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Abstract
Sensory neurons continually adapt their response characteristics according to recent
stimulus history. However, it is unclear how such a reactive process can benefit the
organism. Here, we test the hypothesis that adaptation actually acts proactively in the
sense that it optimally adjusts sensory encoding for future stimuli. We first quantified
human subjects’ ability to discriminate visual orientation under different adaptation con-
ditions. Using an information theoretic analysis, we found that adaptation leads to a real-
location of coding resources such that encoding accuracy peaks at the mean orientation
of the adaptor while total coding capacity remains constant. We then asked whether this
characteristic change in encoding accuracy is predicted by the temporal statistics of nat-
ural visual input. Analyzing the retinal input of freely behaving human subjects showed
that the distribution of local visual orientations in the retinal input stream indeed peaks at
the mean orientation of the preceding input history (i.e., the adaptor). We further tested
our hypothesis by analyzing the internal sensory representations of a recurrent neural
network trained to predict the next frame of natural scene videos (PredNet). Simulating
our human adaptation experiment with PredNet, we found that the network exhibited the
same change in encoding accuracy as observed in human subjects. Taken together, our
results suggest that adaptation-induced changes in encoding accuracy prepare the visual
system for future stimuli.

Author summary
Prolonged exposure to a fixed stimulus causes sensory neurons to adapt. In this study,
we uncover some of the functional benefits of adaptation for the visual system. We first
quantified how adaptation changes the sensory representation of a stimulus feature
(here, local stimulus orientations) using psychophysical measurements. We found that
adaptation improves the sensory representation of stimulus orientations that are similar
to the adaptor orientation, while it weakens the representation of dissimilar orientations.
By analyzing the retinal image statistics of freely behaving human subjects, we then show
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that these enhanced representations are tailored to the immediate future retinal input
because stimulus orientations are more likely to be similar to those in the past. Finally,
we show that an artificial neural network trained to predict the next frame in naturalistic
videos exhibits changes in sensory representation that are very similar to the ones mea-
sured in human subjects. Together, our results indicate that adaptation improves sensory
representations in a way that benefits the visual system in processing future sensory
input.

Competing interests: The authors have
declared that no competing interests exist.

Introduction
Biological information processing systems continually adapt their sensory representations
to statistical changes in their sensory environment. This is well documented by the various
neural response changes that occur after prolonged exposure to, for example, a fixed visual
orientation [1–3] or motion direction stimulus [4,5], but also the corresponding perceptual
changes [6–8]. Many popular visual illusions, such as the motion aftereffect [9], represent par-
ticularly salient examples of how adaptation affects perception. Adaptation manifests itself
at every stage of information processing, affecting every neuron involved in the representa-
tion and processing of sensory information, and the effects accumulate and interact along
the representational hierarchy in the brain (e.g., [5,10]). Its ubiquitous nature suggests that
adaptation provides fundamental and important benefits [11–13].

Adaptation has been thought of as a mechanism that adjusts neural representations in
order to maximize the amount of information encoded about sensory input [14–18]. This effi-
cient coding hypothesis has been empirically validated at the level of single neurons in sim-
ple systems where input-output relations can be readily controlled and measured (e.g., the
motion sensitive neurons of the blowfly [19,20]). In more complex neural systems such as the
primate brain, however, perceptual variables are typically encoded in a distributed fashion
over entire neural populations. In this case, the efficient coding hypothesis is more difficult to
test because it requires sufficiently comprehensive measurements of the neural code to faith-
fully calculate the information content across the entire neural population. Using Fisher infor-
mation [21] as a measure of encoding precision can help to resolve these difficulties. Fisher
information is an approximation of the computationally more demanding measure of mutual
information [22], and can be interpreted as the amount of coding resources allocated to rep-
resent a particular stimulus value [23]. It can be directly computed from and related to neu-
rophysiological parameters [24–28]. More importantly, Fisher information also provides a
bound on perceptual discriminability [24,29,30]. As a result, adaptation-induced changes in
sensory encoding precision can be directly quantified with psychophysical discrimination
experiments.

Previous studies have found that discrimination thresholds decrease for stimulus values
close to the adaptor but increase for values different from the adaptor [6,7,31,32]. Some stud-
ies reported that discrimination thresholds also decrease for stimulus values that are opposite
of the adaptor (i.e., for orientation, orthogonal to the adaptor) [2,7], but this result is not con-
clusive [33,34]. However, because these previous psychophysical studies did not measure the
effects of adaptation over the entire stimulus range, the currently available discrimination data
are not sufficient to fully characterize adaptation-induced changes in sensory encoding.

Testing the efficient coding hypothesis of adaptation also requires knowledge of the con-
textual stimulus distribution for which the representation is optimized. Previous studies have
shown that under (quasi-)stationary contexts sensory encoding is qualitatively well matched
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to the overall, longterm statistics of the observer’s natural environment. For example, the dis-
tribution of local orientations in natural visual scenes shows strong peaks at cardinal orienta-
tions [35] that are well aligned with the reported higher orientation discriminability of human
observers at cardinal orientations [27,36,37]. However, these input distributions are more
difficult to define and measure at the relative short timescales relevant for adaptation. Par-
ticularly in vision, the observer’s active control of gaze position can substantially affect the
shape of the input distributions at the level of the retina [38–40]. Efficient coding seems also
somewhat at odds with the notion that adaptation is driven by stimulus history: to be bene-
ficial, sensory representations should be optimized for future rather than past sensory input.
Of course, it is well established that due to its continuous nature, the recent state of our envi-
ronment is a good predictor of its future [2,41–43]. Again, this does not necessarily translate
to the input distributions at the level of the retina because of the observer’s active control and
selection of sensory input via eye-movements [44–48].

With our study, we validated the efficient coding hypothesis of adaptation for visual orien-
tation perception. We psychophysically characterized changes in visual orientation discrim-
inability across the entire orientation range induced by prolonged exposures to different adap-
tor stimuli with different orientations. We found that adaptation increases discriminability at
the adaptor orientation and also (mildly) at orientations orthogonal to the adaptor, but oth-
erwise decreases discriminability away from the adaptor orientation. Adaptation is therefore
best described as a reallocation rather than a change in the overall amount of coding resource,
which can be expressed with a single, isomorphic adaptation kernel for the adaptation condi-
tions in our experiments. By analyzing the retinal input of freely behaving human observers
in natural outdoor environments, we show that this kernel is qualitatively optimized for the
natural orientation distributions of future stimuli at short timescales under qualitatively com-
parable adaptation conditions. Finally, we use an artificial recurrent neural network, designed
and trained to predict the next frame of naturalistic videos [49,50], to demonstrate that these
adaptation kernel naturally emerge in this neural network when being presented with the
same adaptation stimulus sequence used in our human psychophysical experiment. Taken
together, our results suggest that adaptation helps to maintain an efficient representation of
future stimuli given the shortterm, temporal context of sensory signals experienced under
natural conditions.

Some of the conceptual ideas of the presented work are inspired by earlier proposals [51,
52]. Preliminary results have been presented at the Annual Meetings of the Vision Science
Society in May 2020 and 2023, respectively [53,54].

Results
The total encoding capacity of a biological sensory system is limited, i.e., the precision with
which sensory information can be represented is finite. We hypothesize that adaptation tem-
porarily reallocates some of the encoding capacity in order to optimize encoding for statis-
tically more likely future sensory input. In the following, we first formalize the reallocation
process before we empirically test the hypothesis.

Reallocation model
We use Fisher information J(𝜃) to quantify encoding precision. Fisher information provides a
lower bound on discrimination threshold D(𝜃) [24,29] given as

√
J(𝜃)∝ 1/D(𝜃), (1)
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which allows us to directly measure encoding precision with appropriate psychophysical dis-
crimination experiments. Furthermore, the efficient coding hypothesis links Fisher infor-
mation to the stimulus (i.e., prior) distribution p(𝜃). For example, for efficient representa-
tions that aim to maximize mutual information between stimulus and encoded values, this
dependency is of the form [22,23,37]

√
J(𝜃)∝ p(𝜃). (2)

Note that for other efficiency criteria the constraint (Eq 2) differs yet generally remains a
power-law function for a large family of objective functions [55,56]. Thus with the above
assumptions, Fisher information provides a link between encoding precision and psychophys-
ical measures of discriminability (Eq 1) as well as the stimulus distribution for which encod-
ing is optimized for (Eq 2).

Now, let us consider the sensory representation of local stimulus orientation in the visual
system (Fig 1). Under (quasi-)stationary conditions (i.e., at long timescales), we assume
higher encoding precision for cardinal orientations. This aligns with efficient coding given
that the overall distribution of local orientations in natural scenes typically shows prominent
peaks at cardinal orientations (see also [35,55,57]). Depending on the specific natural scene
database, these peaks can be more or less symmetric with regard to vertical and horizontal.
For reasons of simplicity, we assume a symmetric model of the stationary encoding precision
(see Methods).

We can define a new space ̃𝜃 = F(𝜃) for which the distribution of Fisher information is
uniform and encoding is homogeneous under stationary conditions [23,28]. We refer to
this new space as “sensory space”. Given the structural homogeneity of the cortical sheet in
visual cortices, we consider this space a one dimensional proxy for the neural representa-
tion of visual orientation. F(𝜃) can be thought of as the projection of stimulus information
onto this internal, sensory representation. Because adaptation is intrinsically a neural process,
reallocation is best described at the level of this sensory space.

After prolonged exposure to an adaptor stimulus with a single orientation, we assume that
the encoding capacity is temporarily redistributed depending on the shortterm stimulus dis-
tribution during adaptation (Fig 1b). In our experiment, this distribution is narrowly centered
around the adaptor orientation (22.5 or 45 deg), and thus is approximately identical in sen-
sory space for the two adaptor orientations considered here. As a result, the model assumes
that the reallocation process in sensory space can be described with an isomorphic adaptation
kernel, i.e., the reallocation of sensory coding resources follows a fixed pattern relative to the
orientation of the adaptor stimulus that is independent of the adaptor orientation. If realloca-
tion is aimed at maintaining an efficient representation, the kernel should reflect the changes
in stimulus distribution for which adaptation is meant to optimize sensory encoding (Eq (2)).
A final assumption of the reallocation model is that the total encoding capacity (i.e., the total
Fisher information) does not change with adaptation, meaning the average sensory noise as
expressed by the width of the sensory measurement distribution in sensory space remains
constant.

With the reallocation model, we can directly extract Fisher information and its changes
from psychophysical discriminability measurements under different adaptation conditions.
Likewise, we can predict the psychometric functions of the discrimination experiment that
correspond to a given adaptation kernel (see Methods for details). We use the latter to extract
the most probable adaptation kernels from fits to the psychophysical discrimination data.
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Fig 1. Reallocation model. (a) Under stationary conditions, sensory encoding capacity (in units of square-root of Fisher information) is allocated according to the
longterm stimulus distribution (Eq (2)). For visual orientation 𝜃, this distribution exhibits characteristic peaks at the cardinal orientations. Shown is one sample frame
and the overall orientation distribution of the retinal video sequences we analyzed in our study. We define a sensory space ̃𝜃 = F(𝜃) such that encoding precision in that
space is uniform. (b) After adaptation (shown are the two oblique adaptor stimuli used in our psychophysical experiments), encoding capacity is reallocated depending
on the shortterm stimulus distribution. Adaption to a single, narrow orientation-band adaptor stimulus, results in a narrow shortterm distribution. The model assumes
that in this case, encoding capacity is reallocated according to an isomorphic adaptation kernel in sensory space, i.e., the kernel is identical in shape for different adaptors
but centered at the respective adaptor orientation. Both, stationary encoding capacity and the adaptation kernel can be obtained from joint, parametric fits to the psycho-
metric functions obtained from the psychophysical discrimination experiments. Total encoding capacity is assumed to remain constant across all conditions. Note that
the widths of the shortterm stimulus distributions are exaggerated for illustration purposes.

https://doi.org/10.1371/journal.pcbi.1012746.g001

Psychophysical experiment
Five human subjects performed a two alternative forced-choice (2AFC) orientation discrim-
ination experiment under different adaptation conditions (Fig 2). At the beginning of each
block, subjects were presented with an adaptor stimulus for one minute. After that, subjects
performed 192 trials of the 2AFC task, reporting which one of two orientated grating stim-
uli was more clockwise/counter-clockwise. Every trial started with a 5s period of top-up
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Fig 2. Experimental procedure and measured adaptation-induced changes in discriminability. (a) Stimuli were bandpass filtered white noise with either a uniform
(control adaptor) or narrowband orientation spectrum (oblique adaptor, test stimuli). Two circular areas left and right of the fixation mark were simultaneously adapted
before presentation of the two test stimuli of the 2AFC discrimination task at the same locations. (b) Task structure (single block). At the beginning of each block, there
was an adaptation period of 1 minute. Every trial started with 5s top-up adaptation, after which subjects were briefly presented with two test stimuli and asked to report
which one was more clockwise/counter-clockwise. Subjects performed the same number of trials for each of the four adaptor conditions (two oblique and their respec-
tive control adaptor conditions). (c) Example data and fitted psychometric curves at two test orientations of one subject (Subject 1). Adaptation to the oblique adaptors
(orange) results in steeper psychometric curves for test orientations at and orthogonal to the adaptor orientation compared to the control adaptor condition (blue). Size
of data points is proportional to the number of trials at that test orientation (adaptive staircase procedure).

https://doi.org/10.1371/journal.pcbi.1012746.g002

adaptation. Each adaption condition (two oblique and their respective control adaptors) was
measured over 8 blocks, resulting in 32 blocks corresponding to 6144 trials in total.

We tested two types of adaptors. The oblique adaptor was identical in structure to the test
stimuli (i.e., same spatial bandpass and narrow orientation filter), with the orientation filter
centered either at ±45 deg or ±22.5 deg (0 deg being vertical). We chose oblique as opposed
to cardinal adaptor orientations to avoid possible ceiling effects; discrimination thresholds
are known to be lowest at cardinal orientations [36] and adaptation is expected to lower them
further at the adaptor orientation [6,7]. The second, control adaptor was identical to the
oblique adaptor except that it had a uniform orientation spectrum. Discrimination thresholds
measured in this well-defined, control adaptation condition serve as reference against which
we compare changes in discrimination threshold induced by the oblique adaptors. Because
the control adaptor is identical to the two oblique adaptors in every stimulus aspect except
its orientation spectrum, it allows us to isolate the orientation specific, adaptation-induced
changes in sensory encoding precision.

We independently fit psychometric curves to the 2AFC data (Fig 2c), extracted discrim-
ination thresholds, and plotted discriminability as the inverse of the thresholds in order to
have a direct comparison with encoding precision (Eq (1); Fig 3). In the control adaptation
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https://doi.org/10.1371/journal.pcbi.1012746.g003

condition, subjects’ discriminability is highest at cardinal orientations as shown in previous
studies without adaptation [36]. Adaptation to an oblique adaptor causes discriminability
to increase at but decrease slightly away from the adaptor orientation compared to the con-
trol condition. This is consistent with previous findings [6,7]. Interestingly, discriminability
for test orientations orthogonal to the adaptor also slightly increased after adaptation, which
has not yet been consistently shown [2,7,33,34]. These general results hold for both oblique
adaptors and across subjects (Fig 4).

Model fit and comparison
As our experimental results show, adaptation improves discriminability for test orientations
both at and orthogonal to the adaptor orientation. We thus assume an adaptation kernel that
peaks at and orthogonal to the adaptor orientation (Fig 1). Specifically, we model the adap-
tation kernel as the weighted sum of two von Mises distributions and a uniform distribu-
tion. Widths and relative weights are free model parameters (see Methods). We individually
fit the reallocation model to the data from each subject. We first fit the data measured under
the control condition, which allowed us to determine the distribution of Fisher information
before adaptation (i.e., every subject’s individual sensory space ̃𝜃) and the overall amount of
coding resource available (i.e., the subject’s total Fisher information). We then jointly fit the
data from the 45 deg and 22.5 deg adaptor conditions and determined the adaptation kernel
of every subject. Fig 3 shows the average measured and predicted discriminability based on
model fits to individual subjects’ data. Fig 4 shows the measured and predicted discriminabil-
ity of individual subjects. The model captures not only the improvement in discriminability at
and orthogonal to the adaptor orientation, but also its mild deterioration for test orientations
slightly different from the adaptor orientations. Note that for reasons of simplicity we assume
encoding precision to be symmetric for vertical and horizontal orientations in the control
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https://doi.org/10.1371/journal.pcbi.1012746.g004

adaptor condition, which does not fully agree with every subjects (e.g., subject 4). However,
allowing for asymmetries in the stationary encoding model does not significantly change our
results.
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Fig 5a shows the adaptation kernels for every subject. The kernels were extracted from the
fit reallocation model as illustrated in Fig 1. The kernels are similar across subjects, consis-
tently showing a sharp peak in Fisher information at the adaptor as well as a more shallow
peak for orientations orthogonal to the adaptor. Note that the kernels are plotted in each sub-
ject’s individual sensory space ̃𝜃, determined by their encoding precision measured in the
control adaptor condition.

We can further test key assumptions of the proposed reallocation model. For example,
a separate fit to the data obtained in the two oblique adaptor conditions results in kernels
that do not differ much from the kernels obtained from a joint fit, suggesting that adapta-
tion is indeed governed by a mechanism that is independent of the specific adaptor orienta-
tion (Fig 5a). Also, when fit separately, the total Fisher information under oblique vs. con-
trol adaptor conditions is very similar, thus confirming our assumption that the total coding
resource does not change with the adaptation state (Fig 5b). Finally, we performed a formal
model test comparing the proposed reallocation model (2-peak) with a model that assumes
coding improvement only at but not orthogonal to the adaptor (1-peak), a model that allows
the total Fisher information to change with adaptation (2-peak + Fisher), and a model that
allows the adaptation kernel to be different for different adaptor orientations (2-peak + ker-
nel). When appropriately penalized for the number of free parameters (BIC), the realloca-
tion model (2-peak) best fits the data for all subjects except Subject 2 for whom the only weak
threshold improvement orthogonal to the adaptor favors an adaptation kernel with a single
peak at the adaptor (Fig 5c).

Natural scene statistics
Next, we analyzed the temporal statistics of visual orientations in the retinal image stream
of freely behaving human observers. In particular, we extracted the orientation distribution
in the next image frame after the human observers naturally experienced prolonged expo-
sure to retinal inputs with a relatively static orientation content. The goal was to test whether
these distributions match the changes in encoding precision (adaptation kernels) we extracted
from the psychophysical adaptation data, and thus support the hypothesis that adaptation
optimizes sensory encoding for statistically more likely, future stimuli.

Subjects took a stroll through a forest while wearing a head-mounted camera and an eye-
tracker, simultaneously recording the scene and their eye movements, respectively (Fig 6a).
In every frame of the video, we considered a central image patch (6x6 deg visual angle around
the gaze center; Fig 6b) and extracted the visual orientation at every location within the image
patch based on a linear multi-scale, multi-orientation image decomposition framework [58].
We computed orientation mean and variance over a sliding 3s time-window, and then iden-
tified instances where the variance at a particular location in the patch was small (circular
variance smaller than 0.1). For those positions, we calculated the difference between the ori-
entation in the next frame and the mean orientation over the preceding time-window (i.e.,
the adaptor orientation). Preferably, we would have considered a time-window that matched
the adaptation duration in the psychophysical experiments (i.e., 60 seconds). However, under
natural free-viewing conditions, it is very rare to observe instances where orientation in the
retinal image stream is stable over such long durations. Therefore we chose a window-size that
provides a balanced trade-off between providing sufficient data and being as long as possible.

Our analysis showed that at the same local position, the orientation in the next frame is
most likely similar to the mean orientation in the immediate past (Fig 6c, left). The less sta-
ble the history (larger variance), the wider the orientation distribution in the next frame, until
it eventually becomes uniform (Fig 6c, right; Fig D in S1 Text). Although a more detailed
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Fig 5. Adaptation kernels. (a) Extracted adaptation kernels, plotted in individual subjects’ sensory spaces. Kernels are similar across subjects and do not substantially
differ when separately fit to data from the two oblique adaptor conditions. (b) Total Fisher information (i.e., total coding capacity) extracted from separate fits to control
and oblique adaptor conditions. Total values vary across subjects but fall close to the unity line. Error-bars represent 95% confidence intervals from 200 bootstrap sam-
ples of the data. (c) Testing the key assumptions of the reallocation model using a BIC goodness-of-fit comparison: original model (2-peak), relaxing the fixed resource
assumption (2-peak + Fisher), relaxing the single kernel assumption (2-peak + kernel), and assuming a kernel with only a peak at the adaptor (1-peak). Subject color
code as in Fig 4. Table B in S1 Text: Best-fitting model parameters (all model variants).

https://doi.org/10.1371/journal.pcbi.1012746.g005
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Fig 6. Retinal input statistics under natural viewing condition. (a) The combination of head-mounted camera and mobile eye-tracker allowed us to extract the retinal
input statistics of human subjects freely behaving (i.e., walking) in a natural, forest environment. (b) At each local position within a small patch centered at the subjects’
gaze location (white frame), we computed the distribution of local visual orientation in the next frame relative to the mean orientation over an immediately preceding 3s
time-window. (c) Distributions of orientations in the next frame relative to the history mean when the variance of orientations in the time-window was low (<0.1; left) or
high (>0.9; right), respectively. The two variance condition qualitatively correspond to the two adaptation conditions in our psychophysical experiment (oblique/control
adaptor). Distributions represent the combined distributions across all spatial positions within the patch and across all spatial scales of the image decomposition
(Methods). Fig D in S1 Text: Distributions for different history variances and spatial frequencies.

https://doi.org/10.1371/journal.pcbi.1012746.g006

quantitative comparison is difficult due to the various differences in stimulus and adaptation
conditions between free-viewing natural retinal input and our psychophysical experiments,
the measured distributions suggest that reallocating Fisher information towards the adaptor
orientation is consistent with optimizing encoding for future stimuli. For highly variable input
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histories the distributions are mostly uniform and therefore a reallocation of resources is not
useful given that the orientation in the next frame is essentially uncorrelated with past orien-
tations; this corresponds to the control adaptor condition in our psychophysical experiment.
Notably, the measured distributions do not show an increased probability for future stimuli at
orientations orthogonal to the adaptor orientation (see Discussion).

Predictive neural network
Previous studies have shown that deep neural networks implicitly learn to encode stimulus
features as predicted by efficient coding [59,60]. Here we use “PredNet”, a recurrent neural
network designed and trained to predict the next frame in a video sequence [49,50], to test
to what degree sensory representations dynamically change depending on the temporal input
statistics. PredNet was inspired by the concept of “predictive coding” in neural networks [61].
PredNet uses top-down connections conveying the local predictions of incoming stimuli and
bottom-up signals of the deviations from these predictions (Fig 7a). There are four sub-layers
in each layer i of PredNet: a recurrent representation layer (Ri), a prediction layer (Âi), an
input or target layer (Ai), and an error layer (Ei). The representation layer takes feedback from
the error layer and the higher representation layer and generates predictions for the input
layer; the error layer calculates the deviation of these predictions from the input and passes
them on to the next input layer. Importantly, PredNet only contains static (i.e., non-adaptive)
neurons. Previous studies have shown that PredNet reports illusory motions similar to those
perceived by human subjects [62,63]. Here, we specifically investigate how the prolonged
exposure to an adaptor stimulus affects the encoding precision in PredNet’s representational
layers.

We used PredNet pretrained on video sequences from the KITTI natural scenes data
set [64]. We presented the network with the same stimulus sequence as used in our human
adaptation experiment (Fig 7b), with the exception that the spatial frequency spectrum of the
stimuli were matched to the average spectrum of the images in the training data set. We input
a sequence of four adaptor frames (mimicking the adaptation phase) followed by a test frame,
and then computed Fisher information in the lowest representation layer in response to the
test stimulus. With the assumption that independent Gaussian noise corrupts the response in
each neuron, Fisher information is equivalent to the squared gradient of the neural response
in the direction of the test orientation. In this way, we computed Fisher information in the
first representation layer as a function of the test orientation 𝜃 for all three adaptor conditions
(control; 45 deg and 22.5 deg oblique adaptor).

Fig 8a shows PredNet’s encoding precision when plotted in stimulus space. In the control
adaptor condition, Fisher information in the first representational layer of PredNet is higher
at cardinal compared to oblique orientations, albeit there is a noticeable asymmetry between
horizontal and vertical encoding precision. After adaptation to the oblique adaptors, however,
Fisher information peaks at the adaptor orientation. Both effects qualitatively match the mea-
sured changes in encoding accuracy in human subjects (Fig 4). Furthermore, when plotted in
sensory space ̃𝜃 as defined by the networks’ encoding precision measured in the control adap-
tor condition, Fisher information resembles the adaptation kernels we extracted from human
subjects (Fig 5a). For both oblique adaptor conditions, the curves show a similar symmetric
peak in encoding accuracy at the adaptor orientation and also the slight reduction in accuracy
for orientations in the vicinity of the adaptor (Fig 8b).

The fact that PredNet, when exposed to similar input sequences, develops very similar
changes in encoding accuracy to those we measured in human observers suggests that these
encoding changes indeed help to better predict future sensory input of dynamic natural
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Fig 7. Encoding changes in PredNet. (a) Architecture of PredNet [49]. Each layer of PredNet consists of four sub-layers: a representation layer (Ri), a prediction layer
(Âi), an input or target layer (Ai), and an error layer (Ei). The representation layer takes feedback from the error layer and the higher representation layer and makes
predictions about the next input. The error layer takes the difference between the prediction and the input and passes it on to the next layer. The network has four layers
in total. (b) Adaptation experiment with PredNet. In each trial, PredNet is presented with four frames of the adaptor stimulus (control and oblique adaptors), followed by
one frame of the test stimulus. The stimuli were the same as in the human psychophysical experiment (Fig 2). Encoding accuracy was measured based on the network’s
activity in the lowest representational layer in response to the test stimulus orientation.

https://doi.org/10.1371/journal.pcbi.1012746.g007

scenes. Thus the adaptation induced reallocation of encoding capacity not only improves ori-
entation encoding of more likely future stimuli, as shown with our natural image analysis, but
also seems helpful to better predict the next visual stimulus.

Discussion
In this paper, we provide converging evidence that adaptation in the human visual sys-
tem adjusts sensory encoding accuracy such that it is optimized for future stimuli. We psy-
chophysically measured adaptation-induced changes in sensory encoding accuracy of visual
orientation in human subjects. We found that these changes are best described as a realloca-
tion of sensory coding resources according to an isomorphic kernel that peaks at the adaptor
orientation. Analyzing the temporal statistics of the retinal input of freely behaving human
observers revealed that the distribution of local visual orientations in the next retinal input
also depends on the immediately preceding stimulus history: the distribution shows a sharp
peak at the mean orientation of a relatively stable stimulus history, but approaches a uni-
form distribution for histories with increasingly larger variances. These distributions qualita-
tively match the psychophysically measured changes in encoding accuracy, both for the con-
trol and the oblique adaptors. It suggests that adaption efficiently reallocates sensory coding
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Fig 8. Encoding accuracy in the first representational layer R0 of PredNet after adaptation. (a) Normalized square root of Fisher information as a function of test
orientation (0 deg is vertical). In the control adaptor condition (blue curve) Fisher information is higher at cardinal orientations, reflecting the fact that PredNet creates
efficient representations of visual orientation given the predominance of cardinal orientations in natural scenes. After adaptation to a 45 deg (middle) or 22.5 deg (right)
oblique adaptor, however, Fisher information peaks at the adaptor orientation. (b) Same as in (a) but plotted in sensory space ̃𝜃. Sensory space is defined as the trans-
formation ̃𝜃 = F(𝜃) that leads to a uniform Fisher information distribution under the control adaptor condition (see also Fig 1). When plotted relative to the adaptor
orientation, Fisher information in sensory space is qualitatively similar to the adaptation kernels of human subjects (see Fig 5a): Fisher information is peaked at and
symmetric about the adaptor orientations, but reduced for test orientations further away. Lines and shaded areas represent the mean and the 95% confidence intervals
over 200 stimulus sequences, respectively.

https://doi.org/10.1371/journal.pcbi.1012746.g008

resources for future retinal input depending on the specific temporal structure of the preced-
ing input history. Finally, we asked whether, and if so how, a recurrent neural network that
is optimized to predict the next frame of natural scene videos changes its sensory encoding
accuracy when being exposed to the same stimulus sequences used in our psychophysical
adaptation experiments. We found encoding changes in the representational layers of the net-
work similar to those we measured in human observers. Taken together, our results suggest
that adaptation-induced changes in sensory encoding improve encoding accuracy for future
stimuli, which in turn is beneficial for predicting future sensory input.
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Although previous studies have measured changes in discriminability as a result of adap-
tion to a single oriented stimulus [6,7], none of them did so across the full range of orien-
tations and against a well-defined control adaptor condition. Interestingly, we found that
adaptation not only increases discriminability at but also orthogonal to the adaptor orienta-
tion, thereby confirming previous evidence [2,7]. This rules out earlier, theoretically moti-
vated proposals suggesting that the adaptation kernel should rather resemble a Difference-of-
Gaussians (DOG) [51,52]. However, we currently lack a normative explanation of this orthog-
onal improvement because neither the retinal input statistics nor the encoding changes in
PredNet show an effect at orthogonal orientations. We suspect that the orthogonal improve-
ment is caused by the particular way visual orientation is encoded in neural populations,
likely in combination with the specific mechanisms involved in increasing encoding precision
at the adaptor orientation [65]. Future studies will be needed to fully uncover the origin of the
orthogonal improvement.

Temporal statistics of visual orientation in video sequences of natural environments have
been previously investigated, although not at the level of the retina. For example, [66,67] ana-
lyzed the recordings taken by a camera mounted on a cat’s head. They found that at the same
image location, prominent orientations are more likely to repeat themselves at short com-
pared to long timescales. Another study analyzed video footage taken with a static camera
in a natural environment [42]. It showed that dominant orientations in the next frame are
more likely to be similar to the dominant orientations in the previous frame. Both of these
results are qualitatively in agreement with our findings and are not unexpected given the
mostly continuous and temporally smooth statistics of natural environments [43,65]. How-
ever, human vision is based on active sensing [44–46,48], where the active control of head-
and eye-movements reshapes the statistical structure of the retinal input [38,39]. Thus, it is
important to measure these statistical dependencies in the retinal input stream under natural
behavioral and environmental conditions. A limitation of our current data set is that it mainly
consists of forest scenes. Previous studies found that the overall orientation statistics in nat-
ural scenes somewhat depend on whether they contain man-made objects or not, as well as
whether they are from indoor or outdoor environments [35]. While it seems unlikely that the
temporally conditioned distributions we focus on are substantially different under different
environmental contexts, future studies are necessary to evaluate this in more detail [68].

Artificial neural networks have become a useful model framework to test normative expla-
nations of neuronal and behavioral phenomena [69,70]. The general rationale is that if a net-
work, optimized for a certain functional goal within a certain training environment, shows
some emergent encoding characteristics, then they are likely beneficial for the network in
achieving said goal in said environment. Previous studies have shown that sensory represen-
tations in artificial neural networks trained to identify objects in natural scenes are similarly
shaped by the statistical context (i.e., priors) of the stimulus environment as the representa-
tions in the human visual system [59,71]. Here we further demonstrate that this similarity
extends to dynamical changes in these representations when the neural network is optimized
for making predictions in a dynamic natural environment (PredNet). This supports the effi-
cient coding hypothesis and proposes a functional role of sensory adaptation in making sen-
sory prediction. Note that PredNet does not contain adaptive neurons. Rather, the changes
in encoding emerge through the dynamic information flow in its recurrent architecture dur-
ing the presentation of the adaptor stimuli. This also shows that the functional goal of sen-
sory adaptation is independent of a specific neural adaptation mechanism; e.g., neuronal gain
changes [4] may only be one of several ways to implement this goal.
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The separation between function (i.e., encoding principle) and implementation (i.e., neural
mechanisms) allows for a more general yet at the same time also more parsimonious defini-
tion of adaptation. Adaptation has been frequently characterized in terms of how it changes
the tuning characteristics of neurons. In addition to a reduction in neural gain, multiple
effects such as changes and shifts in tuning curves [1,4] as well as the homeostatic control of
the neural populations activity have been attributed to adaptation [72]. However, these effects
seem specific to certain cortical areas [5] and probably also certain animal species [73], and
thus likely depend on the specific biophysical constraints and limitations. Here we show that
adaptation can be understood on the basis of a single computational principle that, however,
may rely on different specific neural implementations case by case. In that regard our results
complement previous work on modeling adaptation as a trade-off between neural encod-
ing costs and information loss [74,75]. At the level of implementations these trade-offs may
play an important role (see e.g., orthogonal coding improvement). Our results provide new
insights about the functional objectives that guide such trade-off considerations.

It is worth further discussing the idea of the sensory space for which we characterize the
adaptation kernel (Fig 1). The space reflects the efficient sensory representation of the stim-
ulus feature given the overall, stationary stimulus statistics in the environment [23,28]. The
representational geometry of the space is such that under stationary conditions the statistics
and the encoding precision are homogeneous and uniform. We propose to think of adaptation
as a transient modulation or fine-tuning of this geometry such that it is optimally suited for
the next stimulus given the shortterm stimulus context. Note also that the adaptation kernel
is only isomorphic when adapting to very narrow shortterm distributions (i.e., approximate
a Dirac function). More broadly distributed adaptor orientations (stimulus space), however,
will result in shortterm distributions in sensory space that are warped according to the trans-
formation F(𝜃), and thus are generally different depending on where they are located in ori-
entation space. We hypothesize that the adaptation kernels we derived from our experiments
represent a unitary descriptions of localized orientation adaptation. Adaptation induced
encoding changes for arbitrary adaptor distributions can then be determined as the convolu-
tion of those shortterm distributions (in sensory space) with the unitary adaptation kernel.
Future work is necessary to test this hypothesis.

Finally, we can extend our view of adaptation to more generally construed, statistical con-
texts. For example, it is well documented that spatial context can change sensory encoding
of visual orientation in ways similar to temporal context, both at the neural and behavioral
level [65,76]. The changes are also well-aligned with the fact that in natural scenes, visual
orientation at an image location is best predicted by the average orientation within its sur-
round [41]. Furthermore, these spatial contexts are specific to the particular image content,
and the associated modulation of neural response patterns can be explained with a flexible
gating mechanisms that is optimally tuned for these specific contexts [77]. Thus we conjecture
that temporal adaptation is but one mechanism with which neural systems ensure that their
representation of sensory information is efficient with regard to the statistical context of their
environment.

Conclusions Efficient coding has been a prominent hypothesis for sensory adaptation.
The present study measured the changes in coding accuracy induced by the prolonged expo-
sure to a static adaptor stimulus, and found a universal parametric description of the realloca-
tion of coding resources under such conditions. Analysis of the temporal statistical structure
of the retinal image stream in freely behaving humans and measurements of sensory repre-
sentations in recurrent neural networks provide converging support for the efficient coding
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hypothesis of adaptation: adaptation-induced changes in encoding accuracy reflect the visual
systems’ attempt to best possibly represent the next expected sensory input.

Methods
Ethics statement
All experiments were approved by the Institutional Review Board of the University of Penn-
sylvania under protocol # 850568. All human subjects provided written informed consent. No
AI tools have been used for any aspect of this research and its presentation.

Psychophysical experiment
Subjects. 5 subjects (2 female), 25 to 33 years old, participated in the experiment. Subject

1 was non-naive. All subjects had normal or corrected-to-normal vision. They were remuner-
ated at a rate of 10$ per hour, plus a 20$ bonus upon completion of the full experiment.

Setup. The experiment was run using Matlab (R2016b) with the PsychToolbox [78]. Sub-
jects sat in a darkened room and viewed stimuli on a VPixx3D screen (1920×1080 pixels
resolution, 120Hz refresh rate) at a 89 cm distance. A circular aperture (26 cm diameter)
was placed in front of the screen to occlude the edges of the screen removing any potential
cardinal orientation cues.

Stimuli. All stimuli were presented on a gray background with mean luminance 40
cd/m2. Stimuli consisted of filtered white noise patterns with same overall mean luminance
as the background. For all stimuli (control and oblique adaptors, test), the noise was first fil-
tered with a band-pass filter with uniform power spectrum across the spatial frequency range
of 3.75–5.25 cpd. Oblique adaptors and test stimuli were then further filtered with an oriented
filter with a symmetrically warped Laplace profile centered at the desired orientation and a
standard deviation of 1.4 deg. Stimuli had 80% contrast. Stimuli were 2 deg in diameter, pre-
sented 1.67 deg to the left and right of fixation. A fixation dot was presented at the center of
the screen throughout the experiment.

Procedure. The experiment was organized in blocks. At the beginning of a block, sub-
jects viewed one of the adaptor stimuli for 60 s. After this initial adaptation phase, each trial
started with top-up adaptation (5 s), followed by a blank interval (0.35 s), presentation of the
test screen (0.1 s), and a response period. During the initial adaptation phase and the top-
up period, two identical adaptor patterns were presented on both sides of fixation, refresh-
ing every 1.25 s with a 0.05 s blank frame in between. In the test screen, a test and a refer-
ence stimulus were presented to the left and right of fixation, randomly assigned. During the
response period, subjects pressed one of two buttons on a gamepad to indicate which stimulus
in the test screen was more clockwise (or counterclockwise, interleaved across blocks). Sub-
jects did not receive feedback after the response. Subjects were instructed to maintain fixation
throughout the initial adaptation phase and during each trial. Our choice of initial adaptation
duration and top-up adaptation is fairly typical and follows previous adaptation studies (see
e.g., [7]).

The experiment consisted of two parts, each of which contained an oblique adaptor condi-
tion and a control adaptor condition. In the first half of the experiment, the oblique adaptor
was oriented at ±45 deg (vertical corresponds to 0 deg). The test orientations were [0, ±10,
±30, ±45, 90] deg relative to the adaptor orientation (subject 1 had ±5 deg in addition). In the
second half of the experiment, the oblique adaptor was oriented at ±22.5 deg. The test orien-
tations were [0, ±10, ±22.5, ±45, 90] deg relative to the adaptor orientation. Test orientations
were randomized across trials. The reference orientation varied according to a 2-up-1-down
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staircase procedure in 25 equal steps within a ±9.6 deg, ±15 deg, ±18 deg, or ±24 deg range
relative to the test orientation, depending on the performance of each subject in the training
session prior to the experiment.

Subjects completed 192 trials for each test orientation in each adaptation condition (216
trials for subject 1 in the first half of the experiment). In each half of the experiment, subjects
completed the control adaptor condition first followed by the oblique adaptor condition. In
the oblique adaptor condition, subjects completed 4 blocks of one adaptor orientation, then
4 blocks of the same adaptor orientation but mirrored around vertical (6 blocks each for sub-
ject 1 in the first half). The order of the two adaptor orientations were counterbalanced across
subjects. The control adaptor condition consisted of 8 blocks (12 blocks for subject 1 in the
first half). Each block lasted for about 25min. Blocks with different adaptors (control versus
oblique adaptor condition, or opposite oblique adaptor orientations) were completed at least
one day apart.

Data analysis
For the main analysis, data in blocks with -45 or -22.5 deg oblique adaptors were combined
with data from blocks with 45 or 22.5 deg adaptor by mirroring it across vertical. Psychomet-
ric curves were obtained by fitting cumulative Gaussian distributions to the data. We assumed
a zero-mean Gaussian distribution and no lapse rate. Discrimination thresholds were calcu-
lated at the 75% level based on the fitted psychometric functions.

Modeling
Pre-adaptation (control adaptor). Let 𝜃 be the orientation of the test stimulus andm its

sensory measurement in a given trial. Before adaptation (i.e., defined by the control adaptor
condition) the discrimination threshold is typically lower at cardinal orientations [36], which
implies higher Fisher information at cardinal orientations [23]. We parametrized the square
root of the Fisher information distribution J(𝜃) as the weighted sum of a uniform distribution
and two identical von Mises distributions centered at two cardinal orientations:

√
J(𝜃)∝ k vm(𝜃; 0,𝜅) + k vm(𝜃;𝜋,𝜅) + 1 – 2k

2𝜋 , (3)

where 𝜅 represents the width of the distribution around cardinal orientations, and k repre-
sents the relative amplitude. Note that because angles are defined on [–𝜋,𝜋], 0 and ±𝜋 repre-
sent cardinal orientations (0 corresponds to vertical). We use this convention throughout the
paper.

We consider encoding under the control condition as reflected by a sensory space (sta-
tionary) in which Fisher information is uniform. The mapping ̃𝜃 = F(𝜃) from stimulus to this
sensory space is the cumulative of the square root of Fisher information distribution [28],
thus F(𝜃)∝ ∫ 𝜃–𝜋

√
J(𝜒)d𝜒. Assuming that sensory noise in this space follows a von Mises

distribution, we can write the measurement distribution in sensory space as

p(m̃| ̃𝜃) = vm(m̃; ̃𝜃,𝜅i), (4)

where 𝜅i represents the sensory noise magnitude. The distribution in stimulus space p(m|𝜃)
directly follows by transformation according to the inverse mapping 𝜃 = F–1( ̃𝜃).
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Post-adaptation (oblique adaptors). After adapting to a single orientation 𝜃a, the distri-
bution of the square root of Fisher information in sensory space changes accordingly to

√
Ja( ̃𝜃;𝜃a)∝ pa( ̃𝜃 – ̃𝜃a), (5)

where ̃𝜃a = F(𝜃a) is the adaptor orientation in sensory space, and pa is the adaptation kernel.
Thus, adaptation reallocates Fisher information by the same adaptation kernel shifted accord-
ing to the adaptor. Now, the stationary sensory space is not a uniform space any more. How-
ever, we can apply another transformation 𝜃∗ = Fa( ̃𝜃)∝ ∫

̃𝜃
–𝜋
√
Ja(𝜒)d𝜒 to obtain an adapted

sensory space. Importantly, we assume that in the transformed space sensory noise remains
von Mises distributed with the same internal noise parameter as in the stationary sensory
space (Eq 4), thus the total coding resource does not change after adaptation (reallocation).
We can write the measurement distribution as

p(m∗|𝜃∗) = vm(m∗;𝜃∗,𝜅i), (6)

where 𝜅i represents the constant sensory noise magnitude. The distribution in stimulus
space p(m|𝜃) then follows by successive transformations according to the inverse mappings
̃𝜃 = F–1a (𝜃∗) and 𝜃 = F–1( ̃𝜃).
The “2-peak” (original) model assumes that the adaptation kernel pa( ̃𝜃) is a weighted sum

of two independent von Mises distributions and a uniform distribution:

pa( ̃𝜃) = k1 vm( ̃𝜃; 0,𝜅1) + k2 vm( ̃𝜃;𝜋,𝜅2) +
1 – k1 – k2

2𝜋 , (7)

where k1 and k2 represent the relative amplitudes, and 𝜅1 and 𝜅2 the widths of the two peaks.
The “1-peak” model assumes that pa( ̃𝜃) is the weighted sum of one von Mises distribution

and a uniform distribution:

pa( ̃𝜃) = k1 vm( ̃𝜃; 0,𝜅1) +
1 – k1
2𝜋 , (8)

where k1 and 𝜅1 represents the relative amplitude and the width of the peak, respectively.
The “2-peak + Fisher” model assumes that total Fisher information can change after adap-

tation, i.e., the sensory noise (i.e. the width of the von Mises likelihood) in the adapted sen-
sory space 𝜅ai is allowed to be different from the the noise in the stationary-adaptation sensory
space 𝜅i.

The “2-peak + kernel” model permits that adaptation kernels pa( ̃𝜃) for the 45 deg and
22.5 deg adaptor condition can be different.

Discrimination decision and response distribution. Let 𝜃t and 𝜃r be the orientation
of the test and reference stimulus, andmt andmr their sensory measurements respectively.
The probability of the reference orientation being clockwise of the test orientation can be
calculated as

p(𝜃t – 𝜋 < 𝜃r < 𝜃t|mt,mr) =∫
2𝜋

0
p(𝜃t|mt)∫

𝜃t

𝜃t–𝜋
p(𝜃r|mr)d𝜃r d𝜃t. (9)

If the probability is larger than 0.5, the observer would make the decision that the reference
orientation is clockwise (cw), otherwise counter-clockwise (ccw) of the test orientation.
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Because test and reference stimuli were always tested for the same adaptation state of the
observer, had the same probability to be more clockwise or counter-clockwise, and the stimuli
had the same spatial frequency, contrast and presentation duration, the decision process can
be simplified to a direct comparison of the measurements of the two stimuli: ifmr is clockwise
ofmt, the subjects would make the decision that the reference orientation is clockwise of the
test orientation, and vice versa. So the decision probability of the reference orientation being
clockwise of the test orientation can be written in terms of the measurement distributions
(Eq (4) and (6) transformed to stimulus space), thus

p(“𝜃r is CW ”|𝜃t,𝜃r) = p(mt – 𝜋 <mr <mt|𝜃t,𝜃r) =∫
2𝜋

0
p(mt|𝜃t)∫

mt

mt–𝜋
p(mr|𝜃r)dmr dmt.

(10)

Model fitting
We fit the model by finding the model parameters 𝜌 that maximize the likelihood of the
model given the data D:

p(D|𝜌) =
n
∏
j=1

p(Dj|𝜌) =
n
∏
j=1

p(rj|𝜌,𝜃jt,𝜃jr), (11)

where 𝜃jt and 𝜃jr are the test and reference orientations, rj is the response in trial j, and n is the
total number of trials.

We first fit the model to the control adaptor condition with the following free parameters:

• 𝜅i for sensory noise;
• k for the relative peak amplitude, and
• 𝜅 for the width of the Fisher information distribution (cardinal orientations).

Then we fix these parameters and fit the model to the oblique adaptor condition.
The 2-peak model has four free parameters for the adaptation kernel:

• k1 and k2 for the relative amplitudes of the two peaks;
• 𝜅1 and 𝜅2 for the width of the two von Mises distribution.

The 2-peak + Fisher model has an additional parameter 𝜅ai allowing a different sensory noise
after adapting to an oblique adaptor (i.e. change in overall coding resource). The 2-peak +
kernel model has four parameters for the adaptation kernel of each oblique adaptor, eight
in total. The 1-peak model has only two free parameters for the strength and width of the
adaptation kernel.

Natural scene statistics
Data set. The dataset was obtained with a video-based, portable eye tracker system (Eye

Tracking Glasses 2 from SensoMotoric Instruments). Videos were recorded by the head-
mounted camera while subjects were freely walking in a forest environment. Image sequences
had a resolution of 1280x960 pixels at 24 frames per second, spanning 60x46 deg of visual
angle. The compression algorithm was H.264. Synchronized eye movements were binocularly
measured at 120 samples per second. Initial calibration of each subject was accomplished with
a 3 point calibration target. Subjects subsequently wore the eye tracker for at least 10 minutes
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before checking the calibration again. The resulting eye tracking accuracy was well below 1
degree at about 10m distance. We included videos from 9 subjects, with a total length of 12
minutes. Videos were converted to grayscale.

Data analysis. We looked at a 6x6 deg area centered at the gaze location in each frame
of the videos. We extracted the orientation at each position within the area using a steerable
pyramid image decomposition [58]. The steerable pyramid provides a decomposition on the
basis of k-th order orientation filters at different spatial scales. We rotated and applied 1st-
order steerable filters to find the orientation with the strongest response as the orientation of
each position. We then computed the orientation mean and circular variance over a sliding
3s time-window (72 frames) at each position, and computed the difference between the ori-
entation in the next frame and the mean orientation in the previous 3s. We performed these
computations independently at each position in levels 2 to 4 of the steerable pyramid; each
level operates on an image half the resolution of the one used in the preceding level. This cor-
responds to 64x64, 32x32, and 16x16 positions, respectively. In Fig 6, we included time and
positions where the history variance is smaller than 0.1 or larger than 0.9, respectively, and
combined the data from three levels.

PredNet
PredNet is a recurrent neural network that is trained to predict the next frame of a video. We
used PredNet pretrained on the KITTI data set for our experiment [49,50,64].

Stimuli. The stimuli were images of filtered white noise patterns with a size of 128x160
pixels. The control adaptors were filtered by the spatial frequency spectrum extracted from
the original training data set within the range of 8-12 cycles per image. The spatial frequency
filter was obtained by taking the average of the 2D Fourier transformation of the images
across all frames and averaging across orientation for each spatial frequency, with a low and
high cutoff at 8 and 12 cycles per image, respectively. The oblique adaptors and test stimuli
were further filtered by an orientation filter with a symmetrically wrapped Laplace spectrum
centered at the desired orientation with a standard deviation of 1.4 deg; this is the same orien-
tation filter as used for the psychophysical adaptation stimuli (see above). Stimuli had 100%
contrast. The noise pattern was embedded in a circular aperture at the center of the image;
the contrast of the noise pattern faded linearly from 100% to 0 as the distance from the center
increases from 48 to 60 pixels.

Procedure. Each input sequence consisted of four adaptor frames followed by a test
frame. Four adaptor frames were sufficient to elicit a substantial adaptation effect; using 10
frames did not significantly change the results. We fed this five-frame input sequence to Pred-
Net and extracted the activation of the first representational layer in response to the test frame
(frame #5). For each adaptation condition (control, oblique 22.5 and 45 deg), we tested 200
input sequences (different noise patterns, exact same filter properties). To compute Fisher
information as a function of test orientation, we rotated the test frame in each sequence in
1 deg intervals.

Calculating Fisher information. We computed Fisher information in the first representa-
tion layer (R0) as a function of orientation 𝜃 in the test frame (Fig 7a). Assuming independent
Gaussian noise, Fisher information can be calculated for each test frame as

J(𝜃) =∑
i
(𝜕ri𝜕𝜃 )

2

(12)
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where ri is the response of the ith unit in layer R0. Because we focus on the distribution of
coding resources, we normalized the sum of the square root of Fisher information across
orientation. Fig 8 shows the mean and 95% confidence intervals over the 200 input sequences.

Supporting information
S1 Text. Supplementary Tables A and B; Supplementary Figs A–D. Individual subjects’ data
and fitting parameters; detailed natural scene statistics.
(PDF)
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