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Abstract

High-dimensional mixed-effects models are an increasingly important form of regression in

which the number of covariates rivals or exceeds the number of samples, which are col-

lected in groups or clusters. The penalized likelihood approach to fitting these models relies

on a coordinate descent algorithm that lacks guarantees of convergence to a global opti-

mum. Here, we empirically study the behavior of this algorithm on simulated and real exam-

ples of three types of data that are common in modern biology: transcriptome, genome-wide

association, and microbiome data. Our simulations provide new insights into the algorithm’s

behavior in these settings, and, comparing the performance of two popular penalties, we

demonstrate that the smoothly clipped absolute deviation (SCAD) penalty consistently out-

performs the least absolute shrinkage and selection operator (LASSO) penalty in terms of

both variable selection and estimation accuracy across omics data. To empower research-

ers in biology and other fields to fit models with the SCAD penalty, we implement the algo-

rithm in a Julia package, HighDimMixedModels.jl.

Author summary

High-dimensional, clustered data are increasingly common in modern omics. In our

study, we focus on the penalized likelihood approach to fitting mixed-effects models to

these data, employing a coordinate descent (CD) algorithm to minimize the objective

function. Although CD is a common optimization scheme, its convergence in this setting

lacks guarantees, prompting our empirical investigation of its behavior when applied to

transcriptome, genome-wide association, and microbiome datasets. We evaluate the

model and algorithm’s performance on simulations of these studies and subsequently

apply it to real examples of each. To help facilitate the practical application of these models

and further research, we have implemented the algorithm in an open-source Julia pack-

age, HighDimMixedModels.jl. This package provides implementations of both the

least absolute shrinkage and selection operator (LASSO) and the smoothly clipped
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absolute deviation (SCAD) penalty, and having tested its performance on various omics

data sets, we hope that it offers a user-friendly solution for researchers in biology.

1 Introduction

High-dimensional regressions, in which the number of variables matches or exceeds the num-

ber of samples, are the rule, rather than the exception, in modern omics. In the field of tran-

scriptomics, for example, RNA-Seq technology allows for simultaneous measurement of

expression levels of thousands of genes [1, 2]; in population genetics, genome-wide association

studies include hundreds of thousands, if not millions, of single nucleotide polymorphisms

(SNPs) [3, 4]; and in metagenomics, microbiome studies measure the abundance of hundreds

of bacterial taxa in perhaps only a few dozen samples from the environment [5, 6]. In order to

make the analyses of these data sets tractable, it is typically assumed that only a small fraction

of the transcripts, SNPs, or taxa have a non-negligible impact on a response of interest, often

related to human, soil, or plant health. Identifying these predictive features from the large pool

of measured markers thus becomes a critical task [7].

Experimental conditions and constraints often result in omics data which, in addition to

being high-dimensional, are clustered or grouped. For example, samples of a microbiome

might be collected at different locations, with samples obtained from the same site more simi-

lar to each other. Alternatively, in longitudinal studies, repeated samples are taken from differ-

ent individuals over time, and observations from the same individual are assumed to be

correlated [8]. In a regression context, a common and flexible framework for handling

grouped data of this sort is the so-calledmixed-effects model [9]. In a mixed-effects model, in

addition to estimating “fixed effects” of the measured covariates, each group present in the

data is also assigned an unobserved “random effect” drawn from a common distribution. The

sharing of the same random effect among units belonging to the same group induces correla-

tion between these units.

Unfortunately, standard maximum and restricted maximum likelihood estimation of the

parameters of the mixed-effects model deteriorates in the high-dimensional setting. In the case

where the number of features exceeds the total sample size, there are no degrees of freedom to

form the restricted likelihood, and maximum likelihood estimation entails interpolating the

data with the fixed effects and sending the error variance to 0. One common approach to esti-

mating the parameters of a high-dimensional regression model without random effects is by

forming and maximizing a penalized likelihood [10]. Penalizing, for example, the ℓ1 norm of

the regression coefficient vector in an estimation method known as the least absolute shrink-

age and selection operator (LASSO) has proven to be an extremely popular approach due to

(1) the ease of the corresponding numerical optimization problem and (2) the sparsity of its

solutions, consequences of the geometry of the ℓ1 norm and its convexity [11]. The properties

of the LASSO as an estimator and as a feature selector have been extensively studied and have

inspired a literature that generalizes the LASSO and other sparsity-inducing regularization

techniques to new domains [12].

The extension of the penalized likelihood framework to the mixed-effects model has been

studied in a number of articles [13–15]. In an initial paper [13], Schelldorfer, Bühlmann, and

van de Geer studied the convergence rate of the global maximizer of the penalized likelihood

with an ℓ1 penalty and proposed a coordinate descent (CD) algorithm [16] to arrive at a local

minimum of this objective function. Due to the non-convexity of the problem, such a solution

does not necessarily coincide with the global optimum to which their theoretical results apply.
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Ghosh and Thorensen [14] subsequently studied statistical properties of maximum penalized

likelihood estimators for the high-dimensional mixed-effects model under general, non-con-

vex penalties, including the smoothly clipped absolute deviation (SCAD) penalty, and they

similarly provide a CD algorithm for implementation. However, their algorithm minimizes an

adaptively modified objective function at every step, and thus the output of their algorithm is

not even a local minimum of the original penalized likelihood.

Both [13] and [14] carry out simulations to study the performance of their estimation pro-

cedure under a single well-behaved design structure with normally distributed entries. In

omics studies, however, design matrices often have a distinct, non-normal structure. In this

paper, we test the robustness of the CD algorithm for fitting high-dimensional mixed-effects

models by evaluating its statistical performance on data simulated to resemble those from the

three omics studies mentioned at the outset: gene expression analyses, genome-wide associa-

tion studies (GWAS), and studies of the microbiome. To facilitate this simulation study, we

implemented the CD algorithm for fitting high-dimensional mixed-effects models (High-

DimMM) in the Julia package HighDimMixedModels.jl, available at https://github.com/

solislemuslab/HighDimMixedModels.jl. Our software mimics the code in the R packages

lmmlasso and splmm ([17, 18]), but includes the SCAD as the default penalty, which is not

available in lmmlasso and whose implementation in splmm incorrectly updates the penal-

ized fixed effects in the CD algorithm. In addition, it corrects an error in the original code pub-

lished in [14] that prevented zeroed coefficients from being further updated over the course of

the algorithm.

In addition to our own, there are a myriad of methods, models, and software implementa-

tions for analyzing high-dimensional, clustered data, many of which are tailored to the analysis

of a specific type of omics data. We have included a table summarizing many of these methods

and software implementations at https://bit.ly/All-paper-for-mixed-effect-models [14, 15, 17–

46]. Our software distinguishes itself in its speed, which is obtained through a Julia implemen-

tation of the CD algorithm, and in its ability to work robustly across high-dimensional omics

data sets, as illustrated in the simulations in this paper.

1.1 Characteristics of targeted Omics data

Gene expression data are crucial for understanding the functional elements of the genome and

the molecular mechanisms underlying various biological processes, as well as for disease diag-

nosis and drug development [48, 49]. These data are generated through technologies such as

microarrays and RNA-Seq, which involve converting RNA molecules into complementary

DNA (cDNA) and then sequencing these cDNA fragments to quantify RNA levels [47]. A key

challenge associated with gene expression data is their high dimensionality: typically, thou-

sands of genes are measured in relatively few samples [50]. In addition, gene expression data

often require a normalization strategy to make the data more biologically meaningful across

samples [51]. In our simulations, we assume that expression profiles can be made to follow a

multivariate normal distribution by applying such a strategy, and we introduce correlations

between genes in this distribution to study how this impacts algorithmic behavior and estima-

tion performance.

In genome-wide association studies (GWAS), design matrices contain the genotypes of

each individual in the study at a large collection of single nucleotide polymorphisms (SNP)

across the genome. When, for a given locus in a diploid organism, there are only two distinct

alleles, the individual’s genotype is often represented with either a 0 (homozygous for the

minor allele), 1 (heterozygous), or 2 (homozygous for the major allele); that is, the genotype is

represented by the count of minor alleles, which implicitly encodes the assumption of an
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additive genetic effect [52]. To avoid the computational demands of a multiple regression

approach, GWAS is often done simply by testing the effect of each SNP on the phenotype in

isolation of all other variants [53]. However, examining all SNPs simultaneously can improve

the power to detect small effect sizes of individual SNPs, hence the need for methods to deal

with the high dimensionality of GWAS data [54]. The error correlation structure for GWAS

regression models is generally based on the known or estimated population substructure of the

individuals included in the study [55]. In our modeling of GWAS data, we are assuming a

known and very simple structure in which the individuals in the study are partitioned into dis-

crete populations and which we account for by including random effects associated with each

of these populations.

The final omics study simulated and tested in this article is that of the microbiome. The

compositions of the microbial community in a collection of samples from a microbiome of

interest take the form of a matrix of read counts, with each row representing a sample and

each column representing a microbial taxa, often referred to as an operational taxonomic unit

(OTU) [56]. However, due to differences in DNA yielding material between samples and

inherent limitations in sequencing technology, counts only provide information about the rel-

ative abundance of the various OTUs in a given sample [57]. The OTU count matrix is also

often extremely sparse and very right skewed [58]. In this work, we take into account the com-

positional nature of the data by assuming a linear log-contrast regression model for the

response of interest [59]. In other words, we assume an underlying design matrix obtained as a

log-ratio transformation of the original count matrix. In our simulations, we generate the

response according to Eq 1 using this transformed data as our design matrix, and in both our

simulations and our real data analysis, we fit models with this transformed data as the assumed

design.

The remainder of the paper is structured as follows. In Section 2, we first review the high-

dimensional mixed-effects model from [13] and [14], as well as the CD algorithm proposed in

these sources for fitting the model with the LASSO and SCAD penalties. In Section 3, we detail

the results of fitting high-dimensional mixed-effects models with CD to the simulated data

and to the real data sets from each study type. We comment on the variation in the procedure’s

ability to recover the impactful markers and accurately estimate their effects across settings

such as dimensionality, design matrix structure, and random-effects structures. We conclude

with a discussion of the main takeaways from our investigation in Section 4.

2 Methods

2.1 Penalized likelihood of mixed-effects model

Let g denote the number of clusters in our data. In this paper, we consider the linear mixed-

effects model, where the vector of responses yi in each cluster i = 1, . . ., g is generated accord-

ing to

yi ¼ Xibþ Zibi þ �i: ð1Þ

We assume that we are performing variable selection of the fixed effects rather than the ran-

dom effects so that b 2 Rp
is a high-dimensional vector of fixed effects, and

b1; b2; . . . ; bg �
iid N qð0;CyÞ are low-dimensional vectors of random effects (q� p). Letting ni

indicate the number of observations in the group i, Xi 2 R
ni�p and Zi 2 R

ni�q are cluster-spe-

cific design matrices, with the latter corresponding to the random effects in the model, so that

the variables represented as columns of Zi are taken to vary between groups in their effects on

the response. These variables are typically a subset of the columns in Xi, so that although the
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random effects are drawn from a mean zero distribution, the average effect across the clusters

may be estimated non-zero as a fixed effect. Finally, for each cluster i, �i � N ni
ð0; s2IniÞ is a

vector containing the error terms for each response in the cluster. The �i are assumed to be

mutually independent of each other and of the random effects.

The covariance matrix Cθ is a symmetric, positive semidefinite matrix that is parameterized

by y 2 Rq∗
. We consider three distinct models in which Cθ is, in turn, a scalar (q* = 1), diago-

nal (q* = q), and arbitrary symmetric positive semidefinite (q* = q(q + 1)/2) matrix. In each

case, θ represents the lower-triangular Cholesky factor of Cθ, which can be optimized without

any constraints, although for identifiably, we constrain its diagonal elements to be

nonnegative.

The marginal distribution of yi in this model is N ðXib;Viðy; s2ÞÞ, where Viðy; s2Þ ¼

ZiCyZT
i þ s

2Ini ; and the log-likelihood of the full set of parameters ϕ≔ (β, η)≔ (β, θ, σ2) is

thus

‘ð�Þ ¼ �
1

2
N logð2pÞ þ logðdetðVÞÞ þ ðy � XbÞTV � 1ðy � XbÞ
h i

;

where y 2 RN
and X 2 RN�p

are obtained by vertical stacking, V 2 RN�N
by diagonal stacking,

and N denotes the total sample size obtained by summing the cluster sizes, N :¼
Pg

i¼1
ni. We

define the maximum penalized likelihood estimators to be the minimizers of the loss function

Qlð�Þ ¼ � ‘ð�Þ þ
Xp

j¼1

PlðjbjjÞ; ð2Þ

where λ is a hyperparameter that governs the severity of penalization and must be selected. In

the initial study of this model, an ℓ1 penalty Pλ(|βj|) = λ|βj|, was proposed [13]. As an alterna-

tive, the SCAD penalty, defined through its derivative by

P0
l
ðjbjjÞ ¼ l

(

Iðjbjj � lÞ þ
maxð0; al � jbjjÞ
ða � 1Þl

Iðjbjj > lÞ

)

;

was proposed for penalized regression originally in the classic low-dimensional model [60],

subsequently in the high-dimensional regime [61], and finally for high-dimensional mixed-

effects models in [14]. Here, a is an additional tunable parameter that controls how quickly the

penalty decreases, typically set to 3.7, as recommended in [60].

2.2 Coordinate descent algorithm

A CD algorithm for fitting high-dimensional mixed-effects model was originally proposed in

[13] and is implemented in our package (Algorithm 1). At each iteration of this algorithm, we

first cycle through the indices 1, 2, . . . p, updating each component to minimize either the origi-

nal objective function Qλ (under the LASSO penalty) or an adaptive rescaling of it (under the

SCAD penalty) with all other components fixed at their current values. For details on the ana-

lytical solution of these updates and the purpose of adaptive rescaling under the SCAD penalty,

see S1 Appendix. After updating the fixed effects, we cycle through the indices p + 1, . . ., q* + 1,

individually updating each variance-covariance parameter to minimize the negative log-likeli-

hood (the only part of the objective function that depends on these parameters) while all other

components are kept fixed. The iteration continues until the parameters converge or the pro-

gram reaches a prespecified maximum number of iterations.

Updating the full fixed-effect vector β at every iteration can be computationally expensive

for high-dimensional problems, so following [13], we adopt an “active set” strategy: instead of
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updating every component of β at each iteration, we update only those that are currently non-

zero, with updates to the full set of components made only every D (D = 5 in our simulations)

iterations. In addition, we update the full vector any time the convergence criterion is satisfied

after an update of only the active set. Only when the convergence criterion is satisfied after a

full update do we terminate the algorithm.

Algorithm 1: Coordinate descent algorithm for estimating parameters of a high-dimen-

sional mixed-effects model
Input: Data X, Z, y, set of indices nonpen of non-penalized compo-

nents of β, penalty function Pλ (either LASSO or SCAD), ini-
tial parameter values β0, η0, full update frequency D

// Initialize iterates
1 β  β0; η  η0

2 for k = 1, 2, . . . do
// Update fixed effect parameters

3 if k mod D = 0 then J  f1; 2; . . . ;pg else J  fj j bj 6¼ 0g

4 for j 2 J do
// Calculate first and second order partial derivates of the neg-

ative log-likelihood with respect to βj
5 g  −(y − Xβ)TV(η)−1xj
6 h xT

jVðZÞ
� 1xj > 0

// Adaptively rescale penalty function if using SCAD

7 ~PlðjgjÞ ¼
def

0; j 2 nonpen

PlðjgjÞ; j =2nonpen and penalty is LASSO

PlðjhgjÞ; j =2nonpen and penalty is SCAD

8
><

>:

// Solve (analytically) univariate minimization problem and
update

8 d∗  arg mindgd þ
1

2
hd2 þ ~Plðjbj þ djÞ

9 βj  βj + d*
10 end

// Update random effect parameters
11 for j = 1, . . ., q* + 1 do
12 Zj  arg minZj � ‘ðb; Z1; . . . ; Zj; . . . ; Zq∗þ1Þ

13 end
14 Return � = (β, η) if convergence criterion satisfied.
15 end

Note that when we run this algorithm on a problem with p> N, we may converge to an inter-

polating solution, i.e. a b̂ satisfying y ¼ Xb̂. At this vector of fixed effects, the objective function

is unbounded from below, tending to negative infinity with log(det(V)) as σ2 goes to 0. Thus, in

performing the CD algorithm, we hope to avoid this region of the optimization landscape and

instead converge to a local minimum �̂ ¼ ðb̂; ẐÞ ofQλ such that b̂ is sparse, that is,

#fj j b̂ j 6¼ 0g � p;N. As we comment below when discussing the results of our simulations,

whether the algorithm manages to avoid converging to this solution depends on the size of λ. If

λ is too small, we will converge to the interpolating solution, where the threshold for smallness is

data dependent and can only be discovered by attempting to run the algorithm for different λs.

Running Algorithm 1 constitutes a single fit of our model for a given value of the regulari-

zation hyperparameter λ. As in [13, 14], we search over a grid of λs, fitting a model with each

one, and selecting as our final model the fit that minimizes the Bayesian information crite-

rion (BIC), BICl≔ � 2‘ðb̂; ŷ; ŝ2Þ þ d̂fl logN, where the estimated degrees of freedom

d̂fl≔jf1 � j � p j bj 6¼ 0gj þ q∗ is the number of parameters estimated non-zero. As a lower

bound for the grid of λs, one can use a value of λ that causes Algorithm 1 to converge to an

PLOS COMPUTATIONAL BIOLOGY HighDimMixedModels.jl

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012143 January 13, 2025 6 / 28

https://doi.org/10.1371/journal.pcbi.1012143


interpolating solution, and for an upper bound, one can use a value of λ that causes the algo-

rithm to converge to an estimate in which all penalized fixed effects are set to zero.

The theoretical statistical guarantees that are proven for the penalized maximum likelihood

estimator with a LASSO penalty in [13] apply to the globalminimum of Qλ within a restricted

parameter space explicitly defined to avoid the interpolating solution. In practice, however, the

output of Algorithm 1 with the LASSO penalty and when we avoid the interpolating solution

is only guaranteed to be a localminimum, even within this restricted parameter space. More-

over, when we run Algorithm 1 with the SCAD penalty, we are not even attempting to arrive

at a local minimum of the original objective function of Qλ, as we are adaptively rescaling the

objective function at each iteration, so the theoretical results in [14] do not apply. In conclu-

sion, the theoretical results found in these papers do not directly apply to the output of the

algorithm, and in this article, we study this output and the overall behavior of the algorithm

when applied to omics data sets that are common in modern biology.

2.3 Simulated omics data

We simulated three types of omics data sets—transcriptome profiles, GWAS data, and 16S

microbiome data—in order to empirically study the performance of the CD algorithm in fit-

ting high dimensional mixed-effects models across these biologically meaningful scenarios. In

each, the response was generated according to Eq (1), but the form of the design matrices Xi
and Zi varied considerably across the three studies so as to mimic their real-world counter-

parts. Within each study, we additionally varied aspects of the data such as dimensionality,

sample size, and random effect structure to investigate their effect on performance. In the fol-

lowing sections, we detail the settings that we entertained within each of the three study types.

2.3.1 Gene expression simulations. To simulate gene expression design matrices, we

draw a sample of N i.i.d. random vectors of length p − 1 from a multivariate normal distribu-

tion. Viewing these vectors as (normalized) profiles of the transcritomes of the collected sam-

ples, they become the rows of our design matrix X; meanwhile, the first q − 1 components of

these vectors become the rows of the matrices Zi and thus receive random effect (p − 1 and

q − 1 because the final columns are set as constants for estimating fixed and random intercepts,

respectively). The multivariate normal distribution from which the rows of X are drawn has

mean zero and a first order auto-regressive covariance matrix: Cov(Xi,j, Xi,j0) = ρjj−j
0j for some

choice of ρ� 0. Thus, for non-zero ρ, columns of the design matrix that are closer to each

other in index are more correlated. For the dimensionality p of the problem, we consider sizes

of 500 and 1000, typical of the number of genes in a small scale transcriptomics study. We set

the sample size to be N = 180 when p = 500 and N = 250 when p = 1000, creating a regime in

which regularization is necessary for avoiding interpolation. We view each sample as belong-

ing to a cluster: for the settings with a total sample size of N = 180, we viewed the samples as

belonging to 30 different clusters, each of size 6, whereas for the settings with a total sample

size of 250, we considered there to be 50 clusters, each of size 5.

After simulating the design matrices Xi and Zi for each cluster i, we generated the response

yi according to Eq (1). In the settings with a sample size of N = 180, we chose only 5 (out of

p = 500, corresponding to a sparsity of 5/500 = 1%) of the components of the fixed effect vector

β to be non-zero and included only a random intercept, but no random slopes (q = 1). We

refer to the set of indices of the non-zero regression coefficients {1� j� p : βj 6¼ 0} as the

“active set”. In the larger scale simulations in which N = 250 and p = 1000, we conducted a

more extensive exploration of different combinations of fixed effect active set sizes and ran-

dom effect structures. For the fixed effects, we considered the original active set, as well as the

potential impact of doubling its size to match the sparsity of the smaller simulations (10/
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1000 = 5/500 = 1%). For the random effect structure, we varied the number of random slopes,

investigating q 2 {1, 3, 5}; the q = 1 case corresponds to a model with only random intercepts,

while the other two cases include random slopes for two or four of the predictors, respectively.

Furthermore, with q = 3, we simulated data under three different choices of the covariance

matrix of the random intercept and slopes: a scalar matrix (multiple of the identity), a diagonal

matrix, and a general symmetric positive semi-definite matrix. For q = 5, we considered only a

scalar covariance matrix to manage the complexity of the model.

Table 1 summarizes each of the settings entertained in our gene expression simulations,

and Table A in S1 Tables details the values of the parameters β,Cθ, and σ2 in these simulations

(Cθ in table, β and σ2 in caption). Note that our setting 2 is identical to setting “H2” in [13]

(with near identical parameters; our σ2 is double that of [13]). However, we go beyond [13] in

our extensive exploration of other settings, focusing on the impact of dimensionality, sparsity,

and random effect structure. In each of the fourteen settings under investigation, we simulated

100 data sets, consisting of matrices X and Z, response vector y, and a vector tracking the

group membership of each observation.

2.3.2 Genome-wide association studies (GWAS) simulations. For the second study, we

investigated a small-scale GWAS regression. Whereas a large-scale GWAS might contain hun-

dreds of thousands of SNPs, we anticipated the algorithm, even with the active set modifica-

tion, only handling problems on the scale of one thousand SNPs without significant

computation time. Using the ggmix R package [62], we generated 100 GWAS design matrices

of size N = 250 by p = 1000 with entries representing minor allele counts in a diploid organism

(0, 1, or 2). The first q − 1 columns of these matrices were assigned random effects. We parti-

tioned the 250 samples from each design matrix into g = 10 clusters of size ni = 25, significantly

fewer than in the gene expression simulations (settings 3–14 of the gene expression simula-

tions had g = 50 clusters, for example). In the GWAS context, clusters may represent distinct,

perhaps geographically dispersed, populations. From each simulated design matrix, we used

the five random-effect structures considered in the gene expression simulations (q = 1, q = 3

with scalar, diagonal or unstructured covariance matrix, and q = 5 with a scalar covariance

Table 1. Gene expression simulation settings. Fourteen different settings under which we generated transciptomics data sets. Setting differed in sample size (N), number

of clusters (g), number of fixed effects (p), number of random effects (q), correlation in auto-regressive covariance matrix (ρ), number of non-zero fixed effects (# effects)

and random effects covariance (Cθ) structure. For values of the parameters, see Table A in S1 Tables. Setting 2 is identical to setting “H2” in [13] and the parameters used

are identical.

N g p q ρ # effects Cθ structure

1 180 30 500 1 0 5 scalar

2 180 30 500 1 0.6 5 scalar

3 250 50 1000 1 0 5 scalar

4 250 50 1000 1 0.6 5 scalar

5 250 50 1000 1 0 10 scalar

6 250 50 1000 1 0.6 10 scalar

7 250 50 1000 3 0 10 scalar

8 250 50 1000 3 0.6 10 scalar

9 250 50 1000 3 0 10 diagonal

10 250 50 1000 3 0.6 10 diagonal

11 250 50 1000 3 0 10 unstructured

12 250 50 1000 3 0.6 10 unstructured

13 250 50 1000 5 0 10 scalar

14 250 50 1000 5 0.6 10 scalar

https://doi.org/10.1371/journal.pcbi.1012143.t001
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matrix) to generate five different response vectors y according to the mixed-effects model in

Eq (1), with the same values of the fixed and random effect parameters as used in the gene

expression simulations (Table A in S1 Tables).

2.3.3 Microbiome simulations. Finally, we explored the application of high dimensional

mixed-effects models fit by CD to microbial operational taxonomic unit (OTU) data. To simu-

late microbiome data with realistic sparsity levels and covariance structures, we relied on func-

tions in the R packages SPRING and SpiecEasi [63, 64]. At a high level, we generated our

count data to mimic the marginal distributions of the 127 OTUs measured in the American

Gut Project [65], and we specified different OTU correlation structures in our generated count

matrices based on an assumed underlying microbe network. In particular, we considered the

six different OTU-network structures provided in the R package SpiecEasi [63]: band, clus-
ter, scale free, Erdös-Rényi, hub, and block. For each network type, we extracted the corre-

sponding inter-OTU covariance structure and then generated 100 OTU count matrices

following this covariance structure with sample size (number of rows) 120 and unique OTUs

(number of columns) 127. The marginal distribution of the counts of a given OTU was forced

to match the empirical cumulative distribution of the OTU counts from the American Gut

Project data using the function synthData_from_ecdf in the R package SPRING [64].

Once we had generated these count matrices (100 for each network inter-OTU covariance

structure, 600 in total), we transformed them by first adding pseudo counts to the zero entries

and then applying a log-ratio transformation, using the last column as the reference. We parti-

tioned the samples into 10 groups of 12 samples each, plausible cluster sizes for microbiome

studies, and the first q − 1 columns of the log-ratio transformed matrices were assigned ran-

dom effects. From each design matrix, we used the same five random-effect structures consid-

ered in the GWAS simulations to generate five different response vectors according to the

mixed-effects model (Eq 1). We included in the generation of the response the additional fixed

effect of an additional variable simulated to differ only at the group level (we simulated this

variable independently for each design matrix and random-effect structure combination). We

retained the same fixed effect coefficients from the previous two settings, with the addition of

the coefficient on the group-level variable chosen to be -1. We altered, however, the parameters

in the diagonal and unstructured random-effects variance-covariance matrices (Table B in S1

Tables).

2.4 Real omics data

In addition to our simulations, we fit high-dimensional mixed-effects model with coordinate

descent to published data sets representing real examples of the three omics studies. We now

provide brief descriptions of these data sets.

2.4.1 Bacterial gene expression and riboflavin production. The riboflavin data set is a

popular high throughput transcriptomics data set with a longitudinal design [13]. Specifically,

the data set contains repeated measures of the production of riboflavin inside cultures of bacte-

ria (recombinant Bacillus subtilis) over a series of generations. These repeated measures allow

for the analysis of changes in riboflavin production over time. Thus, observations are clustered

within individual bacterial cultures with 28 distinct cultures, each having between 2 to 6

repeated measures at different time points, totaling 111 samples. For each observation, we

have measurements of the expression levels of 4,088 bacterial genes and wish to use these to

predict the riboflavin production rate. The goal is to identify which genes are most predictive

of riboflavin production.

2.4.2 Mouse GWAS study for body mass index. This experiment was carried out by [66]

to identify genetic signal for complex traits in a population of mice living in g = 523 different
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cages, which represented the grouping structure for our model. In many mice experiments,

cages often contribute significant environmental effects to the phenotypes such as body mass

index (BMI), and mice in the same cage tend to be correlated in their phenotype measure-

ments. It is therefore important to account for such cage effects in genetic association studies.

Using the high dimensional SNPs as predictors, we estimated a model for the body mass index

(BMI) phenotype with cage-specific random intercepts. This approach allows us to account for

the variability introduced by different cages. We included as additional unpenalized predictors

in the model the age, gender and litter of the mouse (factor with 8 levels), imputing the median

age for the 81 mice in which it was missing. This data was analyzed in a similar fashion by the

authors of the BGLR package in R, using a Bayesian generalized linear model [67] that also

included cage-specific random intercepts. Their model, however, did not include age as a pre-

dictor. This dataset was also re-analyzed recently in [46], who propose a quasi-likelihood esti-

mation approach to fitting high dimensional mixed-effects models. Their model, however,

does not include fixed litter effects. We comment on similarities and divergence between our

results and these other analyses in the results.

2.4.3 Human gut microbiome data across age and geography. This data, available for

download from Qiita (https://qiita.ucsd.edu/) with study ID 850, consists of microbial profiles

(based on 16S gene sequencing) of individuals from three different countries ranging in age

from infant to 83 years old. The original data set included 14,170 OTUs measured in 528 indi-

viduals (315 from the US, 114 from Malawi, and 99 from Venezuela). Of these, 488 individuals

had their age recorded in the dataset, which is the variable we model in our analysis (308 from

the US, 83 from Malawi, and 97 from Venezuela). Following [25], we reduced the dimension-

ality of the problem by keeping only OTUs that were present in at least 10% of samples and

whose median read count among samples in which they were found was at least 10. This left us

with a count matrix of 1,362 OTUs. We added pseudo-counts of 0.5 to this matrix and then

applied the center log-ratio transformation. Based on residual diagnostics, we dropped three

outlier samples for a final sample size of 485.

In [25], the authors apply a predictive model for age to this data. However, because their

model could not accommodate the country-based clustering of samples, they included only

the individuals from the USA in their analysis. In contrast, we model the age of individuals

from all three countries using our penalized mixed-effects model, including country-unique

random intercepts.

3 Results

3.1 Application to simulated data

We investigated the performance of the estimation procedure described in Section 2.2 in simu-

lations for which we know the true underlying parameters, and we test whether the procedure

is robust to the data matrices resembling those found in each of these three omics studies

described in Section 1.1. Within each type of omics study, we considered several different set-

tings, varying aspects of the data such as inter-feature correlation structure, number and

covariance structure of the random effects, and for the gene expression data, the sample size

and dimensionality of the problem, as detailed in Section 2.3.

For each setting in each simulation study, we generated 100 data sets and fit a model to

each one in order to obtain Monte Carlo estimates of estimation and variable selection perfor-

mance under each setting. In each setting, we fit a well-specified model (i.e. we parameterized

the covariance matrix for the random effects to include the true data generating random effects

covariance matrix), and for each data set, the estimation of the model was done according to

the procedure detailed in Section 2.2. Namely, across a grid of values of the regularization
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parameters λ, we attempted to minimize Eq (2), with penalty given by either the LASSO or

SCAD, through the proposed CD algorithm. We then chose the model that minimized the BIC

across all the values of λ. In practice, we found that the solution to which the algorithm con-

verged was quite sensitive to the choice of λ. With λ too low, the model converged to an inter-

polating solution, whereas setting λ too high resulted in all penalized regression coefficients

being forced to zero. The range of λ that resulted in fits that were in between these two

extremes could, for some data sets, be quite limited. We provide the grid of λs that we searched

over for the gene expression simulations in Table C in S1 Tables; details on the grids for the

other two simulation study types, GWAS and microbiome, are contained in the table caption.

We define the “final model fit” for each data set to be the fitted model that minimizes the

BIC across the explored grid of λs. In the following plots, we display the distribution of differ-

ent statistics obtained from this final model fit across the data sets generated under a particular

setting. In evaluating the final model fit’s performance, we focus primarily on the selection of

the correct non-zero coefficients and on the accuracy of estimation for coefficients that are

correctly selected. To evaluate variable selection, we view each fitted model as performing a

binary classification of the regression coefficients. In this context, we refer to coefficients that

have been set to zero in the fitted model as “negatives” and coefficients estimated non-zero as

“positives”. A true positive is a coefficient correctly estimated non-zero, meaning that its

ground-truth value is also non-zero. A false positive is a coefficient incorrectly estimated non-

zero. We define the false positive rate (FPR) for a given model fit to be the proportion of

ground-truth zero regression coefficients that are mistakenly selected (i.e. estimated non-

zero):

FPR ¼
#fj j bj ¼ 0 and b̂ j 6¼ 0g

fj j bj ¼ 0g

We first discuss the results from simulating gene expression data, then GWAS, and finally

microbiome.

3.1.1 Gene expression. As mentioned, we considered several different settings in each of

the three omics simulation studies. For the gene expression simulations, there were fourteen

(14) different settings that we used to generate different gene expression data sets (Table 1).

One of the dimensions on which these settings varied was the number of random effects, q,

that went into generating the response. With q = 1, there was only a random intercept in the

data generating process, whereas for q = 3 and q = 5, there were two or four additional random

slopes, respectively. In the main text, we focus our attention on the six setting with q = 3 ran-

dom effects (settings 7–12 in Table 1) and display results for all other settings in S1 and S2

Figs.

Variable Selection. Each box plot in Fig 1A displays the distribution across data sets of

false positive rates of the final model fit upon employing the LASSO (orange) or SCAD (blue)

penalty to each of the the data sets simulated under a given setting, and in Fig 1B, the height of

each bar indicates the proportion of data sets generated under a given setting for which the

model recovered all 10 true non-zero coefficients (i.e. recall was perfect).

In all but three out of the fourteen settings, the median number of false positives across data

sets when using the SCAD penalty was zero. Relative to the LASSO, the SCAD-based estimator

included false positives less frequently and in smaller number in every setting other than set-

ting 10 and 12 (Fig 1A, bottom right facets). In these settings, it was not the case that the

LASSO resulted in good performance. Rather, these were settings in which, for many data sets,

every choice of λ led the algorithm to converge either to a solution in which all but the non-

penalized coefficients were set to 0 (when λ was chosen above some threshold) or else led the
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algorithm to diverge to an interpolating solution with σ2 sent to 0 (when λ was below that

threshold), when using the LASSO. Since we prefer the former (overly sparse) solution on the

basis of BIC, the LASSO-based “final model fit” is not recovering any of the penalized coeffi-

cients for these data sets, which means the true positive rate is close to 0 for the LASSO-based

estimator in these settings.

Summarizing the variable selection results, the SCAD penalty is to be preferred relative to

the LASSO in all settings, as it reliably recovers the non-zero coefficients at the cost of a small

number of false positives, and the SCAD is especially appealing in settings with correlated fea-

tures, since for these settings, the LASSO-based algorithm often cannot be made to converge

to a sparse solution without setting all penalized coefficients to 0.

Estimation. The LASSO penalty is known to bias its estimates of non-zero parameters

towards zero [60]. In our gene expression simulations, we find that this LASSO-penalty-based

bias can lead to bias in the estimates of even the coefficients that are not penalized (in the con-

text of mixed-effects models, such unpenalized coefficients are often the coefficients on fea-

tures for which there are random effects, i.e. columns of Zi).
In Fig 2, we show estimates of all the non-zero regression coefficients from the simulation

setting which had inter-feature correlation and q = 3 random effects with unstructured covari-

ance (setting 12 in Table 1). In Fig 3, we display the estimates of one of the penalized regression

coefficients, β4, and one of the unpenalized regression coefficients, β3 across all gene expres-

sion data sets simulated with q = 3 random effect (settings 7–12 in Table 1) (analogous plots

for all other settings are shown in S2 Fig). The LASSO biases estimates of all penalized coeffi-

cients towards 0, and this bias on penalized coefficients can contaminate estimates of the non-

penalized coefficients. Specifically, in the settings with inter-feature correlation, the LASSO-

based estimates of the non-penalized β3 form two clusters, neither of which are centered on

the true parameter β3 = 4, but which are biased to varying degrees. This bias results from the

penalization applied to β4, as β3 and β4 are the coefficients on adjacent columns in the design

matrix, which have correlation ρ = .6 in these settings. The upward bias in the estimator for β3

Fig 1. Variable selection of final model fits in all gene expression simulation settings with q = 3 random effects. In panel A, the y-axis corresponds to

false positive rate. The column faceting identify different random effect covariance (Cθ) structures, while the row faceting indicates the presence of inter-

feature correlation: “no correlation” = no correlation between covariates, “yes correlation” = correlation of ρ = 0.6 between adjacent covariates in the design

matrix (see Section 2.3 for details). In panel B, the height of each bar indicates the proportion of data sets in which the model recovers all 10 true non-zero

coefficients. For more complete information about true positive rates in these settings, see Table D in S1 Tables. For the false and true positive rates in all

other settings (q 6¼ 3), see S1 Fig.

https://doi.org/10.1371/journal.pcbi.1012143.g001
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is compensating for the downward bias in the estimate of β4, with the required compensation

largest when β4 is completely excluded from the selected variables, resulting in the observed

clustering in the estimates of β3. This is additionally visualized in S3 Fig, a scatter plot of the

LASSO-based estimates of these two coefficients in the presence of inter-feature correlation.

Because the estimation of β4 under the SCAD penalty is much more accurate—it is correctly

included in the active set in the vast majority of cases and estimated without bias when it is—

its bias in the estimation of β3 (in the settings with inter-feature correlation) is much less acute

than the LASSO’s. In general, the SCAD estimates were roughly unbiased, conditional on the

model identifying the correct variables, in all settings (blue box plots are centered on the true

parameter value which is represented by a solid black line in Fig 3), and under both the

LASSO and SCAD penalty, the variability in the estimates of penalized effects was smaller than

that of the estimates of unpenalized coefficients.

In most applications, the estimation of variance components is of secondary importance

relative to the estimation of fixed effect parameters. S4 Fig shows our estimates of elements of

scalar, diagonal, and unstructured random effect covariance matrices, respectively, in the set-

tings with 10 non-zero regression coefficients. Diagonal entries of these random effects

Fig 2. Estimates of all non-zero coefficients in the gene expression simulation setting with inter-feature correlation and q = 3 random effects with an

unstructured covariance matrix (setting 12 from Table 1). β1, β2, and β3 were unpenalized because they were coefficients on variables with random effects

(β1 is the intercept). All other coefficient estimates were penalized.

https://doi.org/10.1371/journal.pcbi.1012143.g002
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covariance matrices were estimated zero when the estimated fixed effect vector included many

false positives, as these additional non-zero coefficients proved to be an alternative means to fit

the variability driven by the random effects. The LASSO estimates included false positives

more frequently, and in these models with many false positives, the random effect variance

components were frequently set to zero.

3.1.2 GWAS. For the GWAS simulations, we fit a model with SCAD penalty and a model

with LASSO penalty to each combination of design matrix and response vector.

Variable Selection. We illustrate the performance of our estimators at the task of variable

selection in the GWAS setting for the data sets with q = 3 random effects in Fig 4 (results in

simulations with q = 1, 5 are shown in S5 Fig). Both SCAD and LASSO estimators were able to

recover the 10 true non-zeros with similar consistency, only occasionally missing one or more

of them (Fig 4B). Figs 4A and S5A illustrate, however, that the LASSO penalty led to more false

positives than the SCAD penalty in each setting.

Estimation. We display the distribution of the estimates of one unpenalized regression

coefficient, β3, and one penalized regression coefficient, β8, from the GWAS simulations with

q = 3 in S6 Fig (estimates for settings with q = 1 or 5 in S7 Fig). In the GWAS simulations,

because the features (counts of minor alleles at different locations in the genome) are uncorre-

lated, we observed no bias in the estimation of non-penalized coefficients under the LASSO

(and as usual, the SCAD-based estimators were also unbiased). On the other hand, the bias

towards zero in estimates of penalized coefficients under the LASSO penalty remained a prob-

lem in the GWAS simulations (S6B Fig).

In terms of the variance components, we observe that the estimates were less accurate than

the estimates in the gene expression simulations (S8 Fig). Of course, we can attribute this to

the reduction in the number of clusters from g = 50 in the gene expression settings 3–14 from

Table 1 to g = 10 in the GWAS simulations. In general and as previously mentioned, variance

components are typically of secondary interest to the fixed effect estimates in omics studies.

Nonetheless, it is worth noting that their estimation improves with the number of clusters, as

one would expect from experience with low dimensional mixed-effects models.

Fig 3. Estimation of β3 (A) and β4 (B) from final model fits in all gene expression simulation settings with q = 3 random effects. Panel A shows the

distributions of estimates of an unpenalized regression coefficient, β3, and panel B shows the distributions of estimates of a penalized coefficient, β4.

Numbers at the bottom of the plotting windows in panel B indicate the number of data sets for which the coefficient was incorrectly estimated 0. The

box plots represent the distribution of the estimator across all other data sets (i.e. all data sets in which the estimate was non-zero). The true parameter value

is represented by a solid black line.

https://doi.org/10.1371/journal.pcbi.1012143.g003
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3.1.3 Microbiome data. Finally, we describe our results in the microbiome setting. Recall

that for these simulations, we simulated OTU count matrices under six different assumed

latent OTU network structures, as we were interested in the downstream impact of the count

matrices’ correlation structure on model performance.

We fit models to each microbiome data set, consisting of a log-ratio transformed micro-

biome design matrix and response vector. Having observed the superior performance of

SCAD relative to LASSO penalization in the other two settings, we focused on only the SCAD

penalty in the microbiome setting. We refrained from penalizing the coefficient on the variable

measured at the group level (and as usual, did not apply a penalty to coefficients that had cor-

responding random effects). With the addition of the coefficient on this group-level variable,

there were thus 11 non-zero ground-truth regression coefficients for these simulations, which

we hoped to recover and accurately estimate.

Variable Selection. Since the “band” network structure produced design matrices that

proved to be the most challenging to the model, whereas the “scale-free” structure led to the

best results, we display model performance from these two network structures in the main text

to communicate an accurate sense for the range of results. Fig 5 shows the performance of the

estimation procedure at the task of variable selection for these OTU structures for simulations

with q = 3 random effects.

We recovered all eleven regression coefficients in almost every case when design matrices

were generated from a scale-free OTU network, and when the design matrices was generated

from a band OTU network but the random effect covariance matrix was scalar. When the

design matrices were generated from a band OTU network and the random effect covariance

matrix was more complex (diagonal or unstructured), the recall of the model suffered, and in

particular, we frequently converged to a solution with all penalized coefficients set to zero

Fig 4. Variable selection for GWAS data. Performance at task of variable selection on GWAS data simulated with q = 3 random effects. In panel A, Y-axis

corresponds to false positive rate and the facets identify different random-effect covariance matrix structures (Cθ). In panel B, the height of each bars

indicates the proportion of simulated data sets in which the model identifies all 10 true non-zero coefficients. Colors again differentiate the penalty used to

fit the model. For complete results across different ranges of true positive rates, refer to Table E in S1 Tables.

https://doi.org/10.1371/journal.pcbi.1012143.g004
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(resulting in only four true positives, corresponding to the non-penalized coefficients) (see

Table F in S1 Tables). The false positive rates were comparable across settings, with slightly

higher false positive rates in the settings that had worse recall, as the model compensated for

setting true effects to zero.

The variable selection results for the scale-free and band network structures with q = 1 and

q = 5 are displayed in S9 Fig. We see that the model struggled when there were q = 5 random

effects and a band design matrix, frequently setting all penalized coefficients set to zero. In the

other four OTU network structures, the variable selections results were on par with the results

on the scale-free results or slightly worse (S10 Fig). Notably, the algorithm did not converge as

frequently to a solution with all penalized coefficients set to zero under these other four

OTU-OTU covariances as it did with the band OTU-OTU covariance.

Estimation. The fixed effect coefficient on the variable measured at the group level was esti-

mated without bias in the OTU simulations (shown for q = 3, band and scale-free network

structures in S11 Fig, and other settings in S12 and S13 Figs). Since we used a SCAD penalty,

we also estimated all coefficients of covariates measured at the individual level without bias, as

usual. There was more variance in the estimates of the coefficient on the group-level variable,

which is not surprising, given that there are far fewer groups than individuals. The data sets

that led to extreme outliers in our estimates of this coefficient were the ones in which the esti-

mate of penalized coefficients were mistakenly set to zero, frequently data sets with a band

OTU covariance structure and three or five random effects.

3.1.4 Comparing results across omics simulations. To better visualize and compare the

performance of the HigDimMM approach across different omics studies, Fig 6 shows the stan-

dard deviations of non-zero estimates for penalized coefficients across various simulated data

Fig 5. Variable selection for microbiome data. Performance at task of variable selection on microbiome data simulated under a “scale-free” or “band”

OTU network structure and with response generated with q = 3 random effects. In panel A, the columns identify different random effect covariance (Cθ)

structures, while the row faceting (and color) indicates the OTU correlation-structure. The Y-axis corresponds to false positive rate. In panel B, the height

of each bar indicates the proportion of simulated data sets in which the model identifies all 11 true non-zero coefficients. For complete results across

different ranges of true positive rates, refer to Table F in S1 Tables.

https://doi.org/10.1371/journal.pcbi.1012143.g005
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sets. The benchmarking was performed under different settings for gene expression, genome-

wide association, and microbiome data. For the gene expression study, we focused on design

matrices with non-zero inter-feature correlations, while for the microbiome study, the matri-

ces were based on a band OTU-network correlation structure. The HigDimMM with SCAD

penalty performs better on OTU band data compared to GWAS data, as indicated by the

lower standard deviations for OTU data. The higher variability in GWAS data suggests that

the model is less effective in stabilizing coefficient estimates in this setting, potentially due to

the complexity of the underlying genetic data structure.

3.2 Application to real data

We now turn to applications of the high dimensional mixed-effects model on real omics

datasets.

3.2.1 Bacterial gene expression and riboflavin production. The riboflavin dataset is a

longitudinal dataset of bacterial gene expression that was originally made available with [7]

and was analyzed by Schelldorfer et al. in [13] (see Section 2.4.1 for further details). Following

the strategy proposed in [13] for selecting random effects, we assign random effects to genes

YFJD and YTOI. We fit a model that included random slopes for these two genes (and in con-

trast to previous models, no random intercept) with a diagonal covariance and with λ set to 45

based on the BIC. The fitted model selects the 17 genes listed in Table 2 as potentially impact-

ing the riboflavin production rate. We compared the results of fitting the model with our Julia

implementation to the results of fitting with the existing R implementations of the algorithm

under the LASSO and SCAD penalties, which we denote lmmlasso [13] and lmmSCAD [14],

respectively. When fitting with the R implementations, we similarly assigned genes YFJD and

YTOI random effects, excluded a random intercept, and specified a diagonal covariance

matrix. The lmmlassomodel identified 28 important genes, of which 3 (TUAH, YXLD, YDDK)

were found to be common with our gene list. For lmmSCAD, the analysis yielded 5 intersecting

Fig 6. The standard deviations across simulated data sets of non-zero estimates of penalized coefficients under different omics studies.

For the gene expression study, we show results for the settings with design matrices with non-zero inter-feature correlation and for the

microbiome study, for the settings with design matrices with band OTU-network based correlation structure.

https://doi.org/10.1371/journal.pcbi.1012143.g006
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genes (LYSC, TUAH, YURQ, YXLD, YDDK). The complete gene lists are provided in Table G

in S1 Tables, with intersecting genes highlighted in bold.

3.2.2 Mouse GWAS study for body mass index. We next applied the high dimensional

mixed-effects model to data from a GWAS study in mice with 10,346 polymorphic markers

measured in 1,814 individuals (see Section 2.4.2 for dataset details). We fit high dimensional

mixed-effects models with the SCAD penalty to the mouse data set, searching over three differ-

ent values of the regularization hyperparameter λ: 150, 190,and 200. Because of the signifi-

cantly greater scale of this data set (N = 1, 814, p = 10, 356), we specified a convergence

tolerance that allowed the algorithm to converge in fewer iterations. For example, with λ =

150, the algorithm converged in only four iterations (only two of which updated all 10,356

parameters because of the active set approach), lasting just under 27 minutes on an Apple M1

processor.

As in all cases, increasing λ resulted in fewer selected loci, and the estimates from all three

are shown in Fig 7. The fit that minimized the BIC was obtained with the largest penalty and

included only 7 SNPs. The predictive accuracy of this final model was on par with the Bayesian

model from [67], as the estimated error variances of the two models were ŝ2
BGLR ¼ 0:52 and

ŝ2
HighDimMM ¼ 0:57, respectively. Because the Bayesian model does not apply a sparsity-inducing

penalty, however, it includes all SNPs in the model and is therefore less interpretable than our

model fit with the SCAD penalty. We validated the features selected by our model by checking

that all 7 SNPs with estimated non-zero coefficients from our model are among those with the

top 20 largest coefficient magnitudes in the Bayesian model. Based on Figs 7 and S14, our

model is able to reduce the error variance as much as the Bayesian model while using far fewer

features by 1) assigning larger effect sizes (coefficient magnitudes) to the selected features and

2) making greater use of the cage effects, as seen by comparing the observed versus fitted plots

with and without the inclusion of the random intercepts in S14 Fig.

We additionally compared our results to the analysis of the same dataset performed in [46].

Their model selects 13 SNPs as associated with BMI at a false discovery rate (FDR) of 0.05, in

addition to an effect of gender. Of these 13 SNPs, 2 are also selected in our model fit with λ =

150, but none are selected in our model fit with λ = 190 and λ = 200. The two SNPs that overlap

with our model fit with λ = 150, which selected 25 SNPs in total, are rs3023058 and rs6185805.

These two SNPs are located on the genes Srrm3 andMtcl1, respectively.

As previously mentioned, we differ slightly from the model specification in [46] in our

choice to include mouse litter, a categorical variable that is shared by all mice in the same cage,

as a predictor in the model. Our model produced (unpenalized) estimates of 0.4 and 0.5

Table 2. Non-zero estimated gene effects in riboflavin data. Genes with non-zero estimated effect on riboflavin pro-

duction using our HighDimMM model.

Gene Estimated-effect Gene Estimated-effect

YURQ 1.427 YCGP -0.103

YFKE 1.073 YDBM -0.103

YTOI 1.019 YTXM -0.115

YFJD 0.721 UVRB -0.176

YLMA -0.003 YNEI -0.235

YUSY -0.005 LYSC -0.383

METK -0.025 YXLD -0.526

YUBB -0.055 TUAH -1.343

YDDK -0.1

https://doi.org/10.1371/journal.pcbi.1012143.t002
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(which are substantial effect sizes given that the largest SNP coefficient is an order of magni-

tude lower at 0.04) for the coefficients on litters 7 and 8 (and negligible coefficients for all

other litters). However, given that these were the smallest litters with sample sizes of only 14

and 4, these effects are not necessarily statistically significant, and the inclusion of litter as a

predictor likely does not explain the large discrepancy in identified SNPs by our approach and

that of [46]. More likely, the lack of overlap in selected SNPs points to a fundamental differ-

ences between the likelihood-based approach to fitting the model and the quasi-likelihood

approach proposed in [46].

3.2.3 Human gut microbiome data across age and geography. Finally, we applied our

model to a study of the diversity of microbial compositions across age and geography [68]

(refer to Section 2.4.3 for details on this dataset and its pre-processing). We fit our model to

the logarithm of age and included a quadratic term for the OTU with the largest regression

coefficient, Clostridium hiranonis. Selecting λ = 100, our algorithm converges to a sparse solu-

tion with only 9/1362 non-zero regression coefficients. In the context of the data, we identify

these 9 OTUs as associated with age (Table H in S1 Tables). The country-specific random

intercept variance is estimated as 0.10, and the mean squared error (estimated error variance)

is 0.90, representing a reduction of 71% in variance from that of the original response, the loga-

rithm of age.

3.2.4 Runtimes. Table 3 displays the runtime of our algorithm on each of the real omics

data sets. Due to its larger sample size and number of features, the runtime was significantly

Fig 7. Absolute values of coefficient estimates from HighDimMM using a SCAD penalty with different values of λ and from a Bayesian model fit

with BGLR which does not use a sparsity-inducing penalty and thus includes all SNPs in the model. The value of λ is given in the strips above the plots–

the plot on the far right is from BGLR. For our model, the fit that minimized the BIC was obtained with λ = 200 and included only 7 SNPs, which are

labelled in the plot.

https://doi.org/10.1371/journal.pcbi.1012143.g007
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longer for the GWAS data set. To facilitate the fitting of the algorithm to this data sets, we

increased the convergence tolerance. With this higher convergence tolerance, the algorithm

converged in only four iterations in just under 27 minutes.

4 Discussion

In this work, we have studied the performance of a CD algorithm for fitting high dimensional

mixed-effect models, focusing on three canonical data types in modern biology. Previous stud-

ies of the high dimensional mixed-effects model have focused on proving properties about a

theoretical global or local maxima of the penalized likelihood. In practice, however, estimates

must be obtained by an iterative algorithm that lacks guarantees of convergence to even a local

minimum of the penalized likelihood objective function. We have shown that the proposed

algorithm with the SCAD penalty in fact modifies the objective function it minimizes at each

coordinate update and, therefore, does not converge to even a stationary point of the original

objective function. We highlight here that despite or perhaps because the updates in the

SCAD-based algorithm do not minimize and indeed often do not even decrease the original

penalized likelihood objective function, its convergence behavior is more stable than the

LASSO-based algorithm, and when both versions converge to sparse solutions, the particular

parameter estimates that are obtained with the SCAD-based algorithm are superior in terms of

feature selection and estimation accuracy to those obtained with the LASSO, across simulated

omics designs. We have implemented the descent algorithms for the SCAD penalty (as well as

the LASSO) in a Julia package, correcting mistakes found in previous implementations, which

have either failed to implement the correct update of the penalized coefficients under the

SCAD penalty [18] or failed to correctly implement the active set strategy, resulting in an algo-

rithm in which any regression coefficient that is set to zero at a given iteration is never further

updated [14]. We hope that our implementation proves useful to biologists working across

genomics who wish to fit these models to analyze their clustered, high dimensional data.

At the same time, several limitations of these models have become clear to us over the

course of our simulation studies. First, the fitting of these models requires the choice of the

regularization hyperparameter λ. Choosing a λ that is too small results in a model that includes

many predictors and interpolates the data; meanwhile, a λ that is too large results in a model in

which all penalized coefficients are set to zero. While this is a characteristic of all penalized

likelihood estimation strategies, it poses a particular challenge for models in which fitting the

model for a particular choice of λ is relatively computationally expensive, such as CD algo-

rithms (even with the active set strategy), since the entire model selection process requires

repeating this computationally expensive procedure across a grid of λs. For this reason, a path-
wise coordinate descent approach, in which the algorithm for each λ is initialized with the solu-

tion for the previous λ in the path, has been a popular approach to efficiently fit LASSO

models without random effects [69]. It is worth exploring whether this approach could be

extended to the fitting of high dimensional models with random effects, using either the

LASSO or SCAD penalty.

Table 3. Runtime of fitting algorithm (for single λ) on each of three real omics data sets. All computations were performed on an Apple M1 processor.

Data set N p Convergence tolerance No. iterations Runtime (s)

Riboflavin gene expresion 111 4,088 1e-4 36 121

Mouse GWAS 1,814 10,346 1e-3 4 1,620

Age microbiome 485 1,363 1e-4 29 25

https://doi.org/10.1371/journal.pcbi.1012143.t003
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The second major limitation of this approach to analyzing high dimensional, clustered data

is the current lack of tools for assessing the degree of certainty associated with the selected fea-

tures. Buhlmann et al. [7] present a variety of strategies for quantifying feature selection uncer-

tainty in high dimensional biological studies. Although these strategies do not explicitly

account for random effects, many of them may still prove useful in the mixed-effects context.

One complication is that many of these strategies rely on some form of bootstrapping and in a

clustered data context, bootstrapping is less straightforward. Nonetheless, in future work, we

hope to adapt some of these strategies in order to quantify the uncertainty and operating char-

acteristics of the features selected by the penalized mixed-effects model. Post-selection infer-

ence for mixed-effects models is an area of ongoing research.

Finally, we note that the model and likelihood presented in this paper are that of a continu-

ous, Gaussian response, and we have not provided any advice for biologists working with

other types of responses, such as binary or count data. There are existing algorithms and meth-

ods that can be used when the distribution of the response is a member of an exponential fam-

ily—that is, for fitting generalized linear mixed models in the high dimensional setting—that

we have not studied in the present work [29, 70, 71]. It is important to have an understanding

of the operating characteristics of these methods—in particular, the reliability of their selection

of predictors—and a simulation study similar in scope to the one we have conducted in this

paper, with dataset examples drawn from the biological study types we have identified but

with differently distributed responses, would be valuable towards this end.

Supporting information

S1 Appendix. Details on coordinate descent algorithm.

(PDF)

S1 Tables. Table A. Random effect covariance matrices for the GWAS and gene expression

simulations with q = 3 random effects. For simulations with 1 or 5 random effects, we speci-

fied a scalar covariance matrices, and the same scalar was chosen as the q = 3 case, i.e. 0.56. For

fixed effect parameters, the non-zero components of the vector of fixed effect coefficients β
was (1, 2, 4, 3, 3) in the settings with five non-zero effects and (1, 2, 4, 3, 3, −1, 5, −3, 2, 2) in

the settings with ten. All other components were zero. All non-zero components appeared at

the start of the vector in the order presented. The error variance σ2 was chosen to be 0.5 across

all gene expression simulations. Table B. Random effect covariance matrices for the micro-

biome simulations with q = 3 random effects. For simulations with 1 or 5 random effects, we

specified a scalar covariance matrices, and the same scalar was chosen as the q = 3 case, i.e.

0.56. The error variance and non-zero components of β were the same as in the gene expres-

sion and GWAS simulations (see caption in Table SA), with the exception that we added one

additional non-zero component in β: a coefficient of −1 on the variable measured at the group

level. Table C. Grid Search Parameters and Convergence Results for Simulation Settings.

We used grid search to select λ for each simulated data set, and we searched over different

grids depending on the simulation setting and the penalty being applied, as detailed in this

table for the gene expression simulations. For the GWAS simulated data, we search over the

interval 10 to 100 with increments of 1, and for the microbiome simulated data, we search over

the same interval but with increments of 5 in all settings and penalties. These grids, as well as

the convergence tolerance hyperparameter, were intentionally chosen so as to avoid conver-

gence issues, since for each setting, a slightly different range of λ is necessary to avoid an inter-

polating solution. Despite these efforts, there were certain gene expression simulation settings

that proved especially difficult to fit with a LASSO penalty. In each of these difficult settings,

there was at least one data set for which the coordinate gradient descent with a LASSO penalty
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converged to an interpolating solution for all of the λs that we searched over. These were set-

ting 5 (one data set proved problematic), setting 6 (one data set proved problematic), setting 7

(three data sets proved problematic), and, most difficult of all, settings 8 and 10 (thirteen data

sets proved problematic in each). Thus, while in general, the box plots in the main text show

distributions over one hundred data sets each, for these particular settings with the LASSO

penalty, the distributions depicted are over slightly fewer than one hundred data sets. When

adopting the SCAD penalty, we were able to find at least one non-interpolating solution from

the searched-over grid of λs for each data set (from each setting), so all boxplots depicting

SCAD results are displaying a distribution over all one hundred data sets. Further, in the other

two simulation domains (GWAS and microbiome), we were able to find at least one non-inter-

polating solution from the searched-over grid of λs in all settings under each attempted pen-

alty. Table D. The results of true positive gene expression prediction under various

conditions. The columns indicate the type of penalty used (LASSO or SCAD), whether predic-

tor variables are correlated (“Yes” or “No”), the covariance structure (diagonal, scalar, or

unstructured), and the percentage of true positive among a total of 100 simulated data across

different ranges of values. Table E. The results of true positive GWAS prediction under vari-

ous conditions. The columns indicate the type of penalty used (LASSO or SCAD) and the

covariance structure (diagonal, scalar, or unstructured), and the percentage of true positive

among a total of 100 simulated data across different ranges of values. Table F. The results of

true positive microbiome prediction under various conditions. The columns indicate the

structure of the network (band or scale_free) and the covariance structure (diagonal, scalar, or

unstructured), along with the percentage of true positive predictions among a total of 100 sim-

ulated data across different ranges of values. Table G. List of impactful genes identified when

fitting model to Riboflvain data using our implementation (HighDimMixedModels) ver-

sus R implementations (lmmlasso and lmmscad). The intersection of genes between the

implementations is highlighted in bold. Table H. Taxonomic classification of OTUs selected

by HighDimMM and their estimated regression coefficients. Clostridium hiranonis was also

assigned a quadratic term, but we show here only the coefficient on the linear term. The OTUs

are ordered by the magnitude of their coefficient.

(PDF)

S1 Fig. Variable selection for gene expression data. Performance at task of variable selection

on gene expression data from settings 1–4 (panels A and B) and settings 5–6, 13–14 (panels C

and D) (see Table 1 in the main text). Along the x-axis are different features of the simulation

(dimension p for A and B and number of random effects q for C and D), and the facets are

according to the presence of inter-feature correlation. In A and C, the false positive rate is plot-

ted. In B and D, the number of true positives is plotted.

(EPS)

S2 Fig. Effect estimation for gene expression data. Performance at task of estimating non-

zero regression coefficients on gene expression data simulated under settings 1–4 (panels A

and B) and settings 5–6, 13–14 (panels C and D). The coefficient being estimated in panels A

and C is β3; in panels B and D, the coefficient being estimated is β4. These coefficients were

penalized for all the settings depicted in panel A and B, but were not penalized when q = 5 in

panels C and D. Numbers at the bottom of the plotting windows of panels C and D indicate

the count of data sets for which the coefficient was incorrectly estimated 0 (there were no 0

estimates in panels A and B), and the box plots represent the distribution of only the non-zero

estimates. The true parameter value is represented by a solid black line.

(EPS)

PLOS COMPUTATIONAL BIOLOGY HighDimMixedModels.jl

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012143 January 13, 2025 22 / 28

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012143.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012143.s004
https://doi.org/10.1371/journal.pcbi.1012143


S3 Fig. Compensation in LASSO-based estimation in presence of inter-feature correlation.

Scatter plot of b̂3 versus b̂4 in the LASSO-based estimator in settings with q = 3 and inter-fea-

ture correlation. β4 is a penalized coefficient, β3 is not; as the estimate of β4 is pulled down by

the LASSO penalty, the estimate of β3 goes up to compensate, with the most extreme compen-

sation occurring when β4 is set to 0. The true values of β3 and β4 are 4 and 3, respectively,

depicted by the black horizontal and vertical lines.

(EPS)

S4 Fig. Variance component estimation for gene expression data. Estimates of random

effects covariance matrices across the ten settings that had ten non-zero regression coefficients

(settings 5–14, see Table 1 in main text). The true parameter value is represented by a solid

black line. A shows estimates of the single parameter in a scalar matrix, with x axis indicating

settings with one (settings 5–6), three (settings 7–8), or five random effects (settings 13–14); B

shows estimates of the 3 parameters in a diagonal random effects covariance matrix (settings

9–10); and C shows estimates of the 9 parameters in an unstructured random effects covari-

ance matrix, only 6 of which are unique due to symmetry (settings 11 and 12).

(EPS)

S5 Fig. Variable selection for GWAS data with q = 1 or 5. Performance at task of variable

selection on GWAS data simulated with q = 1 or 5 random effects. Y-axis corresponds to false

positive rate in panel A and true positives count in panel B. X-axis corresponds to random

effects covariance structure (Cθ). The numbers appearing at the top of B are the counts of data

sets among a total of 100 in which all 10 non-zero coefficients were recovered.

(EPS)

S6 Fig. Effect estimation for GWAS data with q = 3. Distributions of estimates of an unpena-

lized regression coefficient, β3, (A) and of a penalized regression coefficient, β8, (B) across all

gene expression data simulated with q = 3 random effects. The true parameter value is repre-

sented by a solid black line.

(EPS)

S7 Fig. Effect estimation for GWAS data with q = 1 or 5. Distributions of estimates of β3

and β8 across all gene expression data simulated with q = 1 or 5 random effects. In panel A, the

coefficient β3 was unpenalized for settings with 5 random effects (boxplots on the right), but

penalized for settings with only 1 random effect (boxplots on the left). In panel B, the coeffi-

cient β8 was penalized in both settings.

(EPS)

S8 Fig. Variance component estimation for GWAS data. A) shows estimates of the single

parameter in a scalar matrix, with the x-axis indicating whether the setting had q = 1, 3, or 5

random effects; B) shows estimates of the 3 parameters in a diagonal random effects covariance

matrix; and C) shows estimates of the 9 parameters in an unstructured random effects covari-

ance matrix, only 6 of which are unique due to symmetry. The true parameter value is repre-

sented by a solid black line in each case.

(EPS)

S9 Fig. Variable selection for microbiome data with “scale-free” and “band” structure and

q 2 {1, 5}. Performance at task of variable selection on microbiome data simulated under a

“scale-free” or “band” OTU network structure and with response generated with q = 1 or 5

random effects. Y-axis corresponds to false positive rate in panel A and true positives count in

panel B. X-axis corresponds to random effects covariance structure (Cθ). The numbers

appearing at the top of B are the counts of data sets among a total of 100, in which all 11 non-
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zero coefficients were recovered.

(EPS)

S10 Fig. Variable selection for microbiome data with “block”, “cluster”, “Erdos-Renyi”,

and “hub” structure for all values of q. Performance at task of variable selection on micro-

biome data with “block”, “cluster”, “Erdos-Renyi”, and “hub” structure. Y-axis corresponds to

false positive rate in panel A and true positives count in panel B. X-axis corresponds to random

effects covariance structure (Cθ). The numbers appearing at the top of each of the facets in B

are the counts of data sets among a total of 100, in which all 11 non-zero coefficients were

recovered.

(EPS)

S11 Fig. Effect estimation for microbiome data with “scale-free” and “band” structure and

q = 3. Performance at task of effect estimation on microbiome data simulated under a “scale-

free” or “band” OTU network structure and with response generated with q = 3 random

effects. Distributions of estimates of the unpenalized coefficient on the variable measured at

the group-level. The true parameter value is represented by a solid black line. Plot windows are

cut off at a maximum y = 0 and minimum of y = −2, so that extreme outliers are not shown.

(EPS)

S12 Fig. Effect estimation for microbiome data with “scale-free” and “band” structure and

q 2 {1, 5}. Performance at task of effect estimation on microbiome data simulated under a

“scale-free” or “band” OTU network structure and with response generated with q = 1 or 5 ran-

dom effects. Distributions of estimates of the unpenalized coefficient on the variable measured

at the group-level. The true parameter value is represented by a solid black line. Plot windows

are cut off at a maximum y = 0 and minimum of y = −2, so that extreme outliers are not shown.

(EPS)

S13 Fig. Effect estimation for microbiome data with “block”, “cluster”, “Erdos-Renyi”, and

“hub” structure for all values of q. Performance at task of effect estimation on microbiome

data simulated under a “‘block”, “cluster”, “Erdos-Renyi”, and “hub” structure. Distributions

of estimates of the unpenalized coefficient on the variable measured at the group-level. The

true parameter value is represented by a solid black line. Plot windows are cut off at a maxi-

mum y = 0 and minimum of y = −2, so that extreme outliers are not shown.

(EPS)

S14 Fig. True versus fitted (standardized) BMI from BGLR model and our model (High-

DimMixedModels with SCAD penalty) with and without random effects included. Points

are colored by gender. Blue line shows a perfect fit. In top left, the predictions from BGLR

model do not include random effects; in top right, they do. Similarly, in bottom left, the pre-

diction from our model do not include random effects; in bottom right, they do. While the

population level predictions from our model are quite poor (bottom left), once the cage-level

random effect are incorporated, the predictions from both models are equally accurate.

(EPS)
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