ∣ n∼N(𝜇̂(n, t), ̂𝜎2(t)) , (6)

where 𝜇̂(n, t) is an affine function of log n, and ̂𝜎2(t) is independent of n. However, both 𝜇̂
and ̂𝜎2 may depend on temporal numerosity processing t, as we formally elaborate below.

Exposure time and precision of internal representations. A key hallmark in the devel-
opment of our theoretical framework is that we now assume that the sensory evidence of
the input stimulus is given by a Brownian motion with a drift that depends on the stimu-
lus (formally defined below). Thus, by modeling sensory percepts in this way, we follow a
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long modeling tradition of process models of perception and action that includes the popu-
lar drift-diffusion model (DDM) [15]. Models of this kind have been used since the late 60s to
account quantitatively for the way in which the accuracy of perceptual judgments is affected
by manipulations of viewing time [26].

Formally, we now suppose that the internal representation r consists of the sample path
of a Brownian motion zs over a time interval 0≤ s≤ 𝜏, starting from an initial value z0 = 0.
The drift-diffusion parameter m of the Brownian motion is assumed to depend on n, while its
instantaneous variance 𝜔2 is independent of n; the length of time 𝜏 for which the Brownian
motion evolves is also independent of n, but depends on the viewing time t. In other words,
we assume that the agent makes observations of momentary evidence 𝛿zi ∼N(m(n)𝛿t,𝜔2𝛿t)
in small steps i for an infinitesimal duration 𝛿t, where the accumulated evidence at step k is
given by zs(k𝛿t) =∑k

i=1 𝛿zi .
Please note that the instantaneous variance 𝜔2 of the diffusion process should not be con-

fused with the resulting encoding noise v2 in the logarithmic space. In fact, our goal will be
to formally find how v depends on elements that determine the diffusion process m and 𝜔 for
given stimulus n and viewing time t.

More specifically, under the assumption that the particle position under Brownian motion
is normally distributed with its parameters evolving as a function of 𝜏, one can show that r is a
draw from the distribution (S2 Note for details)

r ∼ N(m(n), 𝜔2/𝜏) . (7)

Our goal is now to find a solution of how such a dynamic perceptual system should operate
under limited resources. Crucially, we suppose the average value of m2 is subject to a power
constraint, that is to be within some finite bound

E[m2] ≤ Ω2 < ∞ . (8)

This bound on the amount of variation in the drift limits the precision with which different
stimuli can be perceived for any given 𝜏. The value of 𝜏 is assumed to grow linearly with the
viewing time, up to some time bound tmax,

𝜏 = min(t, tmax) , (9)

representing a constraint on the amount of time that the decision maker is willing to invest in
the accumulation of evidence. The latter bound constrains the degree to which precision can
be increased by further increases in viewing time.

The definition of this optimization problem with constraints effectively states that r can be
seen as the output of a Gaussian channel with input m [27] that depends on the input stim-
ulus n; hence the problem of optimally choosing the function m(n) is equivalent to an opti-
mal encoding problem for a Gaussian channel (S2 Note). The capacity C of such a channel is
a quantitative upper bound on the amount of information that can be transmitted regardless
of the encoding rule, which is equal to (S3 Note)

C = 1
2
log(1 + Ω

2𝜏
𝜔2 ) . (10)
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Fig 1. Overview of the SEB model. a) Schematic description of the SEB model. A numerosity n is drawn from a prior distribution p(n). The observer has a limited
capacity C to represent the numerosity. The internal representation r is a random draw from a Gaussian distribution, the mean of which depends on n but the variance
does not. The observer then infers the estimate n̂ based on the representation r and the prior distribution of n as to minimize the MSE between the estimate and the
numerosity. b) Illustration of the predictions for an observer with a high (purple) or low (green) channel capacity where n is drawn from a distribution with a high (left)
or low (right) variance. All curves exhibit overestimation for lower numerosities and underestimation for higher numerosities. However, these biases are reduced in the
case of high capacity. The crossover point between under- and overestimation increases with the variance of the numerosity distribution. c) Illustration of the coefficient
of variation (i.e., SD[n̂]/E[n̂]) for different capacities. The coefficient of variation is independent of the numerosity and decreases with capacity, which is dependent on
the viewing time t.

https://doi.org/10.1371/journal.pcbi.1012790.g001

Note that in our model the channel capacity C grows as a logarithmic function of 𝜏 because
the correlation of successive increments in the encoding by a Brownian motion prevents the
information content from growing linearly in proportion to such increments.

Here we assume that the goal is to design a capacity-limited system that minimizes the
mean squared error (MSE) of the estimate n̂ when n is drawn from a log-normal prior distri-
bution (i.e., the same objective function stated in the previous section, see Fig 1). It is possible
to show that in our optimization problem, which assumes a channel with “power transmis-
sion” constraintΩ2, the optimal drift function is

m = 𝜉 + 𝜓 logn (11)

with

𝜉 = –𝜓𝜇 , 𝜓 = Ω𝜎 , (12)
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and the encoding noise 𝜈 in Eq 2 is given by (see S2 Note for proof)

𝜈(t) = 1
√𝜏

𝜔
Ω ⋅ 𝜎 . (13)

That is, encoding precision grows with viewing time t (until reaching the bound tmax if the
stimulus is presented long enough). Recall that 𝜎 is the variance of the log-normal prior, and
therefore the solution reveals that the likelihood is independent of parameter 𝜇 of the log-
normal prior distribution, but depends on the second moment of this prior distribution and
viewing time t. Defining R≡Ω/𝜔, the noise of numerosity encoding is given by 𝜈(t) = 1/G,
where G =min(R

√
t/𝜎,B) and B a maximum biologically allowed bound on sensory preci-

sion related to tmax (B = R
√
tmax/𝜎). Note that the two information bounds affect the model

differently. The higher isΩ, the more information gathered per time unit, whereas B captures
the maximum amount of information that can be gathered. Notice that this solution implies
a multiplicative trade-off betweenΩ, 𝜔, and t (similar to the standard DDM). However, this
relation may look different under other assumptions (e.g., non-uniform noise in the encoding
space).

These results lead to the following predictions from our model: (i) E[n̂ ∣ n] is a concave
function of n with overestimation for small numbers (when these are not so small that the
discreteness of available responses leads to nearly-deterministic responses), but underesti-
mation for large numbers (Fig 1b and S2 Note). (ii) The crossover point from overestimation
to underestimation changes as a function of the numerosity range and prior variance (see S4
Note). In addition, the concavity of E[n̂ ∣ n] depends on the amount of resources available
to perform the numerosity estimation task. This prediction was clearly confirmed in a previ-
ous empirical work [4]. (iii) Because of the discreteness in the set of responses, there is pre-
dicted to be little variability in responses in the case of small enough numbers. This may look
in principle as a subitizing-like behavior for small numbers. However, SEB does not predict
subitizing in principle. Subitizing-like behavior in SEB results from smaller estimation biases
and variability by the observer which may be experimentally imperceptible after rounding to
generate a discretized response. (iv) For numbers beyond the subitizing-like range, based on
the properties of the log-normal distribution, it can be shown that the coefficient of variation
(S1 Note)

SD[n̂]
E[n̂]

=
√
e𝜎̂2(t) – 1 (14)

does not depend on the input numerosity n, thus delivering the property of scalar variabil-
ity, irrespective of n [5], but here we show that this coefficient will depend on time exposure
t, with the predicted constant coefficient of variation decreasing as t gets larger proportionally
with

√
e𝜎̂2(t) – 1 (Fig 1c).

A thermodynamically inspired model of bounded rationality
Here we briefly introduce a popular approach to studying systems with bounded capacity
across domains in human cognition and machine learning: a thermodynamically inspired
formalization where information processing is modeled as changes from a default state,
which come at some energetic cost, that can be quantified by differences in free energy. This
class of models can be applied for the case where an observer intends to minimize some
form of expected loss (here we study the case of estimation error minimization), subject to
information constraints [17]. More formally, let q(n̂) be a default state (distribution) over
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possible responses n̂ in a given environment or context. When presented with a stimulus n,
the resource-constrained observer attempts to transform the initial state q into a new state of
possible responses p(n̂ ∣ n). This transformation of states can be modeled as the optimization
of the free energy functional

F[p(n̂ ∣ n)] ∶= – 𝔼[L; n̂]
´¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶

Expect. Loss

–
1
𝛽DKL (p(n̂ ∣ n)∥q(n̂))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Constrained State Change

(15)

where L is a loss function, for instance, the squared error (n̂ – n)2. The second term is the
Kullback-Leibler divergence between q and p(n̂ ∣ n), where 𝛽 trades off the relative impor-
tance of changing from the default state q, thus determining the resources that the observer
invests in the estimation task. The goal is to find the optimal distribution of responses

p∗(n̂ ∣ n) ∶= arg max
p(n̂∣n)

F[p(n̂ ∣ n)] . (16)

The optimal distribution of responses in this variational problem has an analytical solution
of the form

p∗(n̂ ∣ n)∝ q(n̂) exp (–𝛽h(Ln(n̂)) , (17)

where h is a function of L and potentially other elements incorporated in the expected loss
function in Eq 15.

TIM applied to numerosity estimation. A recent work applied a model from the TIM
family to study a resource-constrained model of human numerosity estimation [21]. This is
also a formulation of how the distribution of reported numerosity estimates n̂ of a stimulus
magnitude should vary depending on the true stimulus n. This can be stated generally as the
hypothesis that conditional on n the response distribution p(n̂ ∣ n) is the probability distribu-
tion over a set of possible responses N that minimizes the mean squared error (MSE), subject
to the constraint

DKL (pn∥q)≤ C(t) =min(Rt,B) , (18)

where C(t) is a positive bound that depends on the amount of time t for which the stim-
ulus is presented. This formulation can be interpreted as a model in which errors in the
observer’s responses can be attributed to a “cost of control” of the responses: it is difficult for
the observer to give responses different from the default state q, though their response distri-
bution to the individual stimulus n is optimal given a constraint on the possible precision of
their responses.

Similar to our SEB model, in TIM it is assumed that perception extracts information lin-
early in time at a rate R until an overall capacity bound B is reached. The goal is to find the
distribution of numerosity estimates p∗(n̂ ∣ n) that minimizes the mean squared error

MSE≡∑
n
q(n)∑

n̂
p(n̂ ∣ n)(n̂ – n)2 (19)

under the constraint given in Eq 18.
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The optimization problem described above yields the following analytical solution [21]

p∗(n̂ ∣ n)∝ q(n̂) exp (–𝛽nq(n)(n – n̂)2) , (20)

where 𝛽n is chosen to satisfy the bound in Eq 18. Note that this solution has the familiar form
obtained in Eq 17 with L as the loss function Ln = (n – n̂)2.

While this solution is usually linked to a bounded-rational Bayesian computation (given
the observation that the default distribution q is multiplied by a function of n given n̂), here
we clarify that this solution does not correspond to a Bayesian inference process with noisy
sensory percepts. In fact, the TIM formulation assumes that the perception of the sensory
stimulus n is noiseless, and all the variability observed during the estimation process is related
to the cost of acting accurately, that is, a cost in the precision of response selection when shift-
ing away from the default state. Note that this is fundamentally different from the SEB model,
in which all the estimation variability is attributed to noisy sensory encoding.

Overview of the constraint parameters of the SEB and TIMmodels
One of our goals is to formalize and make transparent the different elements that play a role
in a noisy information transmission process under our model specification, namely, (i) time,
(ii) precision of instantaneous information processing, and (iii) energy required to transmit
decodable information.

On the one hand, the constraint B is similar in spirit to the DDMs applied to cognitive pro-
cesses, where the decision maker is willing to invest a maximum amount of time in processing
information due to opportunity costs, in principle irrespective of how precise the instanta-
neous information processing is. Thus, formally, the time invested in acquiring information
is given by

𝜏 = min(t, tmax) , (21)

with tmax defining the maximum information bound (B = R
√
tmax/𝜎).

On the other hand, the parameterΩ in our work imposes a constraint on the cost of a
decodable transmitted message considering deviations from a status quo state, where energy
needs to be injected to transmit decodable information (which in our model specification is
given by m(n), for any given 𝜏. However, the message m is not noiseless, where instantaneous
processing noise is given by 𝜔 (otherwise one could make the length of m infinitesimally
small). This means that there exists a natural trade-off between the fidelity of information pro-
cessing, how much energy the decision maker is willing to (or can) “pay” to disentangle infor-
mation, and also how much time should be invested in this process. In addition to this, there
is an objective that we assume the decision-maker would like to optimize for: minimize the
mean squared error. Here it is important to emphasize two points: (i) specifying the model in
this way makes transparent the different limitations that the decision-maker must trade-off;
(ii) the constraint B is not a necessary requirement to obtain the optimal solution. It is set fol-
lowing the common knowledge that processing time leads to opportunity costs, in principle
irrespective of information processing precision. These constraints will almost surely trade-
off in the presence of imprecise information processing (as is also the case in n-alternative
choice DDMs). Should time be allowed to be infinite then decoding would be nearly perfect
even with imprecise instantaneous information processing (Eqs 7 and 10); analogously in
n-alternative DDMs with noisy drifts, bounds would be infinitely large, thus converging to
errorless decisions.
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These constraint assumptions are also present in the TIM:

DKL (pn∥q)≤ C(t) =min(Rt,B) . (22)

Here the constraint is similarly given by two parameters: a linear information “processing”
rate R, and (ii) a bounded rate of information processing B. However, as we discuss in detail
in our work, the TIM specification does not consider noisy encoding.

General similarities and differences between SEB and TIM
We elaborated an illustrative example that allows the predictions of the two models to
be solved analytically, thus allowing us to understand the key differences between them
(S5 Note). These analyses reveal some similarities between the predictions of the two mod-
els, however, there are also notable differences. First, while both models predict that biases
decrease in general for larger viewing times, this decrease occurs sooner for SEB than TIM.
Second, for a given input stimulus n, the two models do not imply that var[n̂ ∣ n] co-varies
with the bias in the same way. As the viewing time t goes to zero, the Bayesian model implies
that the variance should fall to zero; TIM implies that this is the case in which estimates
should have the highest variance (equal to the variance of the prior distribution).

These analytical insights were studied over all possible responses in the continuous space
and do not directly apply to numerosity estimation in the discrete space (S5 Note). There-
fore, we conducted numerical analyses to study whether the same signatures emerge in SEB
and TIM when the solutions are restricted over the space of positive integers and to give some
intuition by visualizing the differences.

As expected, both models predict that biases decrease in general for larger viewing times,
and mirroring the results of the analytical solution, this decrease occurs sooner for SEB than
TIM (Fig 2, left panels). However, a fundamental difference between the two models is that
as t goes to zero, the SEB predictions fall to zero, but this is not the case in TIM where the
predicted variability of estimates is clearly larger (Fig 2, middle panels).

Finally, the computation of the coefficient of variation (CV[n̂]≡ SD[n̂]/E[n̂]) reveals that
in SEB this metric is nearly identical for all numerosities n irrespective of time exposure t,
thus reflecting the scalar variability effect (Fig 2a, right panel). In TIM, however, the scalar
variability phenomenon is absent irrespective of time exposure t. These differences make the
two models different and identifiable and generate somewhat different qualitative predictions.

Efficient numerosity estimation under limited time
We now compare TIM with SEB models using the experimental data of a pre-registered study
provided in previous work [21] (see Methods). In brief, on each trial, between 1 and 15 dots
were flashed, followed by a noise mask. The participants were then asked to type their esti-
mation of how many dots were displayed. There were three between-participant experiments
(n=100 per experiment) that manipulated available stimulus information (variable expo-
sure time: t∈ [40, 80, 160, 320, 640]ms) and different ways of controlling non-numerical
properties of the stimuli: the average dot size (experiment 1), the average density of the dots
(experiment 2) or the total surface area covered by the dots (experiment 3).

To fully constrain inference solely to the normative solutions of stimulus exposure derived
above for both SEB and TIM, we fixed the prior distribution before fitting the behavioral data
to a prior equivalent of the form 1/n𝛼 power-law. It has previously been argued that the prior
probability of how often numerosities are encountered and represented roughly follows a
1/n𝛼=2 power-law distribution [24,25]. Thus, a priori, we choose 𝛼 = 2, following the same
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Fig 2. General similarities and differences between SEB and TIM. a) Computation of the bias (E[n̂ ∣ n]–n, left panel),
standard deviation (SD[n̂ ∣ n], middle panel), and the coefficient of variation (CV = SD[n̂ ∣ n]/E[n̂ ∣ n], right panel) as a
function of different time exposures t for different numerosities n (color scale of the solid lines) in the SEB model. Although
we proved that the CV in SEB does not depend on numerosity (14), notice that in the simulations the CV does vary slightly.
These slight differences are the result of rounding the expected value of the posterior to the closest integer for the discrete
SEB model. For smaller integers, the CV will become more affected by these rounding errors, i.e., due to a slight overesti-
mation of the Bayesian decoder for smaller numbers, the expectation will slightly increase thus dominating the CV ratio.
b) Same as panel a, but this time computed for TIM. Differences between the two models are particularly salient in the
computation of the SD and the CV.

https://doi.org/10.1371/journal.pcbi.1012790.g002

assumption adopted in previous work [21]. By fixing such ecologically valid prior, we alleviate
the critique of allowing an arbitrary choice of prior and likelihood functions to fit inference
models to the data, as a consequence of which it is sometimes argued that their predictions
are potentially vacuous [28]. Nevertheless, it is well possible that each individual has learned
their own distribution during their lifespan [29,30]. Therefore, we also considered a more
flexible class of models where we allowed the parameters of the prior distribution to be free
parameters alongside the capacity constraint and capacity bound.

We considered two possible ways of inferring the numerosity estimates based on the SEB
approach (methods): (i) using the analytical solutions over the continuous positive real line,
and (ii) using discrete encoding and decoding restricted to the positive integer numbers,
thus similar in nature to the TIM specification. Finally, we considered a guessing rate g in
the model fits, which assumes that on g proportion of trials, participants were distracted and
had no information about the number of dots in the display, meaning that their estimate
was effectively a random sample from their prior. Thus, both numerosity estimation models
SEB and TIM have exactly the same degrees of freedom (the capacity constraint, the capac-
ity bound, and the guessing rate), in addition to the prior parameters in the flexible class of
models.

Quantitative model comparison. For each experiment where stimulus presentation time
t was manipulated, we fit both types of model to the data of each participant (Methods). In
parameter recovery exercises we found that all model parameters are identifiable and this is
also confirmed by the weak relationship between parameters across participants (S1 Fig). We
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first examined the restricted models where the prior is fixed 1/n2. For experiment 1 (dot size
controlled), we found that the difference in Akaike information criterion (AIC) favoured SEB,
where the continuous version of SEB had a clear advantage over TIM: ΔAIC = 1472 [95%-
CI 570-2553] in favor of SEB (paired t-test: T(99) = 2.86, p < 0.01,d = 0.29. For experiment
2 (dot density controlled), the difference in AIC is 5284 [95%-CI 4185-6690] in favor of SEB
(T(99) = 8.70, p < 0.001,d = 0.87). For experiment 3 (dot area controlled), the difference in
AIC is 2316 [95%-CI 1218-3686] in favor of SEB (T(99) = 3.61, p < 0.001,d = 0.36, see Fig 3a).
In addition, the SEB continuous model provided better fits than its discrete version (T(99)≥
8.64, p < 0.001,d > 0.86 Δ AIC ≥ 997).

Previous theoretical and empirical work suggests that two ways in which the amount of
resources available to process information can be studied are by manipulating time expo-
sure and also by changing stimulus contrast [13]. Thus, we also considered this alternative
way of manipulating sensory reliability, which should affect the channel capacity transmis-
sion (see Eq 10). To test this, we analyzed data of a numerosity estimation experiment, where
in each trial the visual contrast of numerosity was manipulated at a constant presentation
time (n=100 participants, experiment 4, Methods). We found that also in this experiment
the SEB continuous model fits the data better than TIM (ΔAIC = 5106; [95%-CI 3452-6880]

Fig 3. The SEBmodel quantitatively outperforms the TIMmodel when the prior parameters are fixed. a) Difference
in AIC between the SEB continuous model (green) and the TIM model (orange) or the SEB discrete (blue). The ΔAICs
were computed for each participant and summed. The error bars represent the 95% confidence interval based on boot-
strapping of the participants’ ΔAICs. The SEB continuous model outperforms both the TIM model and the SEB discrete
model. b) Average guessing rate parameter per participant for each model and experiment. The error bars represent the
95% confidence interval based on bootstrapping of the participants’ guessing rate. The guessing rate of the SEB continuous
model is lower than the TIM model and the SEB discrete model. These results indicate that less variability is associated
to lapses of attention in the SEB continuous model, which suggests a better fit to behavior. c) Difference in AIC between
the SEB continuous model and the TIM model or the SEB discrete model for each numerosity. The error bars represent
the 95% confidence interval based on bootstrapping of the participants’ AICs. The SEB continuous model outperforms
the TIM model except for numerosities 3, 4 and 5 and the SEB discrete model for all numerosities except numerosity 1.
d) AIC differences between the SEB continuous model and the TIM model (top) and the SEB discrete model (bottom)
for all experiments shown for different numerosities and levels of sensory evidence (stimulus presentation duration or
contrast). Duration values are assigned to Weber contrasts of experiment 4 for pooling purposes (40ms–10%, 80ms–20%,
160ms–40%, 320ms–80%, 640ms–160%). The SEB continuous model outperforms the TIM and SEB discrete models for
most numerosities and levels of sensory evidence.

https://doi.org/10.1371/journal.pcbi.1012790.g003
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(T(99) = 5.79, p < 0.001),d = 0.58, Fig 3a) and the discrete version of SEB (ΔAIC = 1453;
[95%-CI 1059-1907] (T(99) = 6.69, p < 0.001,d = 0.67)).

To make sure that the overall quantitative differences were not driven by a few numerosi-
ties, we computed the difference in AIC for each numerosity and each model. We found a sig-
nificant interaction models*numerosity of the ΔAICs (F(28, 16758) = 7.84, p < 0.001) with
posthoc tests revealing that this effect was more pronounced for higher numerosities (SEB
continuous vs. TIM: paired t-tests p < 0.001 for numerosities n > 5, Fig 3c) and also for n∈
[1, 2] (paired t-tests p < 0.01). The relative advantage of the TIM model for n∈ [3, 4]) at large
presentation times t might be explained by the fact that smaller numerosities are close to the
subitizing range and therefore most of the posterior density mass is concentrated around the
input n, which is better explained by the TIM model as this model has a tendency to subitize
more strongly at small numerosities [21]. Interestingly, for n∈ [1, 2], the Bayesian model pre-
dicts noisier estimations (in particular for smaller exposure times t) which are not supported
by the TIM, with the AICs favoring the former.

Additionally, we inspected the AIC differences split by both numerosity and sensory evi-
dence (time or contrast), finding a similar pattern, but the differences were larger for small
levels of sensory evidence (Fig 3d). Thus, SEB appears to be more sensitive to capturing
behavior for stimuli generating higher noise levels in the encoding operations.

Moreover, we compared the guessing rates g between the two kinds of models. Guessing
rates can capture unassigned variance in misspecified models, thus we conjectured that a rel-
atively smaller value of g would provide further evidence for better mechanistic fits captured
by the best model. While the guessing rates are overall small (suggesting that the amount of
distractions during task performance was minimal), we found that guessing rates were sys-
tematically smaller in the SEB model (T(99)≥ 5.75, p < 0.001,d > 0.58 for each experiment,
Fig 3b and S1 Table). Thus, while the effects of distraction are estimated to be relatively small
in both models, our analyses provide a clear indication that potentially unassigned variance
due to distraction is lower in the SEB model relative to TIM. We also note that the informa-
tion bound parameter B can be fit for both models which is empirical evidence that this infor-
mation bound is present in this experimental setup, even for relatively short presentation
times (640ms).

We repeated the same set of analyses treating parameters of the log-normal prior as free
parameters. The results of these analyses mirrored the initial analyses. That is, (i) we found
that the SEB model fit the data better than TIM in all four experiments (T(99)≥ 3.54, p <
0.001), Fig 4a), (ii) the continuous version of SEB performed better in general than its dis-
cretized version (Fig 4a) and (iii) the guessing rates were significantly smaller in the SEB
model than the TIM model for experiments 2 and 3 (T(99)≥ 2.95, p < 0.01 but not for experi-
ments 1 and 4, Fig 4b).

The next question to ask is whether the models with free prior parameters outperformed
the models with the prior fixed to 1/n2. We found that for each model considered here, the
models with free prior parameters outperformed their corresponding version with fixed
parameters (T(99)≥ 5.62, p < 0.001, S2 Table). Additionally, to account for population vari-
ability in the quantitative metrics between participants across all models considered here, we
applied a Bayesian Model Selection which revealed that the Bayesian model with free prior
parameters is clearly favored relative to all the other models for experiments 1, 2 and 3 (Pxp >
0.99 for each experiment) but equally favored to the TIM model with free prior parameters
for experiment 4 (Pxp = 0.50). These results allow us to conclude two important points. First,
variability in the prior parameters of the prior distribution is key to more accurately explain-
ing human numerosity estimations. Second, our results provide a clear indication that the
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Fig 4. The SEBmodel quantitatively outperforms the TIMmodel when the prior parameters are free. a) Difference in
AIC between the SEB continuous model (green) and the TIM model (orange) or the SEB discrete (blue). The ΔAICs were
computed for each participant and summed. Error bars represent the 95% confidence interval based on bootstrapping of the
participants’ ΔAICs. The SEB continuous model outperforms both the TIM model and the SEB discrete model. b) Average
guessing rate parameter per participant for each model and experiment. Error bars represent the 95% confidence interval
based on bootstrapping of the participants’ guessing rate. The guessing rate of the SEB continuous model is lower than the
TIM model for experiments 2 and 3 but not for experiments 1 and 4 and the SEB discrete model for experiment 3 but not
for the other experiments. c) Difference in AIC between the SEB continuous model and the TIM model or the SEB discrete
model for each numerosity. Error bars represent the 95% confidence interval based on bootstrapping of the participants’
AICs. The SEB continuous model outperforms the TIM model except for numerosities 1 to 5 and the SEB discrete model
for all numerosities. d) AIC differences between the SEB continuous model and the TIM model (top) and the SEB discrete
model (bottom) for all experiments shown for different numerosities and levels of sensory evidence (stimulus presentation
duration or contrast). Duration values are assigned to Weber contrasts of experiment 4 for pooling purposes (40ms–10%,
80ms–20%, 160ms–40%, 320ms–80%, 640ms–160%). The SEB continuous model outperforms the TIM and SEB discrete
models for most numerosities and levels of sensory evidence.

https://doi.org/10.1371/journal.pcbi.1012790.g004

effects of temporal time exposure are better captured by the noisy encoding model (SEB)
relative to an action control-like model (TIM).

Qualitative predictions. We first examined the qualitative features of scalar variabil-
ity in both data and the predictions of the SEB continuous and the TIM models with free
prior parameters. For each numerosity value, we computed the coefficient of variation (CV:
SD[n̂]/E[n̂]). We found that the empirical data follows the previously observed properties
of scalar variability for numerosities greater than 4 (i.e., a flat CV irrespective of numerosity
and sensory evidence), with a slight systematic increase of CV for smaller numbers (Fig 5a
left). This relative CV increase for small numbers could be explained by the presence of small
guessing rates g which have a greater impact on the CV for small n. We found that the SEB
model accounts for these qualitative observations (Fig 5a middle), however, the TIM model
generates slightly different predictions (Fig 5a right).

We found that patterns of estimation biases and variability during numerosity estimation
as a function of sensory evidence were in general more closely captured by the SEB relative
to the TIM model (Fig 5b top and middle panels). As predicted by our analytical analyses
(S5 Note) the rate of increase in noise as a function of n is larger for the TIM model relative to
the SEB model, with the empirical data more closely agreeing with the SEB model. Addition-
ally, given that the TIM model generally requires larger values of guessing rates g to explain
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Fig 5. The SEB continuous model with free prior parameters qualitatively explains behavior. a) Coefficient of variation
(SD[n̂]/E[n̂]) of the behavior data (left) and predictions of the SEB model (middle) and TIM model (right) using a prior
with free parameters for different numerosities and stimulus presentation duration. Predictions were performed by taking
for each parameter the value with this highest density across participants. Duration values are assigned to Weber contrasts
of experiment 4 for pooling purposes (40ms–10%, 80ms–20%, 160ms–40%, 320ms–80%, 640ms–160%). The TIM model
predicts a higher CV for lower numerosities. This feature is not present in the behavior data nor the SEB predictions. b)
Mean estimate (top), standard deviation (middle) and absolute error (bottom) of the behavior data (left) and predictions of
the SEB model (middle) and TIM model (right). c) Posterior distribution of estimates to numerosities 4 (green), 9 (red) and
13 (blue) of the SEB (left) and the TIM (right) model for different stimulation presentation durations (40ms (top), 160ms
(middle), 640ms (bottom)). Behavior of participants is shown as histograms.

https://doi.org/10.1371/journal.pcbi.1012790.g005

variance, for small n it predicts larger SDs relative to SEB and empirical data (with a similar
pattern for the case of the CV, Fig 5a). However, there is an exception at 40ms, where TIM
captures better the range of the standard deviation (from around 2 to 6). Another point where
the TIM model appears to do a better job relative to the SEB model is for the absolute error
estimations (Fig 5b bottom). Subitizing is more pronounced for low numbers in general, and
this reduces both biases and errors for n < 5. However, beyond the subitizing range and for
levels of noise that challenge sensory perception, the SEB model does a better job at capturing
all descriptive statistics. To visualize the nature of these differences, the posterior distribution
of estimates for both models are shown in Fig 5c for different numerosities and presentation
times.
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Discussion
Our theoretical and empirical tests provide clear evidence that a model of Bayesian decoding
of noisy internal representations—which provides a normative explanation for the property
of scalar variability and can be parsimoniously connected to a theory of limited informational
capacity—provides a better account of numerosity estimation data in humans relative to the
alternative TIM model considered here. We emphasize that both models: (i) are optimized
for the same assumed objective (minimizing the MSE of the estimates), (ii) can be compared
under the same assumption about the prior distribution, and (iii) have identical degrees
of freedom. Thus, qualitative and quantitative differences between the two information-
theoretical models cannot be explained by differences in model complexity, but instead reflect
differences in the mechanistic assumptions of the numerosity processing operations. In par-
ticular, it is important to note that assumptions about potential encoding and decoding oper-
ations are explicitly stated in the Bayesian model. In contrast, these remain “hidden” in the
alternative TIM model.

One of our main goals in the development of our modeling framework was to develop
an encoding-decoding model incorporating various aspects of human cognition with many
antecedents in the literature, which include Brownian motion during evidence processing
over time [15] and logarithmic internal representation of numerical quantities [16]. While
our proposed model accounts for key qualitative features of the human behavioral data
with minimal degrees of freedom, we do not claim that the log-encoding model necessarily
accounts for all aspects of numerosity estimation behavior. Indeed, the encoding and decod-
ing strategies that humans and other animals use need not be the same in all contexts [31].
It is equally possible that numerosity processing mechanisms depend on the task at hand,
and draw upon an ensemble of strategies that optimize performance under different situa-
tions [32,33]. For instance, in future work, it will be interesting to investigate whether situa-
tions that involve explicit numerosity estimation vs. discrimination rely on similar or distinct
encoding strategies and inference processes.

We assumed that participants employ a log-normal (or power-law) prior, however, it is
important to note that the numerosities presented to the participants were drawn from a uni-
form distribution. We thus implicitly assumed that participants did not rapidly adapt their
encoding operations, which might be a reasonable assumption given that participants were
not exposed to the new prior for an extended period of time. In addition, in one version of
the model fits we allowed the parameters of the prior to be adjusted, resulting in non-uniform
distributions, which at the very least suggests that participants did not fully adapt to a uni-
form prior.

A natural consequence of our theory is that the SEB model parsimoniously endogenizes
parameters of the prior distribution in its encoding operations. A testable prediction is that
larger prior distribution ranges should lead to more noisy estimates and therefore poorer dis-
criminability for a given capacity bound. This prediction is confirmed by a recent study where
it is shown that human participants adapt their numerosity sensitivity for different numeros-
ity ranges, with important implications for risk behavior [34]. Thus two of the key predictions
of our theory hold: for a fixed capacity bound sensory reliability should change as a function
of (i) time exposure to the sensory stimulus as shown in this study, and (ii) the range of the
prior distribution [34].

Additionally, our model predicts that the crossover point from overestimation to underes-
timation should change as a function of the numerosity range. In this work, we only present
data with a fixed range of 1 to 15, thus we cannot test this prediction. However, a previous
study using larger numerosity ranges (e.g., up to 30 or 100) found that the cross-over point is
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larger for wider numerosity ranges, and crucially, the degree of over- and under-estimation
depended on the attentional resources dedicated to numerosity estimation [4]. This result is
again in line with the qualitative predictions of our model. Future research could test these
predictions quantitatively.

The general working framework of SEB is a Bayesian decoder where the likelihood func-
tion optimally endogenizes information in the prior distribution for a given capacity con-
straint and stimulus exposure time. Here it is important to emphasize that this framework
is not restricted to a specific form of the prior. Also, the formulation of processing time, the
information processing constraint, and the objective are specified in a general form. How-
ever, a fundamental aspect of the SEB model is the specific form of the drift-diffusion term
which employs an affine (log-)linear transformation of the input stimulus. The question here
is whether this affine function is valid and generalizes for the case of numerosity estimation
when it is assumed that the prior distribution changes (i.e., ceases to be power-law or log-
normal). We argue that unless there is extensive training over long periods (e.g., many days
of ecologically valid adaptation in the absence of any power-law or log-normal distributions),
the encoding function may remain of the family of an affine (log-)linear of power-law trans-
formation. While we acknowledge that this argument needs to be tested empirically, recent
work appears to support this notion: Prat-Carrabin and Gershman [35] show that when either
the prior or objective functions (or incentives) are manipulated during a numerosity estima-
tion task, and even if behavior shows signatures of such adaptation, modeling analyses suggest
that subjects’ responses feature in all cases logarithmic encoding while the Bayesian decoder
takes into account the prior distribution and objective function (incentives). Nevertheless,
this form of the encoder might not be optimal and may need to be adapted to the prior distri-
bution and objectives of the organism to achieve efficiency. This idea was studied in previous
work both theoretically and empirically where it is shown that if organisms can adapt their
encoding functions, they must do so at the earliest stages of sensory processing [36,37], other-
wise, information that is lost in the early sensory processing streams cannot be recovered via
downstream operations [36,38].

In addition, given the relatively short stimulus presentation times, we assumed that the
participants gather information about the stimulus until they reach the time bound tmax or
the stimulus disappears. Other specifications of perceptual decision-making problems include
endogenous stopping, in which case the observers decide by themselves when to stop gather-
ing information and respond. Although this question is out of the scope of this study, future
researchers could build on our model and specify a utility function which takes into account
both the rewards for accurate answers and costs related to the time of the decision.

Our model is agnostic about the biological meaning of its parameters. Future research
could try to relate them to neural processes [39–42]. We speculate that the bound on the drift
rateΩ could be related to the information capacity of sensory or evidence accumulation areas
(for example how many neurons are used to represent a stimuli or how much precision can
these neurons use [43]). This contrasts with the information bound B, related to the max-
imum amount of information that can be represented, which could be related to neurons
resources in higher cortical areas such as the dlPFC as well as premotor areas [43,44].

Taken together, our findings suggest the fruitfulness of studying optimal models with
resource limitations, which can serve as a departing point to understand the neuro-
computational mechanisms underlying human behaviour without ignoring the fact that bio-
logical systems are limited in their capacity to process information [36,37,45,46]. This high-
lights that understanding behavior in terms of its objectives while taking into account cogni-
tive limitations, alongside encoding, decoding, and inference processes is likely to be essential
to elucidate the mechanisms underlying human cognition.
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Materials and methods
Participants, data, and experiments
In this work we re-analyzed the data of experiments collected in previous work [21]. In brief,
on each trial, between 1 and 15 dots were flashed, followed by a noise mask. The participants
were then asked to type their guess of how many dots were displayed. The participants were
recruited and carried out the experiment online. There were three between-participant exper-
iments (n = 110 per experiment) that manipulated available stimulus information (variable
exposure time: t∈ [40, 80, 160, 320, 640]ms) and different ways of controlling non-numerical
properties of the stimuli: the average dot size (experiment 1), the average density of the dots
(experiment 2) or the total surface area covered by the dots (experiment 3).

We also studied a fourth experiment (n = 110) in which time exposure t was fixed across
trials, but instead display contrast of the dot arrays was varied from trial to trial (experi-
ment 4). In this experiment, the colors of the dots varied between the background (grey) and
pitch black, by Weber contrasts of 10%, 20%, 40%, 80% and 160%, at a constant presentation
time of t = 200 ms.

Each participant was presented with each combination of numerosity and sensory evi-
dence twice for a total of 150 trials per participant.

Models
Here we fit the two families of models described in the main text to the data of each partici-
pant: (i) We fit the SEB model assuming a log-normal prior with power parameter 𝛼 = 2. We
fit a continuous version of the model based on the analytical solutions derived in S1 Note and
S2 Note, and a discrete version of this model based on numerical simulations. (ii) Follow-
ing the procedures of previous work [21], we fit the TIM model assuming a power-law prior
with power parameter 𝛼 = 2. For both families of models, we also fit a version were the param-
eters of the log-normal prior were allowed to be free parameters. We also note that analyti-
cal solutions in SEB were derived in the continuous space due to mathematical tractability
(S1 Note, S2 Note, and S3 Note).

AQ1

Thus, in order to define the likelihood function of this model
in the integer space, we normalized the log probability of estimators (Eq 31) in the integer
range n∈ [1, 2, 3, ..., 100]. Note that both SEB and TIM have exactly the same degrees of free-
dom (R, B, and g), where g is a guessing rate based on the probability of randomly drawing a
value from the default distribution.

Quantitative and qualitative analyses
Participants who completed less than 90% of the trials were excluded. Similar to previous
work [21] we selected the 100 best participants for each experiment. In addition, trials in
which the participant’s response was 10 times higher than the presented numerosity or the
response time was superior to 10s were excluded. This additional data cleaning leads to the
rejection of 142 trials out of 14,997 for experiment 1, 143 out of 14,993 for experiment 2, 172
out of 15,000 for experiment 3 and 187 out of 15,000 for experiment 4. Each model was fit
individually to each participant using the DEoptim package [47] in the statistical language
R [48] with a number of iterations set to 100. The limits for the parameter search space were
set to (0.1,200) for R, (0.1, 20) for B and (0.0001, 0.5) for g. In the models where the prior was
free, the search space of the prior parameters was (-50,50) for 𝜇 and (0.1,100) for 𝜎. Model
comparison was performed based on the Akaike information criterion (AIC). Using other
model comparison metrics such as the Bayesian information criterion (BIC) does not change
the conclusions of our work.
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In Figs 3 and 4 and main text, we report the sum of the AIC difference relative to the best
model across participants for each experiment, and report the 95% bootstrap confidence
interval (95%-CI). We also computed two-sided paired t-tests based on the AICs obtained
for each participant between the SEB and the TIM models. Likewise, we computed two-sided
paired t-tests based on the guess rate parameter g obtained from each participant in the SEB
model relative to the guess rates obtained in the TIM model. We report effect sizes as Cohen’s
d. The qualitative predictions were computed based on the value with the highest density
for each parameter at the population level. Each statistic was computed separately for each
experiment and then averaged across experiments.

Details regarding the theoretical derivations of the SEB model and the analytical compar-
ison between TIM and SEB models are given in detail in the Supplementary Notes (S1 Note,
S2 Note, S3 Note, S4 Note and S5 Note).

Ethics statement
All data analysis from human participants is based on an openly available dataset [21], there-
fore no Institutional Review Board approval was required for this study.
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