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Abstract

Predictive models, based upon epidemiological principles and fitted to surveillance data,

play an increasingly important role in shaping regulatory and operational policies for emerg-

ing outbreaks. Data for parameterising these strategically important models are often scarce

when rapid actions are required to change the course of an epidemic invading a new region.

We introduce and test a flexible epidemiological framework for landscape-scale disease

management of an emerging vector-borne pathogen for use with endemic and invading vec-

tor populations. We use the framework to analyse and predict the spread of Huanglongbing

disease or citrus greening in the U.S. We estimate epidemiological parameters using survey

data from one region (Texas) and show how to transfer and test parameters to construct

predictive spatio-temporal models for another region (California). The models are used to

screen effective coordinated and reactive management strategies for different regions.

Author summary

Citrus Greening or Huanglongbing (HLB) disease is caused by a bacterium invading the

phloem of citrus trees. The disease is transmitted by the Asian citrus psyllid (ACP), a

small invasive insect that feeds and lays eggs on the developing flush shoots in citrus. ACP

was first found in the U.S. in Florida in 1998. Citrus greening was detected in Florida in

2005 and rapidly spread through commercial and residential citrus. Both the insect and

disease have subsequently been detected and are spreading in the two other main citrus U.

S. producing states, Texas and California. Both federal and state agencies in cooperation

with the citrus industry and growers are working to slow or halt the spread of this devas-

tating disease. Predictive models, as developed in this work, are increasingly important in

shaping regulatory and operational policies for emerging outbreaks. Our model was

develop using survey data from Texas and we show how to transfer and test the model

parameters in both southern California and California’s central valley. The model can be

used to screen coordinated and reactive management strategies, which help in the effort

to slow the spread of the insect and disease.
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Introduction

A rapid response to emerging epidemics of crop disease is essential for successful management

of an epidemic [1–3] just as for the pandemic of COVID-19 [4,5]. Effective management, how-

ever, requires knowledge of critical epidemiological parameters for transmission and dispersal

of the pathogen [6–8]. Knowledge of epidemiological parameters is required for models to pre-

dict the current extent of infection, the likely future spread [7,9,10] and the effectiveness of

potential intervention strategies [7,11–13]. Epidemiologically important parameters such as

transmission rates and dispersal kernels are frequently unknown when an epidemic invades a

new region. There are two options to obtain values for the epidemiological parameters: wait

until there are adequate surveillance data in the newly invaded region from which to estimate

parameters, or transfer parameters derived for another region and incorporate them into mod-

els that allow for different host distributions and environmental variables in the newly invaded

region. Here we introduce and test an epidemiological modelling framework for an emerging

epidemic of Huanglongbing (HLB) disease, one of the most serious threats to citrus produc-

tion world-wide [14,15]. We parameterise and validate the model using training and test data

in one region (Lower Rio Grande Valley in Texas). We then assess the adaptability and valida-

tion of the model in new regions with different climatic conditions, where the insect vector is

endemic (southern California) or invading (Central Valley, California).

Huanglongbing disease also known as citrus greening causes severe chlorosis of foliage, die-

back, loss of yield, discolouration and ill-flavour of fruit, and death of citrus trees [14]. The dis-

ease is associated with three bacterial strains of which Candidatus Liberibacter asiaticus (Las)

is the prevalent type in the Western Hemisphere and the only strain that has been reported as

established within the U.S. The disease is reported to have caused a 74% drop by 2018 in citrus

production in Florida since the first detection of the pathogen in 2005 (USDA/NASS; 2022).

The pathogen has spread rapidly in backyard and commercial trees in Texas [16] and has been

introduced and become established in backyard trees in southern California [17,18]. There is a

consequent risk of invasion into the major citrus production area with the Central Valley in

California [19], where the insect vector, the Asian citrus psyllid (ACP), Diaphorina citri
Kuwayama, is currently invading. The pathogen also continues to pose a major threat to citrus

production in Brazil [20]. The invasion of another vector, the African citrus psyllid, Trioza ery-
treae (Del Guercio), which primarily transmits the Africanus strain of Liberibacter (Laf), in

Portugal and Spain constitutes a threat of introduction of the disease into European countries

[21]. The disease is also widespread in South East Asia [22] and the Las bacterium has recently

been reported in Kenya [23].

The pathogen is transmitted by human mediated movement of infected planting material

as well as the insect vector [14]. There are currently no genetically resistant hosts. Options for

control include pesticide application to kill the vector, removal of infected and surrounding

trees and quarantine to prevent movement of infected planting material and citrus fruit [24].

Given the widespread distribution and continued spread of the pathogen and the psyllid vec-

tors, there is an urgent need for a flexible parameterised epidemiological model that can be

used to predict spread at landscape scales and to inform surveillance and management options.

Here we adopt a classical susceptible-exposed-infected (SEI) compartmental modelling frame-

work for HLB [1,8]. We couple this with a model for the dynamics of ACP infection and an

observational model for vector trapping data and disease surveillance data. The models take

account of the heterogeneous distribution of the citrus host in the landscape, encompassing

plantations and backyard trees [25]. The models are parameterised using Bayesian methods

and extensive surveillance data that comprises successive snapshots of disease for the citrus

growing region in the lower Rio Grande Valley in Texas (Fig 1A and 1D).
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The Bayesian approach allows for commonly encountered problems in the estimation of

parameters for emerging epidemics. These include incomplete spatial coverage of surveys that

require inferences about chains of unobserved infections between recorded snapshots of dis-

ease in the landscape and allowance for cryptic infection from asymptomatic or otherwise

undetected hosts [7,25,26]. The parameter estimation also takes account of the confounding

effects of pesticide application by some growers to manage the vector, which affects the

observed dynamics of pathogen spread [8]. Our initial objective is to test and validate the

model using the Texas data. Specifically, we use the model to quantify the infection pressures

from primary and secondary infection sources in order to analyse the roles of different trans-

mission mechanisms in epidemic spread. We also use the model to analyse the effectiveness of

ACP control strategies retrospectively for the epidemic in Texas.

The HLB epidemic in southern California is at an earlier stage compared with the outbreak in

Texas. The ACP vector was first detected in southern California in 2008 [27] and is now endemic.

HLB was first detected in 2012 in Hacienda Heights and then in 2015 in the San Gabriel areas of

greater Los Angeles with subsequent clusters of infection in Los Angeles, Orange, Riverside and

San Bernardino counties. An extensive surveillance programme linked with compulsory treat-

ment and removal of infected trees together with imposition of quarantines over movements of

planting material and fruit around infected sites has restricted but not prevented the spread of the

disease. The reservoir of the pathogen in southern California poses a threat to the principal citrus

production area for the state in the Central Valley, where the ACP vector is known to be invading

[17]. The intensive management of the disease in southern California along with absence in the

Central Valley mean there were insufficient data to re-estimate parameters for the epidemiologi-

cal models under Californian conditions. Accordingly, we therefore test the adaptability and vali-

dation of the model in new regions with different climatic conditions. We use the model to

predict rates of pathogen and vector spread and screen some options for management. The

potential flexibility of the combined modelling and parameter estimation are discussed.

Methods

Data

We obtained data from surveys for early HLB detections in both plant and psyllid samples in

Texas and California and detection of ACP invasion in California. The data were collected by

the U.S Department of Agriculture (USDA) and the California Department of Food and Agri-

culture (CDFA). Data collection surveys were part of an intensive area-wide management regu-

latory program for HLB over multiple U.S. states and localized management of ACP in

California. The survey teams collected leaves with HLB-like symptoms and psyllids based on a

risk-based survey model [28]. Samples were tested for Las bacteria in certified laboratories

using the approved USDA diagnostic protocol utilizing qPCR technology [29]. For confirma-

tory diagnostic tests of plant tissue samples, a Ct value less than 36 (over 40 cycles) classified the

sample as HLB positive. A Ct threshold of 38 was used for samples of vectors. The lower thresh-

old for leaf tissue samples was an internal policy decision by USDA for added confidence in the

diagnostic results because USDA regulates on positive plant tissue samples, but not on ACP

samples positive for Las bacteria. We used the HLB leaf tissue survey data in Texas (Fig 1A and

1B) to estimate parameters and validate an HLB epidemiological spread model (Fig 2A). We

also used an additional survey of psyllid samples for HLB-infected ACP in Texas to estimate

parameters for vector spread (S1B Fig). Maps of citrus distribution (Fig 1C and 1D), together

with HLB survey and ACP trapping data for southern California (Fig 1D) and Central Valley

(Fig 1F) were used to initiate simulated epidemics for model inference on spread and control

strategies and for further validation. All data were geo-mapped and aggregated by visiting dates
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on rasterised 1 km x 1 km grid cells to obtain spatiotemporal datasets for presence or absence of

HLB for plant and vector samples in Texas (Figs 1B and S1B)), for presence or absence of HLB

plant samples in southern California (Fig 1D) and ACP presence in the Central Valley (Fig 1F).

For further details of the datasets used for parameter estimation, see S1 Text.

Epidemiological models

We used spatially explicit, continuous-time, stochastic compartment models for HLB and

ACP dynamics and spread through rasterised landscapes comprising 1 km x 1 km grid cells.

We treat the grid cells as the units of interest (i.e. in determining whether or not a grid cell is

Fig 1. The citrus landscapes for three regions in Texas and California and the survey data for emerging HLB and ACP epidemics in the regions. (A.C,E)

Gridded approximation of the citrus distribution in the (A) Lower Rio Grande Valley, Texas, (C) southern California, and (E) the Central Valley. The regions

comprise large commercial citrus groves (high host density) interspersed with dooryard trees in residential areas (low host density). (B,D,F) Geo-coded

diagnostic plant samples collected as part of the (B) Texas HLB state-wide survey between December 2011 and October 2018, (D) California state-wide survey

between June 2015 and June 2019. We classed samples with Ct value less than 36 (out of 40 qPCR cycles) as positives. (F) Geo-coded ACP samples recorded by

California Department of Food and Agriculture independently from the state-wide HLB survey. The samples were found in sticky yellow traps set up near trees

in the Central Valley from 2012 to 2017 inclusively. Basemap shapefile for cartographic boundaries reproduced from U.S. Census Bureau under open data use.

https://doi.org/10.1371/journal.pcbi.1010156.g001

PLOS COMPUTATIONAL BIOLOGY Modelling the spread and mitigation of an emerging vector-borne plant pathogen

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010156 June 2, 2023 4 / 28

https://www.census.gov/geographies/mapping-files/time-series/geo/cartographic-boundary.html
https://www.census.gov/about/policies/open-gov/open-data.html
https://doi.org/10.1371/journal.pcbi.1010156.g001
https://doi.org/10.1371/journal.pcbi.1010156


infected). We allow for the dynamics of infection spread within cells, i.e. transitions from

Exposed to Infections to Symptomatic at the grid cell level but we do not explicitly model

infections spread from one tree to another within grid cells. We also distinguish between two

cases where the vector is endemic (Fig 2A: Texas and southern California) and where the vec-

tor is also spreading (Fig 2B: Central Valley, California). In addition, we also model the spread

of HLB infected ACP through an endemic ACP population (S1B Fig). We link the HLB (Fig

2A) and HLB-ACP (Fig 2B) to observation models for detection of infected plants and infected

vectors for the purposes of parameter estimation. The principal variables and parameters used

in the models are summarised in Table 1. The simulation models and the algorithms for

parameter estimation were coded in open access Python and are available in GitLab (see SI).

Fig 2. Epidemiological models for ACP and HLB spread. (A) The stochastic compartment model for HLB epidemiological dynamics in a Texas citrus

grid cell and the observation model that matches infection status to survey diagnostic data. An infectious cell can infect other susceptible cells via the

movement of local vectors, which were known to have established over the whole region before the emergence of HLB. ϕ, γP, πP denote the transition rates

and detection probability and are described in Table 1 and derived in the Methods section. (B) The joint epidemiological model for ACP and HLB

dynamics in California where ACP is invading and not yet endemic. The model extends the Texas model and introduces a new epidemic category ‘ACP

+ HLB infected’ that connects the dynamics of ACP infestation to HLB infection in a grid cell. The transition rates ϕ, ψ, φ, γV, γP and detection probabilities

pV ;pP;p
V
P are described in Table 1 and derived in the Methods section.

https://doi.org/10.1371/journal.pcbi.1010156.g002
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Table 1. Principal variables and parameters used in the models, together with estimated values for parameters

derived from data augmented Markov chain Monte Carlo inference (see text for details).

Symbol Description Estimated Values

Parameters estimated using DA-MCMC on Texas data

HLB Epidemiological Model

� Rate of HLB primary infection by trade and other human-mediated

activities within the region of interest
1:902:7

1:1
� 10� 5 per day

εB Rate of HLB primary infection from cross-border psyllid

transmission for cells along the Mexico border
4:6513:15

0:31
� 10� 4 per day

εW Rate of HLB primary infection from wider psyllid transmission from

outside the region of interest
2:714:2

0:1
� 10� 5 per day

α Spatial dispersal scale for ACP movements 1:962:48

1:61
km

βP Rate of HLB secondary infection 0:330:41

0:27
per day

μ Ratio of feeding vs. moving time of vectors 5:1426:37

0:53
� 10� 3

η Efficiency of the annual coordinated ACP spraying program in

commercial orchards
79:683:0

75:1
(%)

σ−1 Duration for an HLB infectious cell to get detected by state-wide

visual inspection survey
469:0546:0

420:0
days

Observation model parameters

πp Probability of detection of HLB from an infectious site 46:348:1

44:6
(%)

pV
p Probability of detection of ACP that carries HLB pathogen from an

infectious site
0:570:97

0:07
(%)

πV Probability of finding trapped ACP from an infested site -1

Additional parameters for combined HLB-ACP model

εV Rate of ACP primary infestation 2:714:2

0:1
� 10� 5 per day

βV Rate of ACP secondary infestation 0:781:03

0:61
per day

ξ Rate of vectors picking up Las from local infectious trees within a

citrus grid cell
2:032:36

2:19
� 10� 3 per day

Empirical previously estimated parameters2

a� 1
p HLB Exposed to Infectious period 15 months

aV ACP Exposed to Infestation period 15 days

Derived parameters

ϕi Rate of HLB exposure or the overall HLB infection pressure for a cell i with endemic ACP

ψi Rate of ACP exposure or the overall ACP infestation pressure

φi Rate of HLB exposure for a cell i with epidemic ACP

Modelling variables

Grid cells

i, j, j0 Citrus grid cell indices

bi Binary indicator whether cell i is adjacent to the Mexico border

hi Citrus density in cell i
rij Spatial distance between cells i and j

State variables

SPi ðtÞ HLB susceptibility status of cell i at time t

EP
i ðtÞ HLB exposed status of cell i at time t

IPj ðtÞ HLB infectious status of cell j at time t

SVi ðtÞ ACP susceptibility status of cell i at time t

EV
i ðtÞ ACP exposed status of cell i at time t

IVj ðtÞ ACP infestation status of cell j at time t

IVPj ðtÞ HLB infectious status of ACP infested cell j at time t

(Continued)
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Pathogen spread by endemic insect vector. When the vector is endemic, as in Texas and

southern California, we consider four categories for the status of HLB infection in each citrus

grid cell: ‘HLB susceptible’, ‘HLB exposed’, ‘HLB infectious’, and ‘HLB detected’ (Fig 2A). A

cell is susceptible if all the trees in the cell are healthy or free from the Las bacterium. An

exposed cell contains infected trees but is not yet infectious to trees in other cells. An infectious

cell can transmit Las bacteria to other cells via the movement of the psyllid (ACP). Finally, a

cell becomes detected as a survey team collects a positive HLB sample confirmed by a qPCR

diagnostic test. The transition of a cell from being infectious to detected requires two steps:

first, infectious trees must show symptoms, and second, the site must be visited by a survey

team in searching for the symptomatic trees.

Pathogen spread by invading insect vector. The model for HLB spread (Fig 2A) was

adapted to account for the fact that the underlying ACP population in the Central Valley is still

spreading and has not fully invaded the region. Grid cells were additionally classified (Fig 2B)

as: ‘ACP susceptible’ (free from vectors), ‘ACP exposed’ (first vectors arrived in the cell but

have not reproduced sufficiently to invade other cells), and ‘ACP infested’ (vectors settled in

the cell and started invading nearby cells). We also introduced a new epidemic category ‘ACP

+ HLB infected’ for grid cells occupied by HLB-infected vectors (Fig 2B).

Modelling HLB exposure. An ‘HLB susceptible’ cell, i, is exposed to infection as the first

tree in the cell gets infected. The exposure can happen either by primary or secondary trans-

mission. Primary transmission originates from either the introduction of infected trees and

products by trade and other human-mediated movements or from infected vectors arriving

from external environments, including across the Mexico border. The border was marked by

1km2 cells that contain the border line. We introduce a parameter, � to represent HLB impor-

tation rate by human activities and two parameters, εB for cross- border vector transmission

and εW for vector transmission from further outside the region of interest.

Secondary transmission from an HLB infectious to a susceptible cell happens by the flux of

vectors moving between the two cells. We denoted βP as the rate for secondary infection and

used an isotropic exponential kernel, Kα(r)/e−r/α where α represents the dispersal scale, to

depict the dependence of movement rate on the spatial distance, r, between the cells. The num-

ber of vectors moving towards a cell i from cell j depends on the distance between the cells and

the availability of new flushes (foliar growth attractive for psyllid feeding) in the destination

cell i. We established the overall strength of spatial coupling between grid cells by considering

a mechanistic model that addresses vector movement and feeding. The model constructs the

equilibrium abundance of psyllids moving to and feeding in a citrus grid cell. In doing so, it

considers the rates of dispersal and also the birth and death rates of vectors (see S1 Text for a

detailed derivation of the flux model). As vector dynamics occur at faster rates than HLB

Table 1. (Continued)

Symbol Description Estimated Values

κj Vector density coefficient, which is the product of both vector control and weather suitability, for

cell j
kC
i Vector control coefficient for cell i

kW
i Coefficient of weather suitability for vector development for cell i

f Ci Proportion of commercial citrus trees in cell i

wid Temperature on day d in cell i

1Parameter included in model for generality: not required in current fitting.
2Previously estimated by Parry et al. [8]: see S1 Text for further information.

https://doi.org/10.1371/journal.pcbi.1010156.t001
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epidemiological dynamics, the vector counts quickly converge to equilibrium values that we

used in calculating the HLB exposure rate (ϕi(t): see also Fig 2A and 2B) from primary and sec-

ondary sources as follows:

�iðtÞ ¼ εþ ½ð1 � biÞεW þ biεB�hi þ bPhi

X

j

IVj ðtÞI
P
j ðtÞ

kjhjKaðrijÞ
mþ Sj0kj0hj0Kaðrjj0 Þ

ð1Þ

Secondary infection is encompassed in the final term in Eq (1) and accounts for the net

exposure rate of a susceptible cell i from infectious cells j, allowing for citrus density, hi, and a

vector density weight, ki ¼ k
C
i k

W
i , which incorporated the effect of vector control, kC

i , and

weather suitability to vector development kW
i . The superscripts V and P indicate infected vec-

tors and plants, respectively and j0 is a general cell index that points to all cells in the host raster

including i and j. The parameter μ is the ratio of time spent feeding compared with moving by

the vector. See S1 Text for the derivation of Eq 1.

As commercial growers in Texas applied sprays in November and early February in a coor-

dinated manner, they were able to reduce the density of vectors in commercial orchards. We

used kC
i to represent the relative weight of vector capacity in plantations compared with resi-

dential trees. We assumed that the vector density in cell i decreased as the proportion of com-

mercial trees in the cell, f Ci , increased. The parameter η denotes the efficiency of vector control

measures applied to a cell:

kC
i ¼ 1 � Zf Ci :

Daily temperatures and other weather variables affect vector density by leveraging or slow-

ing down the development of eggs, nymphs, and adult vectors. We used kW
i to account for the

variation of vector density at different locations due to their corresponding weather patterns.

We used the modified Logan function r(�) provided by Liu and Tsai [30] to calculate the vector

development rate in a day, given the day’s temperatures, rid = r(wid). The function addresses

temperatures in the range of 10 to 33˚C and assumes that no vector growth occurs beyond this

range. We computed the expected weather-driven vector capacity coefficient, kW
i , by averaging

over the development rates for the whole year:

kW
i ¼

X365

d¼1
rid=365:

The unknown parameters �, εB, εW, α, βP, μ, η required to model HLB exposure were esti-

mated from the plant diagnostic data of the Texas HLB survey using a data augmented Markov

chain Monte Carlo (DA-MCMC) algorithm under a Bayesian inference framework. We used

uninformative prior distributions for all parameters.

Modelling ACP exposure. An ‘ACP susceptible’ cell i is exposed to an infestation when

the first few vectors arrive in the cell either from nearby sites or are transported from external

environments. We refer to these mechanisms as secondary and primary infestation and used

parameters βV and εV, respectively, to represent the rates of infestation. We calculated the

force of ACP exposure (ψi(t): See also Fig 2B) to a susceptible cell i analogously to the pressure

of HLB exposure (Eq 1) as follows (see S1 Text for a detailed derivation):

ciðtÞ ¼ εVhi þ bVhi

X

j

IVj ðtÞ
kjhjKaðrijÞ

mþ Sj0kj0hj0Kaðrjj0 Þ
ð2Þ

Since the ACP spread model was used for the Central Valley only, we discarded the extra

risk of primary infection along the Mexico border. Lack of sufficient data meant we could not
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estimate the unknown parameters εV, βV directly from California ACP trapping data. We

assumed, therefore, that εV�εW and estimated βV from the Texas HLB survey data using the

‘ACP Infested’-to-‘ACP + HLB Infected’ model described below.

Modelling the transition from ‘ACP Infested’ to ‘ACP + HLB Infected’. An ‘ACP

infested’ cell transitions to ‘ACP + HLB Infected’ cell (Fig 2B) when vectors in cell i acquire

Las bacteria either by feeding on infectious trees inside the cell or by migrating from a nearby

infectious cell. The former is also known as the bulking up of infected vectors inside the cell

and is driven by an unknown parameter ξ. The rate at which infected vectors migrate from an

‘ACP + HLB Infected’ cell to an ‘ACP Infested’ site is equivalent to the rate βV at which vectors

from an ‘ACP Infested’ cell arrive in an ‘ACP Susceptible’ cell under the assumption that Las-

carrying vectors behave similarly to uninfected vectors. Using the same dynamic model of vec-

tor movement and feeding as before, we can calculate the transition force as follows:

φi tð Þ ¼ SPi ðtÞhi x
IVi ðtÞE

P
i ðtÞ

mþ
P

i0 6¼iki0hi0Kaðrii0 Þ
þ bV

X

j6¼i

IVj ðtÞI
P
j ðtÞ

kjhjKaðrijÞ
mþ

P
j0 6¼jkj0hj0Kaðrjj0 Þ

 !

ð3Þ

The superscripts V and P indicate the epidemic compartments for the vector and pathogen

respectively. The unknown parameters ξ, βV were estimated using the vector diagnostic data

from the Texas HLB survey. Since we carried out parameter estimation under a Bayesian infer-

ence framework, we can use the previously acquired posterior estimates for α, μ, η to comple-

ment the sparsity of vector diagnostic data.

Latent period parameters. The time it takes for a cell to transition from ‘HLB Exposed’ to

‘HLB Infectious’ is known as the HLB latent period. It starts when a tree gets exposed to HLB

infection and ends as a significant number of trees in the cell became infectious so that the

number of Las-carrying vectors that move away from the cell is large enough to cause infection

in another cell. We followed Parry et al. [8] to use a seasonally-forced model for the rate of

infectiousness onset,

gðtÞ ¼ 2aPsin2
pt

365
;

ð4Þ

where aP denotes the average rate at which a cell moves from ‘HLB Exposed’ to ‘HLB Infec-

tious’. We set the parameter to empirical estimates from in-orchard and in-nursery observa-

tions for trees more than ten years of age, which reported an average latent period of 15

months, i.e. aP = 0.8. We assumed that the specific latent period for each cell follows an expo-

nential distribution with rate γ(t). As such, the latent periods vary among cells and include

very short durations due to the exponential form of the model.

Analogously, the ACP latent period indicates the time it takes for a cell to transition from

‘ACP Exposed’ to ‘ACP Infested’. We used the same seasonally forced model as for the HLB

latent period model, with aP replaced by aV = 0.042. The rate is equivalent to an expected ACP

latent period of 15 days, which covers the duration for nymphs to develop into adult psyllids.

Parameter estimation

MCMC details. We adopted a Bayesian approach to estimate parameter values for the epi-

demiological parameters from the survey data. We treated the unknown timing of epidemio-

logical transitions as random variables and used a data augmented MCMC algorithm [31,32]

to infer the timings of the unobserved transitions. The Metropolis-Hasting method [33] was

used to construct samplers for both parameters and unobserved epidemic transitions. We used

simple log-normal proposal distributions for �, εW, εB, α, μ, η, ξ, σ, π, and Gibbs samplers for
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βP, βV. We used the randomized construction of Markov trajectory [34] and exact inference

algorithms for hidden Markov models [35] to improve samplers of epidemic transitions. Fur-

ther details of the algorithms are given in the SI.

The overall likelihood of a set of parameter values comprises the model likelihood and the

data likelihood (Fig 2B). The model likelihoods (Eqs (5) and (8) in the SI) can be naturally

derived from the stochastic construction of the HLB and ACP epidemiological models

described above. We developed data likelihoods (Eqs (6, 7 and 9) in the SI) using two parame-

ters of the data collection process: π represents the probability that a positive sample is col-

lected from an infectious cell, and σ indicates the expected duration from becoming infectious

to getting detected. Both parameters, together with parameters of epidemiological models,

were estimated from Texas HLB survey data.

Model validation

We estimated the epidemiological parameters for spread of HLB (�, εW, εB, α, βP, μ, η, σ, π)

using the Texas HLB survey data collected between December 2011 and August 2016 as train-

ing data. We validated the model using data collected between September 2016 and October

2018 as the testing data for Texas. The application of the HLB spread model, parameterised for

Texas to southern California was validated using surveillance data collected for HLB collected

in southern California from June 2015 to June 2019. We compared model simulations against

testing data in terms of both temporal progression and spatial autocorrelation metrics. We

used Moran’s I [36,37]. See the S1 Text for further details of the validation processes.

The application of the ACP spread model, parameterised using Texas plant and vector diag-

nostic data and adjusted for temperature conditions, to the Central Valley, was validated

against ACP trapping data for the Central Valley in 2015 and 2016. We used temporal preva-

lence as the evaluation metric and compared the model predictions with the observed trapping

data.

Model variants

To analyse the sensitivity of different model components to prediction performance, we con-

sidered four variants to the full model described above. Each model variant differed from the

full model by one component of the secondary transmission model: (1) no normalisation, in

which the normalisation term for vector fluxes is assumed to be the same for all cells and

absorbed into the secondary infection rate; (2) no control effect, in which we ignored the

occurrence of the annual coordinated spraying program; (3) no border effect, in which we did

not distinguish between sites near to and far from the Mexico border and used the same pri-

mary infection rate for infected vectors from external environments; (4) power-law kernel, in

which the exponential dispersal function is replaced with a power-law function. Model vari-

ants were fitted using the Texas HLB survey data up to August 2016 and validated with data up

to August 2017 (S2 and S3 Figs).

Predictions and allowance for control

We made prospective predictions more than two years beyond the final observation time for

each region. Not all sites already infected with HLB are observable at the time of forecast. The

observed survey data were used to infer the locations of cells that had been exposed to and

infectious with HLB at that time. We used an MCMC-based simulator analogous to the data-

augmented MCMC algorithms used for parameter estimation to sample epidemic transition

times that agreed well with observed data.
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Model simulations were also used to analyse the efficiencies of selected control measures in

each region. These included an annual coordinated spraying program to manage ACP in

Texas, reactive removal of infected trees and HLB quarantine in southern California, and reac-

tive vector spraying upon ACP detection from sticky traps in the Central Valley. The efficiency

of ACP control strategies in Texas was assessed by comparing results for η = 100%, 50%, 20%

of the estimated (default) value for the spread of HLB between 2011 and 2019. For southern

California, we simulated epidemic trajectories with a quarantine radius of 1, 2, 3, . . ., 14 km.

The potential of the reactive ACP eradication program in the Central Valley was assessed by

varying the treatment efficiency between 0% and 100% and the eradication radius from 0.1 to

2.0 km. In all cases 1000 simulations were run for each scenario and credible intervals 50%,

75% and 95% for disease trajectories were computed. (See S1 Text for further details of

simulations.)

Results

Parameterisation and validation of the model for the HLB epidemic in the

Lower Rio Grande Valley, Texas

Preliminary analyses were carried out to compare the performance of the full HLB epidemio-

logical model, as specified in Fig 2A, with four variants comprising: (i) no normalisation for

vector flux; (ii) no allowance for vector control in commercial plantations; (iii) no border effect

on primary infection rates; (iv) use of a power-law instead of an exponential dispersal kernel.

The epidemiological parameters were estimated for each model from the training dataset

using the DA-MCMC algorithm within a Bayesian inference framework to approximate the

joint posterior distributions of the parameters. The goodness-of-fit to the test data was assessed

by inspection of the temporal progression of the ‘Detected’ cells with the observed surveillance

data (S2 Fig) for each model. Spatial autocorrelation scores of the ‘detected’ categories were

compared with the survey data at the end of August 2017, using Moran’s I (S3 Fig). We also

used the receiver operating characteristics (ROC) curve analysis to compare and evaluate the

models’ predictive performance (Fig 3A).

The model variants, based upon 500 simulations, captured the temporal progress of disease

broadly similarly (S2 Fig) but differed in the evaluation of the spatial metrics (S3 Fig) and the

ROC curves. The variants with no normalisation, no control effect and a power-law kernel

each performed less well than the full model and the variant with no border effect (S3 Fig).

The ROC curves (Fig 3A) indicated superior performance for the full model and the variant

with no border effect over the other three variants, with the full model performing marginally

better that the ‘no-border’ variant (Fig 3A).

The full model was selected for future work and the parameters re-estimated with a slightly

adjusted citrus landscape to accommodate for updated information of residential sites and

with 1000 simulations. We used the data-augmented Markov chain Monte Carlo

(DA-MCMC) algorithm with survey data from December 2011 to August 2016 as a training

dataset and from Sept 2016 to October 2018 as a testing dataset. The data comprised the loca-

tions and times of collection for presence and absence of HLB assessed by qPCR of leaf samples

in commercial and residential locations (Fig 1B).

The posterior estimates for the transmission rates (�, εB, εW, βP, βV) and the dispersal scale

(α) are summarised in Table 1, together with the average efficiency of the coordinated spraying

program (η) adopted by commercial growers and the waiting period (σ−1) from being infec-

tious to detected for a citrus grid cell. The corresponding marginal posterior distributions are

summarised in S3 Fig. We observed good agreement between the model simulations and the

training and testing data for both temporal and spatial validation metrics (Figs 3C, 3D and 4)
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with additional support from ROC curves for the model performance as a binary classifier that

separated positive from negative cells (Fig 3B).

Inspection of the temporal curves for epidemic progress (Fig 3C) and retrospective map-

ping of the training data indicate an initial lag from the time that a cell becomes detectable

according to the model and is recorded as detected by ground survey (Fig 4). Model

Fig 3. Model selection and goodness-of-fit of the full HLB spread in the Lower Rio Grande Valley, Texas. (A) Performance of the full model and four

model variants in predicting the outcome of survey trials assessed by receiver operating characteristic (ROC) curves. The area under the curve (AUC) of the

ROC curve measures the predictive capability of calibrated models when used as binary classifiers to separate positive from negative (1km x 1km) sites. Models

were fitted to a randomly sampled portion of survey data up to August 2016, and tested using the remaining portion and data up to August 2017. (B)

Performance of the full model in predicting the outcome of survey trials within and beyond the temporal scope of the Texas dataset used for parameter

estimation in Table 1. The model was fitted to a randomly sampled portion (80%) of the training data (collected between December 2011 to August 2016) and

tested using the remaining part (20%) of the training data and the testing data (collected between September 2016 and October 2018) for the ROC analysis. (C)

Temporal progression of the prevalence of three infection categories (Exposed, Infectious, and Detected) for the full model compared with the surveillance

data. Besides the medians of 1000 simulation realizations (solid lines), we also show 50%, 75%, and 95% credible intervals (shades of decreasing intensities).

The vertical dotted line separates the training dataset (used for parameter estimation) from the test dataset. (D) Spatial autocorrelation scores using Moran’s I

of the ‘detected’ categories of the model with the survey data at the end of August 2017: medians of 1000 simulation realizations (red line) with 50%, 75%, and

95% credible intervals (shades of decreasing intensities).

https://doi.org/10.1371/journal.pcbi.1010156.g003
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simulations indicate that by October 2014, HLB had infected almost all of Hidalgo County

(TX) whereas from the survey data it appeared as if the epidemic was just beginning to spread.

The difference underlines the importance of cryptic (asymptomatic) infection in generating

epidemic spread ahead of ground surveys [1,2,9]. Ground surveys, in turn, are frequently

under-resourced during the early stages of epidemics, followed by an intensification in surveil-

lance in response to increased awareness of the epidemic. Slow initial surveillance followed by

acceleration in surveillance is consistent with the results in Figs 3 and 4).

Local spread of HLB was dominated by secondary transmission involving ACP vectors

(Fig 5A). The rate of secondary transmission was three orders of magnitude greater than the

rates of primary infection via cross-border infected vectors and four orders larger than

human-mediated movement of infected material (Fig 5A). We used an exponential prior for

the cross-border infection rate (cf S4 Fig) to reflect the default belief that the rate is close to

zero but we observed a clear departure from zero for the posterior distribution. We also found

that the posterior estimate of longer distance (εW) is much lower than immediate cross-border

(εB) primary transmission (Table 1). These results suggest that there are sources of infectious

vectors close to the Mexico border. Fig 5B presents the annual infection pressure (calculated as

the relevant components of ϕi (Eq 1 in Methods section) and summed over the whole land-

scape and each year) caused by the four infection sources. We again observe the significant

role of local vector movement in driving the epidemic, resulting in infection pressures an

order of magnitude larger than primary forces in early years, rising to two orders in the later

years.

Retrospective analysis of the effectiveness of the ACP control strategy in

the Lower Rio Grande Valley in Texas

The parameterised model enabled retrospective analysis of the area-wide coordinated vector

spraying program in Texas. Beginning in 2011, growers joined the program by applying pesti-

cide sprays within a short, designated period to target the overwintering vector populations.

Fig 4. Spatiotemporal retrospective and prospective prediction of HLB spread in the Lower Rio Grande Valley, Texas. Spatiotemporal retrospective

analysis of the historical spread of training period (Dec 2011 –Aug 2016) and prospective prediction of testing period (Sep 2016 –Oct 2018) and the future

where no data were available (Nov 2018 –Dec 2020). We calculated infection risk by averaging over 1000 simulation realizations of the model fitted to the

training data. Basemap shapefile for cartographic boundaries reproduced from U.S. Census Bureau under open data use.

https://doi.org/10.1371/journal.pcbi.1010156.g004
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Using historic HLB survey data, we estimated that the program helped to reduce approxi-

mately 80% of the vector population in commercial orchards, designated as the control effi-

ciency (Fig 6A). To understand the importance of having an area-wide collaborative effort

amongst growers in place, we ran retrospective simulations for hypothetical scenarios in

Fig 5. The role of primary and secondary transmission rates and forces of infection on HLB Spread in the Lower Rio Grande Valley, Texas HLB spread.

(A) Posterior distribution of transmission rates via four sources: movement of local vectors from infectious trees in the landscape (β), the arrival of infected

vectors over the international border (εB) and from further away (εw)and introduction of infected trees by other human-mediated movement (ε). (B)

Contribution of the human-mediated, psyllid-driven primary infection and psyllid-driven secondary transmission sources to the realised infection pressure

overall on susceptible trees in the survey period 2012–2018.

https://doi.org/10.1371/journal.pcbi.1010156.g005

Fig 6. Retrospective analysis of the effectiveness of vector control scenarios in slowing down HLB spread. The effect of the efficiency of the

annual coordinated spraying program on (A) the temporal progression and (B-D) spatial snapshots in October 2014 of the cumulative Exposed

area. We considered three different hypothetical area-wide coordinated control scenarios at efficiencies of (B) 20%, (C) 50% and (D) 80%. Basemap

shapefile for cartographic boundaries reproduced from U.S. Census Bureau under open data use.

https://doi.org/10.1371/journal.pcbi.1010156.g006
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which less intensive ACP control had been carried out (Fig 6B and 6C). We observed a nonlin-

ear relationship between the control efficiency and HLB exposed area. While increasing con-

trol efficiency from 20% to 50% did not guarantee the reduction of epidemic size, bringing

control efficiency up to 80% was effective (we observed both a significant reduction of the

infected area in 2020 and a clear separation of the 95% credible intervals associated with 20%

and 80% control efficiency) (Fig 5A).

Transfer of the model and prediction of HLB spread in southern California

The HLB epidemic in southern California was at an earlier stage compared with the outbreak

in Texas, with clusters of infected trees found in the Orange and Riverside Counties (Fig 1E).

Recorded HLB detections were limited to two clusters with intensive tree removal upon detec-

tion. Such intervention and the limited spatial representativeness of the data made it impossi-

ble to infer key parameters from the data. The data were sufficient, however, to test the

credibility of transferring Texas parameters to this new region. We accounted for the differ-

ence in weather conditions that affect ACP distributions in California and Texas by incorpo-

rating a weather, suitability score for ACP growth, particularly for temperature [30] to the

model. We also introduced HLB quarantines and the removal of HLB-confirmed trees as dis-

crete stochastic events into the spread model.

We inferred the locations of unobserved infected cells up to 30th June 2017 in southern Cal-

ifornia using the survey data collected before that date and thereafter simulated the epidemic

forward. For the two years in the testing data (June 2017—June 2019), the predicted detections

successfully reproduced the spatiotemporal patterns observed in the survey data (Fig 7). The

predictions also showed good quantitative agreement with the training data and initially for

the testing data for the temporal progression (Fig 8A) but while the model predicted a contin-

ued upward trend in the amount of detected grid cells, the surveillance data suggest a slowing

towards a linear rate of increase. The observed measure of the spatial autocorrelation metric

(Moran’s I) for the surveillance data lay within the credible intervals predicted by the model

albeit with some subjective evidence of underestimation at short and overestimation at longer

distances (Fig 8B). Inspection of the model predictions for unobservable infectious categories

(exposed and infectious cells) indicated that the extent of HLB spread is likely to be far greater

than was detected by survey data. Huanglongbing is likely to be present in most counties in

southern California and even with the imposition of quarantines and tree removals upon

detection, the disease was increasing in severity. Our results indicate that surveys by visual

inspection are likely to reveal more HLB positive samples from all over Los Angeles and

Orange Counties, and infected trees in San Bernardino, Riverside and San Diego Counties

would become detectable.

Effect of changing quarantine radius on disease management in southern

Californian

To assess the effect of increasing the radius of quarantine circles to decrease the HLB infectious

area in southern California, we used the counts of 1km2 cells that had been HLB infectious up

to December 2021 as the evaluation metric. We started simulations in June 2017 using the

inferred infected locations from data up to that point. We did not make use of either survey

data or the quarantine boundaries data available after this time. In the absence of the availabil-

ity of detailed information from the ground regarding the timings of removal and quarantine

events after detection, we sample the lagging time as stochastic events. However, control events

are systematic and deterministic in terms of location i.e. cells are marked for removal and

quarantine if they or a nearby cell becomes detected with HLB. We evolved the boundaries of
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Fig 8. Evaluation of HLB epidemic progress in southern California vs survey data and the impact of quarantine radius to epidemic outcome. (A)

Temporal progression of the prevalence of three infection categories (Exposed, Infectious, and Detected) in comparison with the training and testing data. We

show means of 1000 simulation realizations as solid lines, and 50%, 75%, 95% credible intervals as shades of decreasing intensities. (B) Comparison of the

spatial autocorrelation scores of the HLB Detected categories (red line and shades) in southern California with that of the HLB survey data (purple line) at the

end of the testing data (June 2019).

https://doi.org/10.1371/journal.pcbi.1010156.g008

Fig 7. Spatiotemporal prediction of further HLB spread in southern California. We used California HLB survey data up to June 2017 to infer the

locations of the hidden infectious cells and used the estimations to seed forward simulations. We calculated infection probabilities by averaging outputs

from 1000 simulation runs for the prospective spread between June 2017 and December 2021. Basemap shapefile for cartographic boundaries reproduced

from U.S. Census Bureau under open data use.

https://doi.org/10.1371/journal.pcbi.1010156.g007
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the quarantine area as the model predicted new detections. The model used the detection rate

estimated from Texas. Besides the implementation of HLB quarantines, we also incorporated

the effect of the annual coordinated spraying and the removal of HLB infected trees upon posi-

tive diagnostic confirmations.

We simulated 1,000 epidemic trajectories for each quarantine radius of 1, 2, 3, . . ., 14 km

and derived the median and credible intervals from the generated samples. Simulation results

demonstrated consistent reduction of the infectious regions as the quarantine radius is

increased (Fig 9), with the then currently prescribed 8 km radius helping to reduce a third of

the epidemic size by the end of 2021.

Estimation of ACP invasion rate in the Central Valley using Texas ACP

survey data

The potential epidemic of HLB in the Central Valley, the major citrus growing area in Califor-

nia, was at a much earlier stage than for southern California, with the vector, ACP, invading

rather than being established (Fig 1C and 1F). Modelling the spread for ACP at the landscape

scale requires an estimate of the vector invasion rate. Exploratory analyses showed this was not

possible using the small amount of ACP trapping data for the Central Valley: instead, we calcu-

lated the ACP invasion rate using the more extensive ACP survey dataset for the Lower Rio

Grande Valley in Texas. Although ACP had fully invaded Texas by the start of data collection

in 2011, the region was not fully infested with HLB-infected ACP. By introducing a new

Fig 9. The effect of the radius of the quarantine area centring around HLB newly detected sites on the total Infectious

area for southern California. We started simulations from June 2017 and assessed the total infectious area for December

2021.

https://doi.org/10.1371/journal.pcbi.1010156.g009
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epidemic category ‘ACP + HLB infected’ (Fig 2B) that connected the dynamics of ACP infesta-

tion to HLB infection in a grid cell (S1A Fig), it was possible to estimate an invasion rate

parameter for ACP from the ACP diagnostic data collected as part of the Texas HLB survey

(S1B Fig). In particular, the ‘ACP + HLB infected’ category marked cells containing HLB-

infected ACPs. By modelling the transition of cells from ‘ACP infested’ to ‘ACP + HLB

infected’, we estimated the rate at which vectors move from one cell to another. Spatiotemporal

maps for the potential spread of the ACP vector and HLB infection up to 2030 are shown in

Fig 10 on the assumption of transferable parameters from Texas with suitable adaptation for

weather conditions in the Central Valley.

We validated the ACP spread model by running simulations to reproduce the historic

spread in the Central Valley in 2015 and 2016 and compared model predictions with the ACP

trapping data, which were collected independently from the HLB survey and not used for

parameter estimation. We incorporated the dynamics of the reactive ACP treatment program

by the California Department of Food and Agriculture (CDFA) into the model and observed

good agreement in both temporal progression (Fig 11A and 11B) and spatial autocorrelation

Fig 10. Spatiotemporal prediction of the potential ACP and HLB spread in the Central Valley. We used Central Valley ACP trapping data to seed the

simulations for ACP spread and locations of inconclusive HLB samples (Ct value less than 38 in qPCR diagnostic test) as the initial infected HLB sites. HLB

spread can only happen between ACP infested sites. We calculated the ACP infestation and HLB infection probabilities by averaging over 1000 simulation runs

for the prospective epidemics from January 2020 to December 2030. Basemap shapefile for cartographic boundaries reproduced from U.S. Census Bureau

under open data use.

https://doi.org/10.1371/journal.pcbi.1010156.g010
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Fig 11. Potential ACP and HLB epidemic progress in the Central Valley and the likely effectiveness of control. (A) Temporal progression of the

predicted infestation prevalence in comparison with the trapping data for the data availability period (up to October 2017). (B) Temporal progression

of the predicted ACP and HLB epidemics from January 2019 to December 2030. We assumed that as ACP prevalence passes 0.3, ACP the reactive

treatment program would have been dropped due to the high cost of maintaining the program and the reduced effectiveness as ACP becomes

widespread. (C) Comparison of the spatial autocorrelation scores of the predicted ACP infestation prevalence (red line and shading) in the Central

Valley with that of the ACP trapping data (purple line) at the end of the data availability period. (D,E) The effect of varying the efficiency and radius

of pesticide treatment upon detection of the vector ACP on the total Infested area in the Central Valley. We started simulations from January 2020

and calculated the total Infested area for December 2021 for (D) control efficiency from 0% to 100% for treated circles of radius 0.4 km and (E)

treatment radius from 0.1 km to 2 km assuming spraying efficiency of 80%.

https://doi.org/10.1371/journal.pcbi.1010156.g011
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metrics (Fig 11C), indicating that the ACP spread model successfully captures the ACP inva-

sion dynamics.

Potential efficiency of vector control in the Central Valley

As the focus for the Central Valley was on ACP invasion, we considered two parameters that

drive a reactive ACP eradication program: the eradication efficiency (Fig 11D), and the radius

of the treated circle around an ACP positive site (Fig 11E). Our simulations allowed for pesti-

cide treatment, applied by CDFA, on all citrus trees within a 400 m radius of an ACP positive

site. Where treatment circles overlap a commercial grove, the whole grove is treated. Reactive

treatment occurs in addition to a coordinated spray implemented annually by commercial

growers. Simulation results show that having both high efficiency and sufficient radius are

essential to slow down the spread of ACP in the Central Valley (Fig 11D and 11E). There is a

consistent reduction in the median infested area and also the 95% credible interval as the erad-

ication efficiency increases. An eradication efficiency of 80% reduces the median infested area

by half. It also reduces the upper boundary of the credible interval by 75% compared with no

treatment. Increasing the eradication radius from 100 m to 500 m decrease the expected

infested area by 50% and the credible interval by 75%. The results suggest that although 80%

eradication efficiency is reasonable, it might be worthwhile to increase the treatment radius to

500 m.

Discussion

Our primary aim in this paper was to develop and test an epidemiological modelling frame-

work to predict the spread and control of Huanglongbing disease on citrus at extensive land-

scape scales (cf Fig 1). Our stochastic framework takes account of the intrinsic uncertainty of

disease spread through heterogeneous citrus populations that encompass backyard trees and

commercial citrus plantations. The framework was designed to be flexible. It allows for cryptic

infection from sites that are infected but not yet symptomatic or detectable [1]. The model

framework can be adapted to account for multiple sources of infection, and it has tuneable

parameters that are adjustable to simulate a range of control scenarios. The models can also be

adapted to allow for cases where the vector is endemic (Fig 2A) as in Texas and southern Cali-

fornia or when the vector is also invading (Fig 2B) as in the Central Valley in California.

Having compared several model variants, the selected SEI model with an additional

detected class (Fig 2A), an exponential dispersal kernel, normalised vector flux and allowance

for vector control in commercial plantations successfully fitted the data for the citrus growing

region in the Rio Grande Valley in Texas (Figs 3 and 4). Although sparse relative to the size of

the host population, the surveillance data for Texas had the advantage over other datasets,

such as for Florida, in that systematic surveys for both ACP and for Las had been conducted

across a wide area before the first HLB positive trees were found. This allowed for direct obser-

vation of the spread of the disease from known points of introduction, which aided parameter

estimation.

Insights from model fitting on dynamics of HLB spread in Texas

Our results distinguish four potential transmission rates in the Rio Grande Valley (Fig 5). Sec-

ondary transmission by local movement of infected vectors is the dominant force of infection

in epidemic spread following introduction (Fig 5B). We show, however, that longer-distance

vector spread, local cross-border border and human-mediated movements all contribute to

the initiation of new infected sites. Secondary transmission is remarkably effective in spreading

the pathogen thereafter (Fig 5B). Moreover, retrospective inference of HLB infection times for
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Texas showed that the epidemic progressed at a much faster pace than had been captured by

the survey data. There is a marked difference between the extent of spread of the detected

class, which is comparable with the surveillance data, and the exposed and infectious classes

(Fig 4). Knowledge of the locations of cryptically infected sites gives government and industry

decision-makers a two-year advantage in knowledge of the extent of the epidemic when com-

pared with survey data alone. Failure on the part of regulators and other stakeholders to allow

for the enhanced spread of the pathogen beyond what is immediately detectable can lead to

serious underestimation of the severity and impact of emerging epidemics [11].

We were able to infer the average efficiency of the annual coordinated spraying programme

from the Texas survey data and to run retrospective analyses to compare with less effective

uptake (Fig 6). Our results showed the benefit of having a high efficiency equivalent to a high

level of participation from commercial growers in slowing epidemic progression, especially

during the first few years after the invasion (Fig 6A). Thereafter, however, the benefit is insuffi-

cient to prevent the ultimate spread of the epidemic through the target region (Fig 6). Allow-

ance for the localised disruption and interference of control on the intrinsic rates of epidemic

spread is an important and often overlooked challenge for parameter estimation of emerging

epidemics. Parry et al. [8] examined the impact of control on transmission and dispersal

parameters for HLB at the plantation scale. Here we have extended the results from Parry et al.

[8] using a similar SEI model and MCMC estimation to the landscape scale.

Efficiency of MCMC estimation

Surveillance data that comprise incomplete snapshots of disease at successive times also pose a

significant challenge for parameter estimation [7,8]. We used a Markov chain Monte Carlo

method with data augmentation (DA-MCMC) to infer chains of infection. The DA-MCMC

method is considered a robust approach for inferring parameters for stochastic, individual-

based epidemiological models [8,32,38,39]. The method has been used to estimate epidemio-

logical parameters for heterogeneous plantation-scale epidemic systems with cryptic infections

[8]. Related applications of the methods beyond plant disease include foot-and-mouth out-

breaks in cattle [38], avian influenza epidemics in poultry [40] and MRSA outbreaks in hospi-

tal wards [41].

Convergence of the DA-MCMC method, however, is known to be difficult when applied to

domains (landscapes) with heterogeneously distributed target populations. Accordingly, we

improved the mixing and convergence of MCMC samplers for unobserved epidemic transi-

tions by utilising the randomised construction of Markov trajectories [34] and exact inference

algorithms for hidden Markov models [35]. Using the improved MCMC samplers, it was pos-

sible to infer locations that were cryptically (i.e., asymptomatically) infected from the survey

data available at the time of prediction. Initialising spatio-temporal epidemic models with

asymptomatic as well as symptomatic infected sites was essential to capture the current extent

and the future potential for disease spread.

Transfer of the models to California

Transfer of the models to southern California gave encouraging results albeit in general pat-

terns of epidemic spread, albeit with a caveat that some dynamics are not yet accounted.

Allowing for cryptically infected sites (estimated from the training data) as well as survey

reports of symptomatic sites when initialising the HLB spread model in southern California

gave very good agreement in predicting the spread patterns observed in the two years of test

data (Fig 7). There was also good agreement between model predictions and data for the spa-

tial autocorrelation metric (Fig 8B). Dynamic risk maps for HLB in southern California from
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the epidemiological model (Fig 7) were markedly consistent with the risk maps derived by

McRoberts et al. [24] from a statistical model. Building on earlier work to analyse risk in Florida

[42] the statistical model used a mixture of social, biophysical and environmental variables to

quantify risks across a rasterised landscape (1.6 km2) analogous to the 1km2 grid cells in the epi-

demiological model. Narouei-Khandan et al. [43] also used regression methods to relate global

occurrence of HLB with historic climate data. The models also predicted that coastal areas in

California were climatologically favorable for ACP and Las, but less so than in Florida. When

current USA presence data were included in the models, the suitable areas for ACP establish-

ment expanded to the Central Valley, CA, while this area remained less conducive for Las.

Careful inspection of the future predictions of the temporal data for southern California

(Fig 8A) indicated evidence of deviation between the survey data and the detected class during

the test period. The model results predicted continued acceleration in the rate of disease spread

compared with a near-linear rate of increase in the surveillance data up to June 2019 (Fig 8A).

Expert opinion based upon ongoing sampling of the vector indicates a striking difference

between Texas and California in the percentage of ACP samples testing positive for Las.

Whereas >50% of psyllid samples tested positive for Las in Texas by 2018, only 0.25% of psyl-

lid samples have tested positive for Las in California since 2017 (Bartels, pers comm). The

highest level (0.6%) in southern California was reached in the 2nd quarter of 2022. Even when

data from the core areas of HLB positive trees are separated out, the percent ACP samples pos-

itive for Las is ~2% of the total. The proportion of infested psyllids in Texas is comparable with

reports from other states and countries, albeit with sometimes considerable variation. Wulff

et al. [44] found the incidence of ACP with Las ranged from 33 to 74.6% in Brazil’s citrus belt,

while Hall [45] reports a mean of 17.5% of ACP with Las in Florida. Hu et al. [46] observed

found the incidence of ACP with Las in China ranged from 3 to 78% and was correlated with

HLB incidence in citrus trees.

The reason for the difference in the uptake of Las by ACP in California compared with

other areas is unknown and requires further study to determine how the strains of Las in Cali-

fornia interact with the ACP vector. Four different strains of Las in California, based on pro-

phage typing groups, have been detected with sequence data indicating that the California

strains were not introduced from Florida but are likely to have come from Asia [47]. Our

model was adjusted to account for differences in temperature patterns between southern Cali-

fornia and Texas, with essentially no vector dynamics outside 10˚ - 33˚C [30] in California.

This might underestimate survival in certain high temperature inland regions. Antolı́nez et al.

[48] recently analysed and discussed heat and dry stress on ACP, noting that survivorship at

high temperatures is likely to depend upon exposure time. Antolı́nez et al. [48] suggest this

may account for low ACP numbers during very hot summer months in inland areas of south-

ern California compared with relatively higher ACP numbers reported for non-desert areas

close to the coast.

Heat and dry stress are not sufficient to account for low uptake of Las by ACP and subse-

quent effects on transmission of Las. Our model parameters for the rates of acquisition of Las

by ACP (ξ), and of primary (εV) and secondary infestation (βV) can be altered to accommodate

changes in uptake, with βP adjusted for transmission rates. This, however, requires further

data and analysis.

Provisional control scenarios in California

The models were used to investigate the impact of different control strategies on epidemic out-

comes for HLB in California under an assumption of the ability of the vector to acquire and

transmit infection. While necessarily speculative, the analyses indicate the likely intrinsic
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sensitivity to adjusting the intensity of quarantine. Increasing the radius of the quarantine area

to prevent movement of citrus products around newly detected HLB sites has the potential to

reduce the total Infectious area for southern California (Fig 9). Within the Central Valley, our

results indicate that changing the radius and the efficiency for the reactive ACP treatment pro-

gramme could each reduce the infested area (Fig 11A and 11B) if a significant epidemic were

to occur. There was also a marked reduction in the uncertainty of the outcomes of the pro-

grammes with enhanced control effort (Fig 11A and 11B).

Predictive models for disease outbreaks

Predictive models are an important tool in the management of infectious disease outbreaks.

Here we have used compartmental epidemiological models coupled with dispersal kernels to

analyse and the predict the spread of HLB. Epidemiological models of this type have the advan-

tage that both the state variables (e.g. susceptible, exposed, infectious sites) and the parameters

(e.g. transmission rates, time to detection, dispersal kernel) have intrinsic biological meanings

[1].The models can also be readily adapted to incorporate mechanisms for control, as here, for

quarantine and vector control. Parry et al. [8], Chiyaka et al. [49], Neri et al. [7] used compart-

mental frameworks to model the dynamics of citrus disease at scales ranging from individual

plants [49] through plantations [8] to local landscapes [7]. Parry et al. [8] and Neri et al. [7] also

addressed fundamental issues in the use and analysis of Bayesian methods to estimate parame-

ters from surveillance data for emerging epidemics of HLB and citrus canker. Haynes et al. [50]

used a related approach of agent-based modelling to analyse ACP and HLB spread on a lattice

of nine plantations. Our work, in this paper, has extended the scale to analyse and predict the

spread and control of the pathogen and the vector at large heterogeneous landscape scales that

extend across multiple counties. We also address the transferability and modulation of parame-

ter estimates derived from one region to other regions. Compartmental epidemiological models,

analogous to those introduced here, have also been widely used to respond to outbreaks and to

formulate current and future policies for livestock and human diseases. Examples range from

early work on foot-and-mouth disease [26,51], severe acute respiratory syndrome (SARS) [52]

and recent intensive work on SARS-CoV-2 (e.g. [53–55]). Parameter estimation for emerging

epidemics of human and livestock populations frequently benefits from enhanced reporting

and more extensive mapping of outbreaks than is usual for crop disease. Many of the challenges,

however, in extracting signals from comparatively sparse data are common to all types of infec-

tious disease epidemiology and deserve more study to assess how soon and for what types of

data robust initial estimates of epidemiological parameters can be obtained for emerging epi-

demics. Statistical methods, based on regression and correlation, along with the increasing pop-

ularity of machine learning [56] offer alternative approaches to assessing disease risk.

McRoberts et al. [24] estimated landscape-scale risk maps for HLB in California at an analogous

spatial resolution to the one used in this paper while Alves et al. [57] used a hierarchical Bayes-

ian modelling approach to link climatic variables with the regional prevalence of HLB (at a spa-

tial resolution of 55 x 55 km) in Minas Gerais state in Brazil. Further work is needed to assess

the relative merits and complementarities of different approaches to modelling risk and assess-

ing options for control of emerging epidemics such as for HLB on citrus.

Supporting information

S1 Text. Technical Appendix. Contains additional details of data, epidemiological models

and for methods parameter estimation and model prediction used in the analyses.
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S1 Fig. The epidemiological model and Texas data used to estimate the ACP invasion rate.

(A) The joint model of ACP and HLB spread after accounting for the fact that the vector had

fully infested the citrus landscape before the modelling period. The ACP and HLB spread

share the dispersal scale parameter and differ by the rates of invasion βV and transmission βP
respectively. τV!H denotes the probability or efficacy of pathogen transmission to trees during

the feeding of infected psyllids. The full model which allows for emerging ACP population is

shown in Fig 2B (main text). (B) Geo-coded diagnostic samples of the vector ACP collected

between December 2011 and October 2018 as part of the HLB state-wide survey in Texas.

Samples with Ct value less than 38 were marked as positives. Diagnostic samples of citrus

leaves collected as part of the same survey are mapped in Fig 1D (main text).

(TIF)

S2 Fig. Evaluation of temporal progression for the predicted HLB detections in Texas

against survey data for alternative models. We considered the temporal progression of the

prevalence of three infection categories (Exposed, Infectious, and Detected) for the HLB epide-

miological model and its four model variants. Each model variant removes one key component

from the HLB epidemiological model used throughout the paper. We show means of 500 sim-

ulation realizations as solid lines, and 50%, 75%, 95% credible intervals as shades of decreasing

intensities. (A) The full HLB epidemiological model as described in the Methods section. (B)

No normalisation, in which the normalisation term for vector fluxes is assumed to be the same

for all cells and absorbed into the secondary infection rate. (C) No control effect, in which we

ignored the occurrence of the annual coordinated spraying program. (D) No border effect, in

which we did not distinguish between sites near to and far from the Mexico border and used

the same primary infection rate for infected vector from external environments. (E) power-law

kernel, in which the exponential dispersal function is replaced with a power-law function.

(TIF)

S3 Fig. Evaluation of spatial metrics for the predicted HLB detections in Texas against sur-

vey data for alternative models. We considered the spatial autocorrelation scores of the

Detected categories (green line and shades) with respect to the survey data (purple line) at the

end of August 2017 for the HLB epidemiological model and its four model variants. (A) The

full HLB epidemiological model as described in the Methods section. (B) No normalisation, in

which the normalisation term for vector fluxes is assumed to be the same for all cells and

absorbed to the secondary infection rate. (C) No control effect, in which we ignored the occur-

rence of the annual coordinated spraying program. (D) No border effect, in which we did not

distinguish between sites near to and far from the Mexico border and used the same primary

infection rate for infected vector from external environments. (E) power-law kernel, in which

the exponential dispersal function is replaced with a power-law function.

(TIF)

S4 Fig. Posterior distributions of key parameters for HLB epidemic model in comparison

with uninformative prior distributions (dotted black line). Legend numbers give the mean pos-

terior value and the 95% credible interval for each parameter.

(TIF)
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