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Abstract 
For many infectious diseases, the risk of outbreaks varies seasonally. If a pathogen is 

usually absent from a host population, a key public health policy question is whether the 

pathogen’s arrival will initiate local transmission, which depends on the season in which 

arrival occurs. This question can be addressed by estimating the “probability of a major 

outbreak” (the probability that introduced cases will initiate sustained local transmission). 

A standard approach for inferring this probability exists for seasonal pathogens (involving 

calculating the Case Epidemic Risk; CER) based on the mathematical theory of branch-

ing processes. Under that theory, the probability of pathogen extinction is estimated, 

neglecting depletion of susceptible individuals. The CER is then one minus the extinction 

probability. However, as we show, if transmission cannot occur for long periods of the 

year (e.g., over winter or over summer), the pathogen will most likely go extinct, leading 

to a CER that is equal (or very close) to zero even if seasonal outbreaks can occur. This 

renders the CER uninformative in those scenarios. We therefore devise an alternative 

approach for inferring outbreak risks for seasonal pathogens (involving calculating the 

Threshold Epidemic Risk; TER). Estimation of the TER involves calculating the probability 

that introduced cases will initiate a local outbreak in which a threshold number of cumu-

lative infections is exceeded before outbreak extinction. For simple seasonal epidemic 

models, such as the stochastic Susceptible-Infectious-Removed model, the TER can be 

calculated numerically (without model simulations). For more complex models, such as 

stochastic host-vector models, the TER can be estimated using model simulations. We 

demonstrate the application of our approach by considering chikungunya virus in northern 

Italy as a case study. In that context, transmission is most likely in summer, when environ-

mental conditions promote vector abundance. We show that the TER provides more useful 

assessments of outbreak risks than the CER, enabling practically relevant risk quantifica-

tion for seasonal pathogens.
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Author summary
Invasive pathogens pose a substantial challenge to human health, particularly as outbreak 
risks for some infectious diseases are being exacerbated by climate change. For example, 
the occurrence of seasonal vector-borne disease outbreaks in mainland Europe is increas-
ing, even though pathogens like the chikungunya and dengue viruses are not normally 
present there. In this changing landscape, assessing the risk posed by invasive pathogens 
requires computational methods for estimating the probability that introduced cases will 
lead to a local outbreak, as opposed to the first few cases fading out without causing a lo-
cal outbreak. In this article, we therefore provide a computational framework for estimat-
ing the risk that introduced cases will lead to a local outbreak in which a pre-specified, 
context specific threshold number of cases is exceeded (we term this risk the “Threshold 
Epidemic Risk”, or TER). Since even small seasonal outbreaks can have negative im-
pacts on local populations, we demonstrate that calculation of the TER provides more 
practically relevant estimates of local outbreak risks than those inferred using standard 
methods. Going forwards, our computational modelling framework can be used to assess 
outbreak risks for a wide range of seasonal diseases.

1.  Introduction
Even if a pathogen is not commonly present in a host population, there remains a risk that 
imported cases will lead to local transmission [1–5]. In southern Europe, for example, vector- 
borne diseases such as dengue and chikungunya are not endemic, yet outbreaks occur due 
to pathogen importation followed by autochthonous (i.e., local) transmission [6–8]. The risk 
that imported cases will lead to a substantial local outbreak, as opposed to sporadic onwards 
transmissions occurring, varies seasonally. This is because factors such as host behaviour, 
pathogen survivability and vector ecological dynamics change during the year, and are 
affected by weather variables such as temperature, rainfall and humidity [9–12]. It is useful to 
identify times of year at which outbreaks are most likely, and to provide quantitative estimates 
of temporally varying outbreak risks, to inform vector or pathogen surveillance and control 
interventions.

Previous work on the topic of inferring the risk that introduced cases will initiate sus-
tained local transmission has focussed on estimating the so-called “probability of a major 
outbreak”, based on the number of imported cases and the transmissibility of the pathogen. 
This probability can be inferred both for pathogens that are transmitted directly between 
hosts [13–26] and those that are spread via vectors [27–30]. Furthermore, the probability of 
a major outbreak has been calculated in systems in which transmission parameter values are 
assumed to be constant [8,30–33] and those in which temporal variations in transmission are 
accounted for [29,34–41]. Estimates of the probability of a major outbreak have been gener-
ated using approximations of a wide range of epidemiological models, including SIS, SIR and 
SEIR models [30,31], spatial models [22,23,27], models with host demography [25,26,42] and 
models that relax the standard assumption that epidemiological time periods are drawn from 
exponential distributions [24,43]. In addition, calculations of the probability of a major out-
break have been undertaken for a wide variety of diseases, including COVID-19 [21,32], Ebola 
[31,43] and dengue [8,44].

In all these different settings, the probability of a major outbreak is typically derived 
by assuming that infections are generated according to a branching process [45], neglect-
ing depletion of susceptible individuals (i.e., assuming that there is a constant supply of 
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susceptible hosts available for each infected individual to infect). When transmission param-
eter values do not vary temporally, under this assumption a pathogen either goes extinct 
following its introduction or the number of infections grows unboundedly. The probability of 
a major outbreak calculated in this way corresponds to the probability that the second of these 
scenarios arises (i.e., that infinitely many infections occur in the branching process model). 
Generally, this is appropriate, and estimates of the probability of a major outbreak match the 
proportion of simulations of stochastic compartmental models (that account for depletion 
of susceptible individuals) in which “large” outbreaks occur, at least when parameters take 
constant values and R0  is sufficiently larger than one [29,30]. However, the use of branching 
process theory to estimate outbreak risks can be problematic when transmission is seasonal.

Specifically, when transmission can only occur during some periods of the year, the 
pathogen is highly likely to go extinct in seasons when environmental conditions are unsuit-
able for transmission. Consequently, even with a constant supply of susceptible individuals 
for infected hosts to infect, the number of infections will not grow indefinitely. As a result, 
standard analytic estimates of the probability of a major outbreak (here called the Case 
Epidemic Risk, or CER, following the use of this terminology previously for pathogens for 
which transmission varies temporally [29]) are either zero or vanishingly small (we use 
the term “vanishingly small” to refer to values that are positive but very close to zero [40]). 
Since pathogen extinction is highly likely to occur, a more practically relevant question is 
how many infections will there be before extinction? If a substantial number of infections 
arises prior to pathogen extinction, we contend that an outbreak should still be classified as 
“major”.

Here, we therefore provide a metric for calculating the probability of a major outbreak for 
seasonal pathogens. Specifically, we calculate the probability that, following the introduction 
of a pathogen to a host population, a pre-specified, context dependent threshold number of 
cumulative infections is exceeded. We refer to this metric as the Threshold Epidemic Risk 
(TER). This metric can be calculated using stochastic compartmental transmission models 
that account for both seasonality and depletion of susceptible individuals, and throughout this 
article we compare calculations of the TER to analogous values of the CER. A schematic is 
shown in Fig 1, illustrating that when transmission varies seasonally (Fig 1A) then outbreaks 
may be likely to fade out as soon as a season arrives that is not conducive to transmission 
(leading to a CER that is either zero or vanishingly small; Fig 1B). However, even in that sce-
nario, seasonal outbreaks may still lead to substantial numbers of cases (the TER may be larger 
than zero; Fig 1C).

First, we show how the TER can be calculated numerically (i.e., through the numerical 
solution of a system of equations, without requiring model simulations) for the stochastic SIR 
model with seasonally varying transmission. Then, we show how the TER can be calculated 
for more complex models using stochastic simulations by considering a stochastic host-vector 
model of chikungunya virus transmission in northern Italy. When transmission is possible 
all year round, the TER and CER can give similar estimates. However, for both models, when 
there are substantial periods of the year during which sustained transmission is not possible, 
the difference between outbreak risk estimates arising from these two metrics can be large. For 
chikungunya virus, which is spread by Aedes albopictus [46], there are long periods of the year 
in northern Italy during which vector abundance is too low for virus transmission [8]. Con-
sequently, the CER is low (either zero or vanishingly small), yet major outbreaks due to local 
transmission can sometimes occur, depending on the precise definition of a “major outbreak” 
used. Since a policy-maker can choose a practically relevant threshold when estimating the 
TER, it is a useful metric to consider when quantifying seasonal outbreak risks as an aid for 
public health policy making.
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2.  Methods

2.1.  Epidemiological models
2.1.1.  SIR model.  The ordinary differential equation (ODE) version of the Susceptible-

Infectious-Removed (SIR) model with time-dependent infection and removal rates is:

	
d
d
S t
t

t S t I t
N

( )
=−

( ) ( ) ( )β
, 	

	
d
d
I t
t

t S t I t
N

t I t
( )
=
( ) ( ) ( )

− ( ) ( )
β

γ , 	

	
d
d
R t
t

t I t
( )
= ( ) ( )γ . 	 (1)

Fig 1.  Schematic illustrating the difference in outbreak risk assessments for seasonal pathogens obtained using the CER and TER. A. Seasonal pathogen transmis-
sion comprises of periods of high and low transmissibility (low transmissibility periods, during which sustained pathogen transmission is impossible, are shaded in red). 
B. In the scenario considered here, outbreaks are highly likely to go extinct during low transmissibility periods. As a result, the CER suggests that major outbreaks will 
not occur. C. Despite the value of the CER, there is the potential for some outbreaks to generate a substantial number of cases. In this illustrative example, three out of 
every five outbreaks generate numbers of cases that exceed a pre-specified threshold, M, leading to a TER value of 0.6. In panels B and C, outbreaks in which at least M 
cumulative infections occur are plotted in green and those with fewer than M cumulative infections are plotted in blue.

https://doi.org/10.1371/journal.pcbi.1012364.g001

https://doi.org/10.1371/journal.pcbi.1012364.g001
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In this model, S t( )  is the number of individuals who are susceptible to the pathogen at 
time t, I t( )  is the number of infectious individuals, and R t( )  is the number of removed indi-
viduals (including those who have recovered and become immune and those who have died). 
The total population size, S t I t R t N( )+ ( )+ ( )= , is constant under this model. The trans-
mission rate is denoted by β t( )  and the removal rate is denoted by γ t( ).  In our analyses, the 
analogous stochastic model is considered, and simulations are run using a modified version of 
the Gillespie direct method [47] in which time-dependent rates are accounted for [29,48,49] 
(Algorithm A in S1 Text). For this model, the instantaneous basic reproduction number is 

given by R t
t
t0 ( )=
( )
( )
β

γ
.

Time t is measured in months and the infection rate is chosen to be periodic with a period 
of 12 months:

	 β β β
π

φt t( )= + −




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The removal rate is assumed to be constant ( γ γt( )= ). We use these specific forms of the 
infection and removal rates in our analyses but our approach for computing the TER can be 
applied for any functions β t( )  and γ t( )  (the functions do not even need to be periodic). The 
parameter values used are shown in the captions to Figs 2–4.

2.1.2.  Chikungunya transmission model.  We adapt the ODE model of chikungunya 
virus transmission described by Guzzetta et al. [8,44]. Specifically, we separate the vector 
ecological dynamics from the host-vector epidemiological dynamics. The ecological model is 
given by:
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	 d
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d
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. 	 (3)

In this model, the population of vectors (Ae. albopictus) is split into eggs (E), larvae (L), 
pupae (P) and adults ( NV ). For notational convenience, we do not denote the dependence 
of these state variables on t in the equations above explicitly, although the number of vectors 
in each compartment of the model varies temporally. The parameter dX  (for X E L= ,  or ) 
represents the development rate in compartment X (e.g., dE  is the rate at which eggs develop 
into larvae) and the parameter mX  (for X E L= ,  or ) represents the baseline mortality rate 
in compartment X. The parameter mV  represents the rate at which adult vectors die. The 
parameter dV  represents the rate of egg deposition for female adults with an average number 
of eggs, nE , per adult female oviposition. The effect of overcrowded breeding sites on the 
larval mortality rate is dictated by the overcrowding parameter, as , which was fitted to on site 
capture data by Guzzetta et al. [8,44]. The factor of 1 2/  in the equation for NV  reflects the 
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fact that we only track adult female vectors, since male vectors do not spread the virus. The 
spatial scale of the model is assumed to be a single hectare (so that NV  represents the number 
of adult female vectors in one hectare).

The temperature, T t( ) , is assumed to vary seasonally (i.e., with period 12 months):

	 T t T T t( )= + −








0 1 6

cos .π
ψ 	 (4)

The values of T0  (mean temperature), T1  (amplitude of the temperature oscillations) and ψ 
(phase shift) are determined by fitting T t( )  to daily mean temperature data (measured in Celsius) 
from Feltre, a town in northern Italy, separately for 2014 and 2015, using least squares estimation. 
The temperature data were obtained from MODIS satellite Land Surface Temperature measure-
ments as detailed in [8]. In our analysis of the temperature data from 2014, time t = 0  corresponds 
to 1st April 2014. In our analysis of the data from 2015, time t = 0  corresponds to 1st April 2015.

We solve the ecological model (system of equations (3)) numerically to obtain N tV ( ) . To 
facilitate straightforward computation of the CER (see below), we then fit a skewed and scaled 
Gaussian to the monthly values of N tV ( )  using least squares estimation, and use the resulting 
fitted version of N tV ( )  in all of our analyses. Again, we perform this fitting separately for 
2014 and 2015. The fitted curve is of the form:

	 N t AB t C
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1 erf , 	 (5)

in which erf  is the error function. Equation (5) is a skewed, scaled, and shifted Gaussian, cho-
sen because of its resemblance to the output of the deterministic ecological model (S1C and 
S1D Fig). By considering the deterministic version of the ecological model, we avoid running 
stochastic simulations of the ecological model, which would be computationally expensive due 
to the large number of events that would arise in that system.

Stochastic epidemiological dynamics are then simulated using a stochastic host-vector 
model. The analogous deterministic model to the stochastic model that we consider is:
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The compartments represent the numbers of susceptible, exposed and infectious vectors 
( SV , EV  and IV , respectively) along with the numbers of susceptible, infectious and removed 
hosts ( SH , IH  and RH , respectively). In this model, it is assumed that, after entering the IV  
compartment, an adult female vector remains infectious for life. The parameter k represents 
the vector bite rate. The per-bite probability of pathogen transmission from an infectious 
host to a susceptible vector is then denoted by βV , with corresponding parameter βH  for 
transmission from an infectious vector to a susceptible host. The (mean) extrinsic incubation 
period is denoted by ωV , the period for which an infectious host remains infected is τ, and N 
represents the host population size. The temperature-dependent parameters in both systems 
of equations (3) and (6) are explicitly labelled as functions of temperature, T, which itself 
varies temporally. In addition to the explanations here, each of the parameters in systems 
of equations (3) and (6) are listed in Table A in S1 Text, alongside their definitions and the 
values used in our analyses (including the functional forms of the temperature-dependent 
parameters). 

Unlike the total host population size, which remains constant ( S I R NH H H+ + = ), the 
vector population size, NV , varies with temperature and therefore varies temporally (equation 
(5)). The instantaneous basic reproduction number, R t0 ( ) , for this system is [8]:

	 R t k
m T t

N
N m T tH V

V

V

V V
0

2 1
1

( )=
( )( ) + ( )( )

β β
τ

ω
. 	 (7)

When we run simulations of the analogous stochastic model to system of equations (6), 
we again adapt the Gillespie direct method [47] (Algorithm B in S1 Text). We assume that 
transmission parameters take constant values within each day (given by their values at the 
start of the day). We are therefore able to use the Gillespie direct method within each day. 
At the end of each day, we compare the total vector population size, S E IV V V+ + ,  
with NV  (as determined by equation (5)). If S E I NV V V V+ + < , then we assume that 
new susceptible vectors are born (i.e., we increase SV ) until S E I NV V V V+ + = . If instead 
S E I NV V V V+ + > , we select vectors uniformly at random to die until S E I NV V V V+ + = , 
since the per-vector death rates in system of equations (6) are equal for each of the SV , EV  
and IV  compartments. By following this procedure, we simulate stochastic epidemiological 
dynamics while remaining consistent with the deterministic ecological dynamics (system of 
equations (3) and equation (5)).

2.2.  Case Epidemic Risk (CER)
As described in the Introduction, a standard approach for estimating the probability of a 
major outbreak exists, involving the assumptions that infections occur according to a branch-
ing process and a constant supply of susceptible individuals is available for each infectious 
host to infect. This approach has been used previously in the context of pathogens for which 
transmission parameters vary temporally (e.g., [29,34,40]). Here, we refer to the probability 
of a major outbreak calculated in this way as the CER, following the use of this terminology 
in our earlier work [29]. In this section, we describe how the CER can be calculated for the 
stochastic SIR model and the stochastic host-vector model of chikungunya virus transmission.

2.2.1.  SIR model.  For the stochastic SIR model, if a single infectious individual enters the 
host population at time t0 , then the CER is given by [29,34,40]:

	 CER t

r e r
t

s s s
t

r0
1

1
0

0

( )=
+ ( )

∫∞ ( )− ( )

∫ γ
β γ d

d

. 	 (8)
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A derivation of this expression can be found in Section 2.3.1 of [29].
2.2.2.  Chikungunya transmission model.  To compute the CER for the host-vector model 

of chikungunya virus transmission, we use the method described in [29]. We denote the 
probability of a major outbreak occurring, if there are i infectious hosts, j exposed vectors and 
k infectious vectors at time t, by p tijk ( ).

Assuming that the virus is introduced into the population at time t0  by a single infectious 
host, then the CER is given by p t100 0( ) . Calculation of the CER then involves solving the 
following system of ODEs:
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The first of these equations is derived in Section C of S1 Text, with the derivation of the 
remaining two following an identical procedure. We solve system of equations (9) numerically 
using the Chebfun open source MATLAB software package [50], with periodic boundary con-
ditions ( p p100 1000 12( )= ( ) , p p010 0100 12( )= ( )  and p p001 0010 12( )= ( ) , where t is measured in 
months here). Chebfun requires the coefficients on the right-hand-side of system of equations 
(9) to be provided in functional forms (as functions of t, rather than vectors of values), neces-
sitating our decision to use a functional form for N tV ( )  (equation (5)).

2.3.  Threshold Epidemic Risk (TER)
Here, we describe how the TER can be calculated for the stochastic SIR model and stochastic 
host-vector model of chikungunya virus transmission. The TER represents the probability 
that, if a single infected individual (for the host-vector model, a single infected host) enters 
the population at time t0 , an outbreak occurs in which a threshold number (denoted M) of 
cumulative infections is exceeded (or equalled). For the host-vector model, this threshold 
refers to host infections, rather than vector infections.

2.3.1.  SIR model.  For the stochastic SIR model, we calculate the TER numerically, without 
resorting to model simulation. To do this, we choose a time, tmax , that is longer than any 
outbreak could potentially be. We then denote the probability that the number of cumulative 
infections exceeds or equals M prior to time tmax , given that there are I∗  infectious individuals 
and R∗  removed individuals in the population at time t, by q I R tM

∗ ∗( ), , .  
In other words:

	 q I R t I t R t M I t I R t RM
∗ ∗ ∗ ∗( )= ( )+ ( )≥ ( )= ( )=( ), , , .P max max 	 (10)

By choosing tmax  to be longer than the timescale of any local outbreak, q I R tM
∗ ∗( ), ,  is 

equivalent to the probability that at least M cumulative infections occur prior to outbreak 
extinction.

We discretise the time interval 0,tmax[ ]  into n time steps, each of length ∆t , where ∆t  is 
chosen to be small (by choosing n to be large) so that at most one event occurs in any time 
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interval of length ∆t.  By conditioning on the possible events occurring in the interval (i t∆ , 
i t+( )1 ∆ ] , for i

t
t

= … −0 1 1, , , max

∆
, we obtain:
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Since the outbreak will definitely have ended by time tmax , we note that:	
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enabling us to solve system of equations (11) backwards in time to find the val-
ues of q I R i tM

∗ ∗( ), , ∆  for all values of I∗ , R∗  and i. In other words, we first compute 
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∆2 , and so on. The TER, assuming that a 

single infectious individual is introduced to the host population at time t0 , is then given by  
q tM 1 0 0, ,( ) .

We note that, in principle, it would be possible to rearrange system of equations (11) and 
take the limit ∆t→ 0  to obtain a system of ODEs for q I R tM

∗ ∗( ), , . However, since we would 
then be required to discretise time to solve those ODEs numerically, we solve system of equa-
tions (11) directly as described above.

2.3.2.  Chikungunya transmission model.  To compute the TER for the host-vector 
model, we use a simulation-based approach. Specifically, we repeatedly simulate the analogous 
stochastic model to system of equations (6), following the simulation procedure described 
in section 2.1.2. In each simulation, we start with a single infectious host in the population 
at time t0 . The TER is then given by the proportion of model simulations in which I RH H+  
exceeds or equals M prior to pathogen extinction occurring.

3.  Results

3.1.  SIR model
To begin comparing the CER and TER, we calculated these quantities for the stochastic SIR 
model (the analogous stochastic model to system of equations (1)) with a seasonally varying 
infection rate (equation (2)). We first considered a scenario in which sustained transmis-
sion is possible all year round ( R t0 1( )>  for all values of t), and set the threshold number of 
cumulative infections defining a “major outbreak” to be M=100  (corresponding to 10% of 
the total population size of N =1 000, ) when calculating the TER. We found that the TER 
matches the CER closely in that scenario (orange and blue lines in Fig 2A). Not only did we 
calculate the TER numerically using system of equations (11) (orange line in Fig 2A), but we 
also calculated the TER using repeated model simulation. To do this, we assumed that there 
was a single infected individual in the population at the time of pathogen introduction, t0  
(i.e., S t N I t( ) ,0 01 1= − ( )=  and R t0 0( )= ), ran 10,000 simulations of the stochastic SIR 
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model and then computed the proportion of simulations in which the number of cumulative 
infections exceeded or equalled M=100  prior to outbreak extinction. We repeated this for a 
range of values of the time of introduction, t0  (orange dots in Fig 2A).

While the CER and TER matched closely when transmission was possible all year round (as 
was the case in previous studies in which the CER was calculated, e.g., [29]), we then went on 
to consider a second scenario, in which sustained transmission is only possible for some of the 
year (Fig 2B). In that scenario, outbreaks with at least M=100  cumulative infections were 
possible for some pathogen introduction times, leading to values of the TER that were greater 
than and not close to zero (orange line and dots in Fig 2B). However, in the scenario shown 
in Fig 2B, since pathogen extinction always eventually occurred during time periods in which 
transmission was not possible, the CER took the value zero at all pathogen introduction times 
(blue line in Fig 2B).

Although we only considered a single introduced case in Fig 2, we also conducted a supple-
mentary analysis in which we considered multiple pathogen introductions when calculating 
the TER (S2 Fig).

We then explored the effect of the duration of time in the year for which sustained trans-
mission is impossible ( R t0 1( )< ) on the mismatch between the CER and TER in more detail. 
Specifically, we considered different values of β0  (which represents the mean infection rate 
across the year) and again calculated the CER and TER (Fig 3).

We found that, if β γ0 < , then the CER always takes the value zero. However, in those 
scenarios, but when seasonal transmission is possible, then outbreaks with at least M=100  
infections might still occur, leading to substantial differences between the CER and TER (Fig 
3A and 3B).

Fig 2.  Comparison between calculated values of the CER and TER for the stochastic SIR model with seasonal transmission. A. The CER (obtained using equa-
tion (8) – blue line) and the TER (obtained by solving system of equations (11) numerically – orange line – and by running model simulations – orange dots) when 
sustained transmission is possible throughout the year ( β0 10= , β1 5=  and γ = 4 9.  month-1). B. Analogous results to panel A, but in a scenario in which sustained 
transmission can only occur for some of the year ( β0 4= , β1 5=  and γ = 4 9.  month-1). In both panels, a threshold of M =100  was used when computing the TER 
(analogous results for different values of M are shown in S3 Fig) and the overall population size was assumed to be N =1 000,  individuals. When we computed the TER 
numerically, we used a time step of ∆t = 0 00033. months (i.e., 0.01 days). When we computed the TER using model simulations, we ran 10,000 simulations of the sto-
chastic model (using the simulation approach described in Section 2.1.1) for each time of introduction considered. In both panels, the inset shows R t t t0 ( )= ( ) ( )β γ/  as 
a function of t.

https://doi.org/10.1371/journal.pcbi.1012364.g002

https://doi.org/10.1371/journal.pcbi.1012364.g002
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In contrast, if β γ0 > , then we found that the CER is always strictly positive. However, if 
there are substantial periods of the year during which sustained transmission cannot occur 
( R t0 1( )< ), then the CER can be vanishingly small. This can include time periods in which 
the CER is vanishingly small but the TER is substantially greater than zero (Fig 3C and 3D). 
We also identified some scenarios and time periods in which the CER is substantially greater 
than zero, yet is still less than the TER (Fig 3C and 3D).

Again, as in Fig 2A, when sustained transmission is possible all year round, or is only 
impossible for very short periods, then the CER and TER match closely (Fig 3E and 3F).

A similar analysis, but with the extent of seasonality in the infection rate (β1 ) varied 
instead of β0 , is presented in S4 Fig. In that analysis, β γ0 > , so the CER is always strictly 
positive (although it is vanishingly small at some times of year in S4D Fig).

Having established that the TER provides a more appropriate characterisation of the 
risk posed by an invading seasonal pathogen than the CER, we considered the sensitivity of 
the TER to the precise threshold number of infections, M, chosen (Fig 4). Specifically, we 
considered both the value of the TER and the duration of the year for which the TER is above 
a particular value, z= 0 1.  (in Fig 4, β0 4= ). We refer to the latter quantity as the “epidemic 
risk window”. For the transmission parameter values used in Fig 4 ( β1 5= , γ= 4 9.  and  
month-1),

We found that the epidemic risk window differed depending on the value of M= 200 . For 
example, if N =1 000,  was used (corresponding to 20% of the population of z= 0 1. ), then 
the TER exceeded M= 400  for 5.36 months per year, whereas if instead z= 0 1.  was used 
(corresponding to 40% of the population), then the TER exceeded  for 4.60 months per year. 
We repeated this analysis for different values of z in S6 Fig. Notably, the start of the epidemic 
risk window was sensitive to the value of M used, whereas the end of the epidemic risk win-
dow was consistent for a range of values of M.

3.2.  Chikungunya transmission model
To demonstrate the application of our framework for inferring the risk posed by an invading 
seasonal pathogen to a real-world case study, we estimated the TER for chikungunya in the 
town of Feltre, Italy, using daily mean temperature data from 2014 and 2015. The risk that 
an imported case will initiate a local outbreak varies during the year in that setting due to the 
seasonal dynamics of the Ae. albopictus vector population.

First, we fitted equation (4) to the temperature data from Feltre from 2014 (S1A Fig) and 
2015 (S1B Fig). We then used these fitted temperature values to determine the number of 
adult female vectors per hectare throughout the year, initially by numerically solving system 
of equations (3) to obtain the number of adult female vectors at the start of each month (blue 
dots in S1C and S1D Fig) and then by fitting equation (5) to those monthly values (blue lines 
in S1C and S1D Fig). Finally, we computed the TER in 2014 (Fig 5A) and 2015 (Fig 5B) using 
model simulations, for a range of different values of the threshold number of cumulative 
infections defining a major outbreak, N tV ( ) . In addition to plotting the TER, we computed 
the CER and found that the CER was either zero (in 2014) or vanishingly small (in 2015) 
throughout each year due to the extinction of the pathogen during seasons in which envi-
ronmental conditions are not conducive to transmission. Specifically, outside the summer 
months, low temperatures drive the vector population size down to a low level, making long-
term sustained transmission of chikungunya highly unlikely.

As described in the Methods, in the simulations underlying Fig 5 the temporal dynamics 
of the adult female vector population (i.e., ) were represented by a skewed, scaled, and shifted 
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Fig 3.  Comparison between calculated values of the CER and TER for the stochastic SIR model with seasonal transmission, for a range of values of β0. A. The 
CER (obtained using equation (8) – blue line) and the TER (obtained by solving system of equations (11) numerically – orange line) when sustained transmission 
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Gaussian (equation (5)) that was fitted in each year to the output of the deterministic ecolog-
ical model (system of equations (3)). To demonstrate the robustness of these results to that 
approximation, we also calculated the TER using model simulations in which the values of 
N tV ( )  were obtained directly from the numerical solution of the deterministic ecological 
model; we found that our results were very similar (S7 Fig).

4.  Discussion
For many infectious diseases, quantifying the risk that imported cases will initiate a “major 
outbreak” driven by local transmission is of vital importance for public health policy. This is 
especially pertinent for seasonal pathogens that are not present at certain times of year, since 
pathogen reintroduction leading to sustained local transmission is necessary for large num-
bers of cases to arise. Identification of high-risk locations and time periods allows policy- 
makers to target surveillance and control interventions appropriately.

As described in the Introduction, previous studies have provided methods for calculating 
the probability of a major outbreak. When transmission parameter values vary temporally, 
an established method [29,34–41] gives rise to the quantity that we term the CER here. As 
we have shown, when sustained transmission is possible all year round, the CER provides 
a useful measure of the risk that an introduced case will initiate local transmission (Figs 2A 
and 3F). However, when sustained transmission cannot occur for substantial periods of the 

Fig 4.  Sensitivity of the TER to the value of M chosen for the stochastic SIR model with seasonal transmission. A. The TER (obtained by solving system of equations 
(11) numerically) for a range of different values of the threshold number of cumulative infections, M. The blue shaded region shows the period of the year for which the 
TER exceeds z = 0 1.  for the baseline value of M =100  B. The duration of the year for which the TER exceeds z = 0 1.  shown as a function of M. In both panels, values 
of β0 4= , β1 5=  and γ = 4 9.  month-1 are used. When we computed the TER numerically, we used a time step of ∆t = 0 00033.  months. The overall population size 
was assumed to be N =1 000,  individuals.

https://doi.org/10.1371/journal.pcbi.1012364.g004

is only possible for a short period of the year ( β0 1= ,  β1 5=  and γ = 4 9.  month-1). B. Analogous results to panel A, but with β0 3= .  C. Analogous results to 
panel A, but with β0 5= .  D. Analogous results to panel A, but with β0 7= .  E. Analogous results to panel A, but with β0 9= .  F. Analogous results to panel A, but 
with β0 11= .  In all panels, a threshold of M =100  and a time step of ∆t = 0 00033.  months was used when computing the TER. We confirmed that our results 
were not sensitive to this choice of ∆t  by also generating results for ∆t = 0 00017.  days; as shown in S5 Fig, our results were unchanged. The overall population 
size was assumed to be N =1 000,  individuals. In all panels, the inset shows R t t t0 ( )= ( ) ( )β γ/  as a function of t.

https://doi.org/10.1371/journal.pcbi.1012364.g003

https://doi.org/10.1371/journal.pcbi.1012364.g004
https://doi.org/10.1371/journal.pcbi.1012364.g003
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year (e.g., over winter, as is the case for vector-borne pathogens in temperate climates such 
as southern Europe), then the CER can underestimate the true risk of a substantial outbreak 
occurring, including scenarios and time periods in which outbreaks with large numbers of 
cases can begin yet the CER takes the value zero (Figs 2B, 3A and 3B) or is vanishingly small 
(Fig 3C and 3D). For this reason, we have proposed a different quantity (the TER) that can 
be calculated to assess the probability of a major outbreak. Specifically, the TER represents 
the probability that introduced cases initiate an outbreak with at least R0  infections prior to 
outbreak extinction.

The risk of an outbreak occurring in which a threshold number of cumulative cases is 
exceeded has been considered in some previous studies. For example, for models in which 
transmission parameter values do not vary temporally, Thompson et al. [30] showed that the 
TER tends to match classic estimates for the probability of a major outbreak for a range of 
values of M, at least when  is sufficiently larger than one. Robert et al. [51] considered trans-
mission of dengue in Miami and computed the TER (there termed the “probability of autoch-
thonous transmission”) via repeated simulation of a stochastic model, including considering 
the risk of outbreaks of different sizes. However, the key extension of the current study is 
to compare calculations of the TER against calculations of the CER for seasonal pathogens, 
highlighting that the TER provides a more practically useful quantification of the risk posed 
by seasonal pathogens.

We found that the precise value of M chosen affects the calculated value of the TER and 
the inferred duration of the year for which the outbreak risk is heightened (Fig 4). This in fact 
motivates the use of the TER as a practical epidemic risk metric to guide decision making, 
since it would be possible for policy advisors to choose the value of M that is most appropriate 
for the context under consideration. For example, for a pathogen such as dengue virus in Italy, 
even relatively small outbreaks would be considered substantial. Since 2010, the majority of 
dengue outbreaks in mainland Europe have consisted of fewer than 40 cases [52]. Therefore, 

Fig 5.  Calculation of the TER for chikungunya in Feltre, northern Italy, in 2014 and 2015. A. The TER for 2014 (and early 2015), shown for 
a range of values of the threshold number of cumulative infections, M. The CER is also shown (obtained using system of equations (9) – black 
line). B. Analogous to panel A, but for 2015 (and early 2016). In both panels, to compute the CER we ran 10,000 simulations of the stochas-
tic model (using the simulation approach described in Section 2.1.2) for each date of introduction considered. The host population size was 
assumed to be N = 5 000,  individuals (based on the population density in Feltre [44], this corresponds to an area of 80 Ha; the numbers of adult 
female vectors were also scaled up from their per Ha values shown in S1C and S1D Fig). In both panels, the inset shows R t0 ( )  as a function of t 
(equation (7)).

https://doi.org/10.1371/journal.pcbi.1012364.g005

https://doi.org/10.1371/journal.pcbi.1012364.g005
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even outbreaks of size 10–20 might be considered large in that setting, suggesting that a value 
of M of that size might be appropriate. By choosing a value of M that is suitable for a specific 
pathogen and location, the epidemic risk window can be calculated (as in Fig 4) and used 
to inform the timing of interventions. Consequently, if mathematical modellers undertake 
calculation of the TER, then we contend that this should be done for any specific outbreak in 
consultation with policy specialists, to ensure that an appropriate value of M is used. Alterna-
tively, the TER could be computed for a range of values of M, so that estimates of the risk of 
outbreaks of a range of different sizes are obtained.

As we showed by applying our approach to the case study of chikungunya in northern Italy 
(Fig 5), the methodology presented here is particularly relevant in the context of vector-borne 
diseases in locations that experience seasonal outbreaks. Going forwards, the risk of vector- 
borne disease outbreaks is expected to increase in some locations due to climate change 
[53–55]. Calculation of the TER across a range of places and at different times of year can 
provide insights into changes in the spatio-temporal risk of outbreaks and support the adop-
tion of preventive measures [44]. In addition to demonstrating that the CER does not provide 
an appropriate assessment of the risk of seasonal outbreaks in some real-world scenarios, 
two features are particularly noticeable from our TER calculations in Fig 5. First, relatively 
small differences in temperature between years (S1A and S1B Fig) can drive more substantial 
differences in the vector population size (S1C and S1D Fig), and therefore in the risk posed 
by outbreaks. Second, the choice of value of M affects the time of pathogen introduction at 
which the TER is maximised. Specifically, larger values of M require longer outbreaks for 
the threshold number of cumulative infections to be exceeded. As a result, larger values of M 
tend to lead to earlier peak values of the TER, in order for there to be sufficient time left in 
the transmission season for such large outbreaks to occur. We note that, early in the transmis-
sion season, the TER can be consistent across a range of values of M (Fig 5B). This is because, 
once a small threshold number of cumulative cases is exceeded, a large outbreak may be 
guaranteed. On the other hand, near the end of the season, the TER varies more substantially 
with z= 0 1. . This is because, even if a smaller threshold number of cumulative infections is 
exceeded, a larger threshold may not go on to be exceeded because sustained transmission will 
soon become impossible.

When considering the host-vector model of chikungunya virus transmission, we chose to 
use a simulation-based approach for computing the TER as opposed to the numerical approach 
that we used in the case of the SIR model. We did this to demonstrate the extensibility of our 
framework to epidemiological models with any level of complexity (although we note that, 
for very complex stochastic epidemiological models with large numbers of events, a limitation 
of our approach is that repeated model simulation could require substantial computational 
resource). Future applications of the TER could consider more detailed host-vector models. 
For example, parameters such as the extrinsic incubation period could be assumed to vary with 
temperature [56,57]. Alternatively, the utility of the TER in entirely different scenarios could be 
analysed, for example by considering seasonal respiratory outbreak pathogens. The dynamics 
of directly transmitted childhood infections, such as the varicella-zoster virus (the causative 
agent of chickenpox), are affected by school terms [58], and the TER might be a useful metric 
for quantifying the risk of “within-term” outbreaks of different sizes. Additionally, the TER 
might sometimes be a useful metric even if seasonal dynamics are not considered. For example, 
the high case fatality rate observed during past Ebola virus disease outbreaks means that even 
outbreaks with relatively small numbers of cases might be classified as “major”, motivating the 
use of the TER with a relatively small value of M=100 . Finally, we note that a benefit of using 
the TER to quantify outbreak risks is that it is possible to account for temporal changes in the 
offspring distribution due to factors such as local depletion of susceptible individuals. In fact, 
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any complexity in real-world systems can be built into simulation-based calculation of the TER 
by simply including the relevant features in the simulation model; considering such extensions, 
including ensuring that temporal changes in offspring distributions are reflected accurately in 
epidemiological models, is a key target for future research.

In summary, we have developed a novel framework for seasonal pathogens that can be used 
to compute the probability that an initial infected case (or cases) initiates a “major outbreak”. 
Rather than basing our approach on the mathematical theory of branching processes, which 
can lead to unrealistic assessments of seasonal outbreak risks, we calculate the TER (i.e., the 
probability that the number of cumulative infections will exceed a pre-specified threshold 
value). For simple stochastic epidemic models that account for seasonality, the TER can be 
calculated numerically. For more complex models, the TER can be estimated using model 
simulations, enabling it to be determined for any epidemiological system for which repeated 
model simulation is possible. Going forwards, we hope that our flexible approach will be used 
by epidemiological modellers to obtain policy-relevant outbreak risk assessments for a range 
of pathogens.
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S1 Fig.  Temperature and vector density in Feltre, Northern Italy, in 2014 and 2015. A. 
Daily mean temperature in Feltre in 2014 as sourced from MODIS satellite Land Surface 
Temperature measurements (blue line) and smoothed temperature values obtained by fitting 
equation (4) in the main text to those data (orange line). B. Analogous to panel A, but using 
temperature data from 2015. C. Monthly number of adult female vectors per hectare in 2014 
(and early 2015) obtained by solving system of equations (3) in the main text numerically 
based on the fitted temperature values in panel A (blue dots), and inferred number of adult 
female vectors per hectare obtained by fitting equation (5) in the main text to the monthly 
values (blue line). The ecological model is initialised at the beginning of April 2014. The fitted 
values shown from January to March 2014 reflect the fit from early 2015 (assuming annual 
periodicity). D. Analogous to panel C, but for 2015 (and early 2016), based on the fitted tem-
perature values in panel B.
(PDF)

S2 Fig.  Dependence of the TER on the initial number of infected individuals, for the sto-
chastic SIR model with seasonal transmission. A. The TER for different initial numbers of 
infectious individuals (obtained by solving system of equations (11) in the main text numer-
ically). B. The duration of the year for which the TER exceeds ∆t = 0 00033. , for different 
initial numbers of infectious individuals. In both panels, a threshold of N =1 000,  cumulative 
infections and a time step of β0 4=  months was used when computing the TER. The overall 
population size was assumed to be β1 5=  individuals. Parameter values used: γ= 4 9. ,  and 
β1 5=  month-1.
(PDF)

S3 Fig.  Dependence of the TER on the value of M used, for the stochastic SIR model with 
seasonal transmission. A. The TER (obtained by solving system of equations (11) numer-
ically) when sustained transmission is possible throughout the year ( γ= 4 9. ,  and β0 4=  
month-1), for different values of β1 5=  (100, 200, 300, 400 and 500). For γ= 4 9. , the TER 
as approximated using model simulations is also plotted (blue dots). B. Analogous results to 
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panel A, but in a scenario in which sustained transmission can only occur for some of the 
year ( N =1 000, , ∆t = 0 00033.  and 10 000,  month-1). In both panels, the overall population 
size was assumed to be β1  individuals. When we computed the TER numerically, we used the 
time step β0 10=  months. When we approximated the TER using model simulations, β1 0=  
simulations were run for each time of introduction considered.
(PDF)

S4 Fig.  Comparison between calculated values of the CER and TER for the stochastic SIR 
model with seasonal transmission, for a range of values of γ= 4 9. . A. The CER (obtained 
using equation (8) in the main text; blue line) and the TER (obtained by solving system of 
equations (11) in the main text numerically; orange line) when β1 3= , β1 6=  and β1 9=  
month-1. B. Analogous results to panel A, but with M=100 . C. Analogous results to panel A, 
but with ∆t = 0 00033. . D. Analogous results to panel A, but with N =1 000, . In all panels, a 
threshold of R t t t0 ( )= ( ) ( )β γ/  and a time step of R t t t0 ( )= ( ) ( )β γ/  months was used when 
computing the TER. The overall population size was assumed to be  individuals. Insets show 
β0 1=  as a function of β1 5= .
(PDF)

S5 Fig.  Comparison between numerically computed values of the TER for two different 
values of the time step, γ= 4 9. , for the stochastic SIR model with seasonal transmission. 
A. The TER (obtained by solving system of equations (11) from the main text numerically) 
when sustained transmission is only possible for a short period of the year (∆t = 0 00033. ,  
∆t = 0 00017.  and β0 3=  month-1). Results are shown for both the time step used in the 
main text ( β0 5=  months; blue line) and for a shorter time step ( β0 7=  months; black dot-
ted line). B. Analogous results to panel A, but with β0 9= . C. Analogous results to panel A, 
but with β0 11= . D. Analogous results to panel A, but with M=100 . E. Analogous results 
to panel A, but with N =1 000, . F. Analogous results to panel A, but with R t t t0 ( )= ( ) ( )β γ/ . 
In all panels, a threshold of R t t t0 ( )= ( ) ( )β γ/  cumulative infections was used when com-
puting the TER and the overall population size was assumed to be  individuals. Insets show  
as a function of .
(PDF)

S6 Fig.  Duration of the year for which the TER exceeds z in the stochastic SIR model with 
seasonal transmission, for a range of values of M and z M=100 . A. The TER (obtained by 
solving system of equations (11) in the main text numerically) for a range of different values 
of the threshold number of infections, z= 0 4. . The blue shaded region shows the period of 
the year for which the TER exceeds z= 0 4.  when ,. B. The duration of the year for which 
the TER exceeds , shown as a function of M. C. Heatmap indicating the duration of the year 
for which the TER exceeds , shown for a range of values of β1 5=  and γ= 4 9. . In all panels, 
values of ∆t = 0 00033. , N =1 000,  and N =1 000,  month-1 are used. A time step of  months 
was used when computing the TER. The overall population size was assumed to be N = 5 000,  
individuals.
(PDF)

S7 Fig.  Calculation of the TER for. chikungunya in Feltre, Northern Italy, in 2014 and 
2015, with and without the approximation in equation (5) of the main text. A. The TER 
for 2014, shown for a range of values of the threshold number of cumulative infections, 
N = 5 000, . The TER computed using the approximation in equation (5) of the main text 
(as in Fig 5 of the main text; dashed lines) is compared to the TER computed using values of  
obtained directly from the numerical solution of the deterministic ecological model (system 

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012364.s005
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012364.s006
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012364.s007
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012364.s008
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of equations (3) in the main text; solid lines). B. Analogous to panel A, but for 2015. In both 
panels, we ran 10,000 simulations of the stochastic model (using the simulation approach 
described in Section 2.1.2 of the main text) for each date of introduction considered. The host 
population size was assumed to be  individuals (based on the population density in Feltre, this 
corresponds to an area of 80 Ha, and the numbers of adult female vectors (shown in S1C and 
S1D Fig) were scaled up from their per Ha values accordingly).
(PDF)
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