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Universidad Nacional de Colombia, Bogotá, Colombia, 48 Department of Ecosystem Science and

Management, Ecology and Evolution Program, University of Wyoming, Laramie, Wyoming, United States of

America, 49 Departamento de Mastozoologia, Coordenação de Zoologia, Museu Paraense Emı́lio Goeldi,
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Abstract

Tropical forests hold most of Earth’s biodiversity and a higher concentration of threatened

mammals than other biomes. As a result, some mammal species persist almost exclusively

in protected areas, often within extensively transformed and heavily populated landscapes.

Other species depend on remaining remote forested areas with sparse human populations.

However, it remains unclear how mammalian communities in tropical forests respond to

anthropogenic pressures in the broader landscape in which they are embedded. As govern-

ments commit to increasing the extent of global protected areas to prevent further biodiver-

sity loss, identifying the landscape-level conditions supporting wildlife has become

essential. Here, we assessed the relationship between mammal communities and anthropo-

genic threats in the broader landscape. We simultaneously modeled species richness and

community occupancy as complementary metrics of community structure, using a state-of-

the-art community model parameterized with a standardized pan-tropical data set of 239

mammal species from 37 forests across 3 continents. Forest loss and fragmentation within

a 50-km buffer were associated with reduced occupancy in monitored communities, while

species richness was unaffected by them. In contrast, landscape-scale human density was

associated with reduced mammal richness but not occupancy, suggesting that sensitive

species have been extirpated, while remaining taxa are relatively unaffected. Taken

together, these results provide evidence of extinction filtering within tropical forests triggered

by anthropogenic pressure occurring in the broader landscape. Therefore, existing and new

reserves may not achieve the desired biodiversity outcomes without concurrent investment

in addressing landscape-scale threats.

Introduction

While the severity of the current biodiversity crisis is debated [1,2], defaunation, i.e., the loss of

animals from local population declines, range contractions, and extinction, is widely docu-

mented [3,4]. Tropical forests represent the most species-rich terrestrial biome, yet human

population growth and associated land conversion continue to make habitat loss, fragmenta-

tion, and unsustainable hunting major drivers of vertebrate decline [5,6], resulting in the high-

est concentration of threatened mammals relative to other biomes [4,7]. Some mammal
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species in tropical forests now survive almost exclusively in protected areas (hereafter PAs) [8]

that often occur within extensively transformed and heavily populated landscapes; others

depend on remote and sparsely populated areas [9,10]. However, it remains unclear how

mammalian communities within tropical forest respond to pressures in the broader landscape

in which they are embedded. Some evidence suggests that even biodiversity within PAs is

threatened by higher anthropogenic threats outside their borders [10–13]. For example, forest

loss in the 50 km surrounding tropical forest PAs contributed to a decline in tree species rich-

ness within PAs [11]; forest fragmentation in a 10 km buffer around monitoring sites reduced

colonization rates of forest-specialist mammals [14]. Nevertheless, empirical evidence and

assessments of the consequences of landscape-level human impacts on the richness and occu-

pancy status of tropical forest wildlife communities are lacking. As governments commit to

increasing the global PA extent to prevent further biodiversity loss following the Kunming-

Montreal Global Biodiversity Framework [15], identifying the landscape-level conditions that

can enhance wildlife conservation is paramount [16].

To date, data quality, geographic coverage, and methodological inconsistencies have pre-

vented rigorous objective examination of the status of tropical forest wildlife. Large-scale

assessments of mammalian species richness are typically based on range maps (e.g., [17,18]),

which can overestimate species occurrence [19] and lack information on abundance. For

mobile species, range maps confound absence with non-detection, potentially biasing the esti-

mation of true community size [20]. Literature-based meta-analyses are prone to additional

biases due to heterogeneity in data quality and spatiotemporal scales [21]. In contrast, in situ

data collected systematically at broader scales produce robust inferences that are more appro-

priate for evaluating trends and testing hypotheses at continental and global scales [22]. Cam-

era-trapping has revolutionized wildlife monitoring [23], with its cost-effectiveness and

unmatched potential for scaling-up and standardization [24]. Here, we collected an extensive

tropical data set of detections for 239 primarily ground-dwelling mammalian species in 37 for-

ests throughout the tropics collected from 2,021 camera-traps (Fig 1). Sampled areas included

those forming the TEAM Network [25] plus 20 additional areas that extend the geographic

coverage and the gradients of anthropogenic pressure and legal protection status. Sampled

area landscapes ranged from nearly intact to severely fragmented and human-dominated land-

scapes, and legal protection status ranged from PAs to multiple-use and unmanaged forests.

This newly compiled and standardized data set of wildlife data collected throughout the tropics

provides a unique opportunity to quantify the effects of anthropogenic disturbance on mam-

mal richness and occupancy throughout tropical forests globally.

We test 4 non-mutually exclusive hypotheses for mechanisms linking variation in mammal

community richness and occupancy to landscape-scale anthropogenic processes in tropical

forests. Species richness represents the size of the mammalian community and here we focus

on its geographic (among-area) variation, while community occupancy represents the central

tendency of site use probability for all species belonging to a community. Occupancy is a mea-

sure of distribution [26,27] that accounts for imperfect detection and is a useful metric to over-

come the inherent difficulties of abundance estimation [28]. It reflects site-level responses of

wildlife to local pressures that can manifest potentially within a short time, and it ultimately

affects species richness when a species no longer occupies an area. Hence, species richness and

community occupancy provide complementary information on how mammalian communi-

ties respond to anthropogenic drivers of both local species extinction and population decline

[29]. We test how they vary in response to (1) the amount of forest habitat loss; (2) degree of

forest fragmentation; (3) distance to settlements; and (4) level of human density in the broader

landscape (Fig 2) [11].
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protected area; PBN, Pau Brasil/Veracel; P,

Prediction; PSH, Pasoh; PWG, PWG-CEB logging

concession; RKM, Rakhine; RNF, Ranomafana;

SHS, Sagaing Htamanthi; SUL, Sulawes; TDM,

Terra do Meio; TEAM, Tropical Ecology

Assessment and Monitoring; TPN, Ta Phraya; UDZ,

Udzungwa; UZS, Uzungwa scarp; VBA, Volcan

Barva; VIF, variance inflation factor; VIR, Virunga;

YAN, Yanachaga; YAS, Yasuni.

https://doi.org/10.1371/journal.pbio.3002976


Our first hypothesis is that as more forest cover is lost, remaining forest patches become iso-

lated islands unable to sustain the pristine array of species due to species-area effects and

altered capacity to support viable populations. Hence, where landscape forest cover is lower,

we predict lower mammalian richness (Hypothesis (H) 1, Prediction (P) 1). Although Haddad

and colleagues [30] have found no overall effect of area reduction on abundance, we hypothe-

size lower community occupancy where landscape forest cover is lower (H1, P2). Indeed,

before a local extinction occurs, a population declines in abundance with consequent shrink-

age of its distribution, resulting in a decrease in species-level occupancy. Second, we hypothe-

size that the size and shape of remnant forest patches in the landscape (i.e., habitat

configuration) can affect population source-sink dynamics among monitoring sites and sur-

rounding landscapes [31]. Forest loss has resulted in 70% of remaining tropical forests occur-

ring within 1 km from an edge [30]. Reduced patch area and increasing isolation have been

associated with reduced abundances for a range of taxa, including mammals [30]. Similarly,

global assessments have shown reduced mammal distributions with higher fragmentation

[32]. Hence, we predict reduced mammalian community occupancy in landscapes with more

fragmented forest cover (H2, P1). We also predict lower species richness with increasing frag-

mentation (H2, P2) as a result of relict populations disappearing over time as a manifestation

of the extinction debt [33]. Conversely, fragmentation may create more habitat heterogeneity

Fig 1. Map of the 37 tropical forest areas considered in the study. (A) Inset maps represent 2 protected areas embedded in contrasting

landscapes: landscapes with low human density (left) and landscapes with high human density (right). Green areas in the inset maps represent

PA boundaries. (B) Bottom chart shows estimated species richness (black dots) and the observed number of detected species with camera-

traps (blue triangles) in each forest, which are ordered by increasing human density. See S4 Table in the SI Appendix for the list of site codes.

Forest cover layer derived from Hansen and colleagues [102], whereas human population density layer derived from Gridded Human

Population of the World [89]. The data underlying this figure can be found in S1 Data. PA, protected area.

https://doi.org/10.1371/journal.pbio.3002976.g001
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colonized by generalist species [34]; hence, we alternatively predict an increase in species rich-

ness (H2, P3). Additionally, anthropogenic edges can promote the use of open habitats and

agricultural matrices for dietary resources or refugia by some species [35], which may result in

a lack of variation in community occupancy in response to the degree of fragmentation (i.e.,

reduced patch size and increased patch isolation) as some species have higher occupancy near

edges while others spatially avoid them (H2, P4).

Third, we hypothesize that the presence of settlements and infrastructure in the landscape

favors human permeability into forest interiors, driving the exploitation of resources and hunting

[36]. We, therefore, predict lower mammalian community occupancy near infrastructure (H3,

P1). We also predict lower species richness as the potential outcome of human-induced filtering

of sensitive and misanthropic species [37] (H3, P2). Fourth, we assume that higher landscape-

scale human population density represents both a direct stressor to wildlife and a proxy for threats

that are unknown or difficult to measure, such as demand for bushmeat products [38] and forest

resource extraction, which may create a landscape of fear [39,40]. Human density can affect spe-

cies presence and distribution, resulting in either range expansions or contractions for species

that exploit anthropogenic environments or avoid them, respectively [39,41]. While predicting an

outcome is difficult given human density can serve as a proxy for multiple complex processes, we

test the following alternative predictions for both community metrics: (1) an increase in abun-

dance of synanthropic species or species not targeted by hunters via density compensation or eco-

logical release offsets the decline of sensitive species [42,43]. We therefore predict no net change

in average community occupancy in response to human density (H4, P1). (2) Alternatively, as a

positive relationship has been found between increasing mammal densities and high level of

Human Footprint Index globally [44], we hypothesize an increase in community occupancy (H4,

P2) as the result of domination by human-tolerant species. For species richness, (3) we predict no

variation (H4, P3) as the local disappearance of sensitive species may be compensated for by the

colonization of new adaptable ones [1,45]. However, for 16 tropical forest PAs, higher human

density in the immediate surroundings was associated with lower richness of area-demanding

and habitat specialist guilds, particularly insectivores [46]. In US parks, greater human density in

a 50 to 100 km buffer predicted mammal extinction inside PAs [47]. Thus, (4) we alternatively

predict lower mammalian richness with higher surrounding human density as the outcome of

species filtering, with loss of sensitive and less adaptable species (H4, P4).

Coupling this newly synthesized data set with state-of-the-art community modeling, we simul-

taneously test hypotheses about factors contributing to geographic variation in the absolute size

(species richness) and distribution (community occupancy) of partially observed ecological com-

munities. We test hypotheses about variation at both levels of community structure in relation to

forest cover, habitat configuration, distance to settlements, and human density measured through-

out the camera-trap monitoring sites and a 50-km buffer surrounding them for each forest (Figs 2

and S1). We also include the size and habitat productivity of the sampled areas, as well as the con-

tinent and the coefficient of variation (CV) of annual rainfall, to account for their potential influ-

ences on species richness. To our knowledge, this is the first study that simultaneously models

species richness and community occupancy across many areas at once as complementary metrics

of community structure, providing for a novel and powerful approach to studying how tropical

forest wildlife communities respond to landscape-scale drivers of change globally.

Results

Species richness

We focus first on factors that explain geographic variation in the size of mammalian commu-

nities, i.e., species richness. Estimated richness ranged from a low of 17 species in Volcan
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Barva, Costa Rica (90% Bayesian credible interval, CI: 14–22) and Sulawesi, Indonesia (CI: 11–

24), to a high of 38 species (CI: 35–41) in Djoum, Cameroon (Fig 1). Species richness was sig-

nificantly lower in the Neotropics (β = −0.29, CI: −0.60 – −0.01) than other continents (Fig 3

and S1 Table) and was significantly and negatively associated with landscape-scale human

population density (β = −0.15; CI: −0.28 – −0.02). These results support the prediction that

human pressure from higher population density in tropical forests negatively impacts species

richness (H4, P4). Species richness was positively but not-significantly associated with greater

forest patch size and with greater distance to settlements (Fig 3). In addition, mammalian rich-

ness was not significantly associated with greater forest cover, variation in annual precipita-

tion, the size of the sampled area or habitat productivity (normalized difference vegetation

index, NDVI) (Fig 3 and S1 Table).

Community occupancy

Next, we present drivers of global variation in community occupancy (i.e., average occupancy

across the species assemblage), whereby lower occupancy suggests an overall shrinkage of the

distribution and higher occupancy is indicative of a wider distribution. Compared to species

richness, marked differences in the relationships with anthropogenic influences emerged.

Occupancy was significantly and positively associated with higher landscape-scale forest cover

(θ = 0.18; CI: 0.02–0.34) and with forest patch size (θ = 0.42; CI: 0.26–0.56; Fig 4). Hence, spe-

cies within a community occupied a greater portion of the landscape where it had greater for-

est extent and consisted of larger and more continuous forest patches. Consequently, as

predicted, habitat loss and fragmentation were negatively associated with community occu-

pancy (H1, P1 and H2, P1, respectively). Unlike species richness, community occupancy was

Fig 2. Hypothesized landscape-scale processes (H1– H4) that may influence the species richness and community occupancy of

mammal communities. The figure depicts the hypothesized influence of landscape-scale forest cover (H1), forest configuration

(i.e., fragmentation and connectivity of remnant forest patches) (H2), distance to settlements (H3), and human density (H4).

Landscape is defined as the area extending 50 km from camera-trap arrays [11]. Asterisks indicate predictions supported by the

results.

https://doi.org/10.1371/journal.pbio.3002976.g002
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not associated with landscape-scale human density (H4, P1); similarly to richness, occupancy

was not associated with distance to settlements (H3, P2; Fig 4). Overall, these results support

the value and complementarity of the two scales of inference (i.e., species richness and com-

munity occupancy).

Discussion

We empirically demonstrated the negative impacts of anthropogenic threats occurring in the

broader landscape on both forest mammal species’ richness and community occupancy

throughout the tropics. Previous attempts to address related questions using the TEAM cam-

era-trap data focused exclusively on occupancy trends [48] or dynamics [14,49], functional

composition [46,50], or taxonomic and functional diversity [51]. In contrast, our approach

allowed for the simultaneous quantification of multiple drivers at 2 levels of community orga-

nization (species richness and community occupancy) while accounting for sampling biases,

and extending both the number of areas and the gradient of anthropogenic disturbance in sur-

rounding landscapes. Using standardized and systematic data recorded within tropical forests

under varying degrees of anthropogenic disturbance, we provide much needed empirical evi-

dence on hypothesized drivers of mammal community size and distribution throughout the

tropics. Our results indicate that human density, habitat loss, and fragmentation have

Fig 3. Predictors of mammalian species richness estimated from the multi-region, multispecies occupancy model using 37 study

areas throughout the tropics. Standardized beta coefficients for the effects of predictors (A), with human density, forest cover, and

forest patch size measured on a buffer extending 50 km from camera-trap arrays, whereas NDVI and CV precipitation were measured

at the sampled area-level. Points indicate the median of the full posterior distribution. Solid blue lines represent significant effects with

90% Bayesian CI that do not overlap 0 (dashed vertical line). Closed gray points represent 50% CI that do not include 0, while open gray

points indicate that 50% CI overlaps 0. Plots of predicted species richness depict patterns of species richness in relation to

biogeographical area (B) and increasing human density in the broader landscape (C). Gray shaded areas indicate 90% CI. Forest cover

layer for the 3 continents in panel B derived from Hansen and colleagues [102]. The data underlying this figure can be found in S2 Data.

CI, credible interval; CV, coefficient of variation; NDVI, normalized difference vegetation index.

https://doi.org/10.1371/journal.pbio.3002976.g003
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detrimental consequences for tropical forest wildlife worldwide. Specifically, we found that

human density was the single, strongest predictor of species richness, whereby mammal com-

munities occurring within areas surrounded by higher human population density had signifi-

cantly fewer species (supporting H4, P4), even though most areas sampled were within PAs.

Moreover, average mammal occupancy was lower in areas characterized by smaller and more

fragmented areas of remaining forest in the landscape (versus larger and more continuous,

supporting H1, P2 and H2, P1). Therefore, addressing the drivers impacting tropical forest

wildlife critically depends on mitigating threats from human density and anthropogenic pres-

sures that originate well beyond where populations occur [52].

That mammal species richness decreased as human population density in the landscape

increased (hypothesis H4, P4 supported) is arguably the most robust empirical evidence to

date documenting the detrimental effects of human presence on tropical wildlife. Specifically,

our model predicts a 1% decline in species richness with an increase of 16 persons/km2 in the

landscape. This result expands on the known negative effect of a sampling area’s human foot-

print on tropical mammal richness in Africa and Asia [51] to encapsulate impacts on species

richness within tropical forests from well beyond sampling areas. High human density may

lead to extirpation from overhunting [9] and species loss from other detrimental human activi-

ties [39]. Information on known local extinctions within recent decades independent of the

Fig 4. Predictors of community occupancy probability (ψ) estimated from the multi-region, multispecies occupancy model applied

to 37 study areas throughout the tropics. Standardized coefficients for the effects of predictors (A). Human density, forest patch size,

and forest cover were measured for a 50 km buffer from camera-trap arrays. Points indicate the median of the full posterior distribution.

Solid blue lines represent significant effects with 90% Bayesian CI that do not overlap 0 (dashed vertical line). Closed gray points

represent 50% CI that do not include 0, while open gray points indicate that 50% CI overlaps 0. Bivariate plots of the predicted

community occupancy probability in relation to increasing forest patch size (B), and increasing forest cover (C). Gray shaded areas

indicate 90% CI. The data underlying this figure can be found in S3 Data. CI, credible interval.

https://doi.org/10.1371/journal.pbio.3002976.g004
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camera-trap data analyzed was available for 11 of the monitored forests (S2 Table). The forests

in this study where known local extinctions have occurred are among the areas under greatest

anthropogenic pressure, including higher than average human density, further suggesting that

contemporary anthropogenic threats have already impacted species richness. Across our data

set, estimated species richness was among the lowest in Virunga National Park, Rwanda (18

species), surrounded by very high human population density (400 persons/km2) and a highly

fragmented landscape. Indeed, the Virunga Massif has one of the highest human densities in

the world [53]. In contrast, estimated species richness was among the highest in a sustainable

logging concession in Gabon (PWG, 34 species), which is surrounded by very low human pop-

ulation (6.57 persons/km2). Furthermore, in the Udzungwa Mountains of Tanzania, the

Udzungwa Scarp Nature Reserve has reduced mammal richness and occupancy when com-

pared to the nearby Udzungwa Mountains National Park. Decades of isolation of the Nature

Reserve’s forest, which has higher human density and more fragmented forest cover in the sur-

rounding landscape relative to the National Park, led to the local extirpation of at least 3 spe-

cies by the early 1970s, i.e., the buffalo (Syncerus caffer), the African elephant (Loxodonta
africana), and the leopard (Panthera pardus) [54]. Surprisingly, we found that landscapes with

more forest cover did not support richer communities of forest mammals, which contrasts

with our hypothesis (H1, P1) and with the known positive relationship between the size of

available habitat and species richness [55]. Additionally, species richness was not significantly

associated with fragmentation, in contrast with H2, P2 and H2, P3. Rather than finding lower

species richness in areas with greater habitat loss or fragmentation, the lack of significant

effects may be due to turnover in species composition in modified environments, such as the

replacement of forest-dependent species by habitat generalists that are able to colonize empty

niches, resulting in a net-zero change in community size. Alternatively, the lack of a significant

positive relationship between forest cover and species richness may suggest a degree of empty

forest syndrome [56] in which forests remain but fauna have been lost for human disturbances

other than habitat loss, such as hunting. We tested distance to settlements as a proxy for hunt-

ing because it reflects accessibility, but distance to settlement did not have a detectable effect

on species richness. This result can be interpreted as a lack of evidence that accessibility

reduced species richness or that the measure of distance to settlements may have been a poor

hunting proxy.

In contrast to the negative effect of human density on species richness, human density did

not predict variation in occupancy, supporting the prediction that high human density posi-

tively affects the distribution of some species while negatively affecting others, resulting in no

net effect of human density on occupancy (supporting H4, P1). This density compensation

mechanism may result from the net effect of negative human impact on misanthropic species

and positive effect, via ecological release, on synanthropic species, or species not targeted by

hunters. Such decoupling in the responses of richness and occupancy to human density may

be a consequence of local extinction filtering, i.e., reduced distributions of the most vulnerable

species and thriving of the more resilient ones [57]. The lack of support for higher community

occupancy near high human density (H4, P2) does not preclude it from occurring if more sen-

sitive species disappear over time under increasing pressure from human density. Critically

moreover, mammal communities had higher occupancy when forest cover was more extensive

(H1, P2) and less fragmented (H2, P1). Hence, larger and better-connected forest habitat sus-

tains larger and more broadly distributed populations [58], whereas forest fragmentation con-

tributes to lower mammal occupancy. That the effect of the landscape-scale habitat

configuration on community occupancy was even stronger than that of forest cover may be

attributable to fragmentation altering source-sink population dynamics (hypothesis H2, P1

supported), with a reduced capacity of some species to recolonize forest fragments after local
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populations are lost [59]. Interestingly, we note that while we addressed community-wide

responses, the positive effects found in relation to both forest cover and forest patch size reveal

that most species in the community benefit from increasing forest cover and patch size, even

though these responses may be driven by the strict forest dependent species.

In contrast to our hypotheses, distance to settlements did not significantly predict variations

in average community occupancy or species richness (hypothesis H3, P1 and H3, P2, rejected),

suggesting that, similarly to the effect of human density on occupancy, infrastructure may pos-

itively affect the distribution and persistence of some species while negatively affecting others,

resulting in no net effect [39,60]. While winners generally have faster life-history and more

opportunistic diets when compared to losers [39,41], more work is required to determine

which species characteristics best predict these outcomes [61]. Lastly, we found that land-

scape-scale anthropogenic pressures markedly affected species richness, while sampling area,

precipitation, and NDVI did not, although larger sampling areas [55] and more productive

forests [62] typically support more mammal species. This finding may reflect an adequate stan-

dardization of the camera-trap sampling design among areas while highlighting that land-

scape-scale anthropogenic impacts can override known ecological determinants of species

richness such that the fundamental relationship between area and species richness was no lon-

ger detectable. In addition to the variables we examined, variation in richness among areas has

likely been influenced by other factors, particularly biogeographic history [63]. In particular,

the significantly lower richness estimated for the Neotropical fauna may reflect the dispropor-

tionally high Pleistocene extinctions, in which the continent lost ca 80% of large-bodied mam-

mals [63].

By focusing on mammals in tropical forests, where similar environments support commu-

nities with similar functional composition and vulnerability to anthropogenic pressures

[46,64], and by using in situ observational data from the largest number of sites and widest gra-

dient of protection throughout the biome to date, we have shown that landscape-scale anthro-

pogenic pressures are detrimental to wildlife, even within PAs. Indeed, 31 out of 37 sampled

areas (84%) were within PAs, supporting earlier expert opinion-based evidence of their vulner-

ability to landscape threats [10]. For the 31 PAs, forest cover and forest patch size were signifi-

cantly higher inside than outside PA borders (i.e., across the 50 km buffer; S2 Fig), further

highlighting the role of landscape-scale habitat conditions for tropical mammals. The use of

complementary metrics of community structure allowed us to determine that the effects of

anthropogenic threats manifest differently for the total number of species supported compared

to the distribution of the species present in the monitored forests. Our results demonstrate

that the size and distribution of mammal communities in tropical forests are tied to human

population density, forest cover loss, and degradation in the broader landscape where they

occur.

Therefore, mammal conservation in tropical forests depends on mitigating the complex

detrimental effects of anthropogenic pressures beyond PA borders [65–68]. Examples of such

strategies include preventing further forest loss in the landscape, establishing buffer zones, and

restoring habitat and connectivity in the wider matrix [68]. Most importantly, with half of the

world population expected to reside in tropical regions by 2050 [6], our result of a marked

impact of human density on wildlife indicates that holistic landscape-scale planning that har-

monizes forest conservation with livelihood development becomes more imperative than ever.

Multiple-use PAs and land-sharing approaches [68,69] are important strategies in this regard.

Ninety percent of people living in extreme poverty in the tropics rely heavily on forest

resources [70], thus improvement of living standards, promotion of alternatives to fuelwood

for cooking and increased education can further allay tropical forest degradation [71]. In con-

clusion, our study warns that the creation of new PAs as provided by the Kunming-Montreal
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Global Biodiversity Framework may not achieve the desired biodiversity outcomes without

concurrent investment in addressing landscape-scale threats. Towards this end, our results are

relevant to the current UN Decade of Ecosystem Restoration [68], whereby priority locations

for restoring tropical forests should be identified in landscapes surrounding isolated PAs, as

these may promote persistence of tropical forests mammals.

Methods

Study areas

We collated data on 239 mammal species (S3 Table) from a standardized camera-trapping pro-

tocol replicated in 37 protected areas from 19 countries in 3 biogeographic regions throughout

the tropical forest biome (Fig 1 and S2 Table): Afrotropics (N = 12), Neotropics (N = 13), and

Indo-Malayan tropics (N = 12). Seventeen of the areas are from the TEAM Network [25]. We

selected the additional camera-trap data sets on the remaining 20 areas based on adherence to

the TEAM protocol (S1 and S3 Figs). Camera-trapping in TEAM areas followed a standardized

protocol rolled out during one dry season (in 2014 or 2015), consisting of the systematic sam-

pling of 60 camera-trap sites evenly spaced 1 to 2 km apart. In the additional areas, data were

collected for a single-season during the period 2010 to 2019 with similar spacing among sites

as TEAM’s and a range of 32 to 68 sites sampled (S5 Table). When effort varied, we selected

the first 30 days of sampling. As a result, our data set collates camera-trap images from 37

areas, 2,021 camera-trap sites (mean of 54.76 per area), sampled through 63,041 camera-trap

days (range 1,088 to 2,280, mean 1,703), and represents the largest standardized and coordi-

nated sampling data for tropical mammals to date (S5 Table). We more than doubled the num-

ber of sampled areas of the TEAM Network and achieved a more balanced number of areas

among continents and across anthropogenic gradients. In particular, we included 9 new areas

in the Indo-Malayan tropics which were underrepresented in the TEAM data set (S3 Fig)

despite Southeast Asia being a major hotspot of deforestation and biodiversity loss [72].

The additional areas extend the gradient of protection regime, anthropogenic disturbance,

and landscape configuration relative to existing TEAM sites. Overall, the sampled forests

include PAs of different status: from National Parks (N = 15) and Nature Reserves (N = 3) to

PAs of lower protection regime (N = 13), from multiple-use (N = 2) to human-managed areas,

as plantation and logging concession (N = 2), and forests with no legal protection status

(N = 2, S4 Table). The landscape surrounding the study areas represented a wide range of

human population density, from virtually unpopulated to highly populated (Fig 1), such that

also well-protected PAs may suffer from intense external anthropogenic pressure.

For the analyses, we used 559,585 images of wild mammalian species with average body

mass >100 g [48], as smaller species are not well detected by camera-traps and can be of diffi-

cult identification. We included in our analyses all species above this mass threshold and that

are predominantly terrestrial, hence including species that are not all strictly forest dependent.

Importantly, this restricts the targeted mammals to the medium-to-large ground dwelling spe-

cies hence excluding small-bodied, strictly arboreal, and volant mammals. The targeted subset

of species likely requires disproportionately larger areas and are more likely to be killed for

food or from human–wildlife conflicts. We used IUCN taxonomy [73]. This resulted in 239

mammal species in 47 families, 17 orders, and 144 genera (S3 Table).

Covariates description

For each study area, we derived a suite of 9 covariates, selected as a subset of candidate vari-

ables for the model based on removing collinearity. To identify potential multicollinearity, we

used Pearson’s correlation coefficient with 0.6 as the maximum threshold (S4A Fig) and we

PLOS BIOLOGY Landscape-scale anthropogenic conditions associated with pan-tropical mammal defaunation

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002976 February 13, 2025 11 / 24

https://doi.org/10.1371/journal.pbio.3002976


considered the variance inflation factor (VIF), with values<4 acceptable (S4B Fig). Specifi-

cally, we considered covariates that broadly captured representative variation in habitat fea-

tures, human disturbance, and sampling protocol. Habitat variables included: (1) forest cover

in a buffer extending 50 km from the camera-trap arrays (range: 66,840–1,732,229 ha), as a

measure of available forest habitat, with more forest habitat assumed to support higher biologi-

cal diversity and richness [74,75]; (2) forest patch size, or forest compactness, in a buffer

extending 50 km from the camera-trap arrays (range: 18.58–396.03 m) and representing the

average distance one can move in a random direction within the patch, as a measure of

decreasing fragmentation and hence greater connectivity [76,77]; (3) the normalized difference

vegetation index (NDVI, range: 4,359–8,240) as an indicator of vegetation biomass and envi-

ronmental productivity in the sampled area [78]; (4) the coefficient of variation of annual pre-

cipitation (range: 0.91–29.13) as an index of inter-annual climate variability. Human

disturbance variables included: (5) distance from camera-trap sites to the closest settlement

(range: 762–53,204 m), representing distance to settlements, forest accessibility to humans

[36], and potential higher vulnerability to hunting pressure [79]; (6) the human population

density in a buffer extending 50 km from the camera-trap arrays (range: 0.05–400.18 people/

km2), as a measure of human presence and its impact on the landscape [47,80,81]. Sampling

protocol variables included: (7) camera-trap trigger speed, given different camera models can

perform differently in detecting species, especially elusive ones [82]; (8) sampled area (range:

55–168 km2) as an adjustment term for the different sampling effort across forests; (9) conti-

nents (i.e., Afrotropics, Neotropics, Indo-Malayan tropics) to account for the different loca-

tions and their evolutionary-history and phylogeny of different faunal groups [83]. We

standardized all continuous covariates to have mean zero and unit standard deviation.

The covariates selected were extracted as follows:

1. Forest cover was estimated as the sum of forest cover patches within a buffer extending 50

km from the camera-trap arrays. It was computed using the R package “landscapemetrics”

[84], with forest cover data set obtained from the Global Forest Cover [85] available in the

R package “gfcanalysis” [86].

2. Forest patch size and compactness was estimated as the averaged radius of gyration of all

forest patches within a buffer extending 50 km from the camera-trap arrays, where a greater

mean radius coincides with greater patch size. The variable was extracted using the same R

package and forest cover data set used for the previous variable.

3. NDVI was calculated by averaging the cell values of the 16-days MODIS NDVI images (L3

Global 250 m). Data acquisition in each study forest matched the year in which wildlife was

sampled.

4. Coefficient of variation of annual precipitation describes the overall variability of rainfall

recorded for an area. It was calculated as the standard deviation of precipitation from 2009

to 2018 divided by the mean annual precipitation over the same period [87]. This value was

calculated at the centroid of each monitoring area.

5. Distance to the closest settlement was calculated using the global built-up surface layer

from the Human Settlement layer at 250 m resolution from 2015 [88], derived from Landsat

images to depict infrastructure of inhabited settlements. Specifically, we computed the

Euclidean distance between each camera-trap station and the nearest vectorized cell with

value> 0 of this layer, thus representing settlements from the size of hamlets or small vil-

lages. The distance was collinear with the distance to the closest roads (r = 0.71, P< 0.001);

hence, the variable used in the analyses (i.e., distance to settlements) is intended to reflect

PLOS BIOLOGY Landscape-scale anthropogenic conditions associated with pan-tropical mammal defaunation

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002976 February 13, 2025 12 / 24

https://doi.org/10.1371/journal.pbio.3002976


both settlements and roads. Camera-level distances within each study area were averaged to

obtain an area-level value.

6. Human density was calculated by averaging the cell values of the Gridded Population of the

World raster [89] within a buffer extending 50 km from the camera-trap arrays. Data

extraction was carried out using the R package “raster” [90].

7. Camera-trap trigger speed (1 = fast, 2 = moderate) quantified the trigger speed of camera

models (i.e., the time from when the animal enters the field of view to when the camera

takes a picture). Camera models were denoted as fast when the trigger speed was ca. 0.2 s

(i.e., Reconyx and Panthera), while the other brands were denoted as moderate as trigger

speed ranged from 0.25 to 1 s.

8. Sampled area was measured by creating and summing a buffer of 1 km around each cam-

era-trap station.

9. Biogeographic regions (i.e., Afrotropics, Neotropics, Indo-Malayan tropics) were assigned

according to the location of each study forest.

Polygons of the 1 km buffers around each camera-trap station (sampled area) and of the 50

km buffers around camera-trap arrays were created with the built-in tools in QGis [91].

Statistical analysis

To test global-scale patterns of defaunation, we modeled the effect of area-specific covariates

on species richness and community occupancy in the 37 forests using a multi-region commu-

nity model that largely follows Sutherland and colleagues [92]. The 3 features of this hierarchi-

cal model are as follows. First, a sub model for species-specific detection allows for the fact that

not all species are detected—this is achieved using a Bayesian technique called data augmenta-

tion [93]. Second, a sub model for occupancy: accounting for imperfect detection also allows

for inferences to be made about the proportion of each area occupied by each of the species

(observed and unobserved). We treat these species-specific occupancy rates as random effects

from a community distribution. Thus, the mean of the community random effects distribution

is modeled as a function of covariates (see above), i.e., the “community occupancy” rate. Nota-

bly, treating species-specific occupancy as a random effect provides the statistical flexibility to

capture any within-region variation in site-specific occupancy. However, we did not test

within-area variation in community occupancy with the covariates of interest because we were

interested in its global scale patterns to test our hypotheses. Third, a sub model for the latent

species richness, i.e., a linear model that relates area-specific covariates to the overall number

of species in the area. The models for community occupancy and species richness were devel-

oped based on ecological a priori justifications and predictions [94,95].

Specifically, for computing the multi-region community model on R = 37 forests (hereafter

regions) across the tropics, encounter frequencies of detected species were organized as a 3D

array Y, with elements yijr representing the number of days species i was observed at site j in

region r, out of a total of Kjr days that the camera was operational. True occupancy states array

Z contains elements zijr representing the species-by-site occupancy states during each survey,

conditional on the species being a member of the community in each region (see below).

Occupancy states were defined as Bernoulli random variables, with zijr = 1 indicating the site j
is occupied by species i, and zijr = 0 if the site is empty: zijr ~ Bern (ψir ωir). Parameter ωir is a

species-specific indicator variable denoting whether the species is present in a region, and ψir

is the species-specific occupancy probability in each region (assumed equal across sites), con-

ditional on species i being a member of the rth community. Based on data augmentation [93],
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an arbitrary number Mr = M = 55 (for all regions) of all-zero encounter frequencies, which

can be seen as potentially unobserved species, was added to the detection array Y. The number

of unobserved species in each community can therefore be estimated by evaluating which of

the M—nr species (rows of the augmented data set, where nr is the number of species detected

in a region) are members of the rth community (sampling zeros, ωir = 1) or not (structural

zeros, ωir = 0). The indicator variable ωir was assumed a random Bernoulli variable with proba-

bility Or that species i of the augmented array is a member of the rth community of size Nr (i.e.,

species richness). The data augmentation technique converts the problem of estimating Nr

into the equivalent problem of estimating Or, and species richness is derived parameter by

summing up the latent indicators ωir, since the expectation of Nr is equal to MrOr. Inference

at the community level was focused on modeled variation inOr as a function of different

covariates (see below). The observation model relates array Z to array Y, such that yijr ~ Bino-

mial (Kjr, pijr zijr), with Kjr denoting the number of sampling occasions (i.e., camera-trap days

for each site j in region r) and pijr the detection probability. Following this general model for-

mulation, we investigated covariate effects at both community and species level.

Variations in region-specific species richness were investigated with a logit-link model that

accounted for region-level variables. We assumed richness to vary in relation to human density

(HDEN), distance to settlements (SETTL), available forest cover (FOREST) and forest patch

size and compactness (P_SIZE) in the landscape. We also added the mean NDVI and the size

of area sampled by camera-traps (AREA), as well as the coefficient of variation of annual pre-

cipitation (CV PREC) and a continent effect (CONTINENT, with Afrotropics as reference

level) as proximate factors. Specifically, CONTINENT was treated as a fixed effect that

accounted for the inherent community nestedness, while the use of local-scale covariates (i.e.,

area-specific variables) allowed us to capture contextual differences among regions in the same

continent. Additionally, despite the overall large pairwise distances between regions (S5 Fig),

we checked for potential spatial autocorrelation in species richness by performing a Moran’s I

test [96] on both the entire data set and the subset of regions in the Afrotropics, where 2 pairs

of regions were<100 km apart. We therefore found a lack of spatial autocorrelation both at

the data set level (Moran’s I = 0.06; p = 0.23) and within the African continent (0.18; p = 0.11).

logitðΩrÞ ¼ b0þ b1∗NEOTROPICSr þ b2∗INDO � MALAYANr þ b3∗AREAr þ b4∗NDVIr
þ b5∗CV PRECr þ b6∗HDENr þ b7∗SETTLr þ b8∗FORESTr þ b9∗P SIZEr

Global patterns of variations in occupancy probability were investigated by using species-

and region-specific logit-linear model with region-level covariates [97]. We expected occu-

pancy of species i in region r to vary in relation to the human density in the area (HDEN), the

available forest habitat (FOREST), forest patch size and compactness (P_SIZE), and the mean

distance to settlements (SETTL):

logitðcirÞ ¼ y0ir þ y1∗HDENr þ y2∗FORESTr þ y3∗P SIZEr þ y4∗SETTLr þ εc;ir

with εc;ir � Normalð0; sc;irÞ

Detection and occupancy probability were regressed using a logit-link function. We

expected detection probability (pijr) of species i at site j in region r, to be potentially affected by

the camera trigger speed (CAM_TYPE) and by the distance from each j to the closest settle-

ment (SETTL):

logitðpijrÞ ¼ a0ir þ a1∗CAM TYPEjr þ a2∗SETTLjr þ εp;ir

PLOS BIOLOGY Landscape-scale anthropogenic conditions associated with pan-tropical mammal defaunation

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002976 February 13, 2025 14 / 24

https://doi.org/10.1371/journal.pbio.3002976


with εp;ir � Normalð0; sp;rÞ

Species- and region-specific variations in occupancy and detection probability were accom-

modated by random effects (εψ,ir and εp,ir) with region-specific random standard deviation

(σψ,r and σp,r). This structure allowed us to improve the precision and the predictive capability

of the model since data-deficient species can be accounted for by using information from data-

rich species [94,98].

We fitted the multi-region community model in a Bayesian framework using Markov

Chain Monte Carlo, and inference was based on 400,000 post-burn-in posterior samples (3

chains, default thinning of 1, and burn-in of 100,000). We assessed model effectiveness by ver-

ify chain convergence by using the R-hat diagnostic, with R-hat� 1.01 for successful conver-

gence. The hierarchical model was implemented in Nimble [99,100], through R [101]. For

details on prior specification of model parameters, see the provided Nimble code.
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Supporting information

S1 Fig. Graphical representation for Ranomafana National Park (Madagascar) of the 50

km buffer within which the variables of habitat loss, forest fragmentation, mean distance

to infrastructure and human density have been calculated. The buffer expands from the

camera-trap arrays [1,2] and is indicative of landscape-scale disturbance acting from both

within and outside the protected areas. The green shape represents the national park border,

while the black dots represent the camera-trap locations. Background map derived from

OpenStreetMap (www.openstreetmap.org) through QGIS [3].
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S2 Fig. Comparison between the percentage of forest cover (left chart) and average forest

patch size (right) between the areas inside PA borders and outside the PA borders (i.e., the

area within the 50 km buffer from the camera-trap arrays minus the PA extent). Charts

show the values (black dots) only for the 31 study areas which are protected and the

average ± SE. The differences are significant for both the percentage of available forest cover

(Welch two-sample t test: t = 4.80, df = 56.86, p-value<0.001) and the average size of forest

patches (t = 2.72, df = 37.53, p-value = 0.01). The data underlying this figure can be found in

S4 Data.

(DOCX)

S3 Fig. Map of the study areas, divided by those that form the TEAM Network (red dots)

and those added for this study (yellow dots). The insets display examples of the sampling

design for one TEAM (red) and non-TEAM area (yellow), both occurring in the Udzungwa

Mountains of Tanzania. Tropical forest layer derived from Hansen and colleagues [1].

(DOCX)

S4 Fig. Correlation matrix among the selected covariates (A) and variance inflation factor

(VIF) scores (B). The data underlying this figure can be found in S5 Data.

(DOCX)

S5 Fig. Distances (km) between pairs of areas for the Neotropics (above), Afrotropics (cen-

tral), and Indo-Malayan tropics (below). The data underlying this figure can be found in

S6 Data.

(DOCX)

S1 Table. Summary of the main parameters of interest from the multi-region occupancy

model. α-coefficients represent variables used to model the detection probability (p), θ-coeffi-

cients represent parameters used to model community occupancy probability (ψ), and the β-
coefficients are parameters used to model species richness. Values are the mean of the poste-

rior distribution, the related SD, and the 2.5%–97.5% Bayesian CI. Also included are the

potential scale reduction statistics (R-hat), with values close to 1 indicating convergence of

chains, and the number of samplings from the posterior distribution (n.eff).

(DOCX)

S2 Table. List of the 11 areas for which there is evidence of recent local extinctions of mam-

mals, along with values of forest cover and human density in the landscape and, in paren-

theses, their difference to the mean values for all 37 areas in the dataset expressed in %.

Full details of target areas are in Table S4.

(DOCX)

S3 Table. List of wild mammal species detected by camera-traps in the 37 study areas of

the data set and included in the analyses. Species are listed in alphabetic order by taxonomic

order.

(DOCX)

S4 Table. List of the 37 areas included in the data set with location, management type, and

environmental characteristics. Mean elevation (m.a.s.l.) of camera trap sites was sourced

from the Global Biodiversity Information facility via package “rgbif” [1], mean annual precipi-

tation (mm), and mean maximum temperature (˚C) were sourced from the Worldclim histori-

cal monthly weather data [2], while the dominant landcover type was sourced from the

MODIS Land Cover Type Yearly L3 Global 500 m. [3].
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S5 Table. Details on sampling effort and design for the 37 areas included in the data set.

“Sampling effort (camera days)” is calculated as the total number of 24-h periods camera traps

(CT) worked; “Season” attributes if data collection was conducted during the dry (period of

reduced precipitation) or the wet season (period where most of the yearly rain is concen-

trated).

(DOCX)

S1 Code. R codes to reproduce the main manuscript’s figures.

(TXT)

S2 Code. Nimble code and model specifications for the multi-region community model.

(TXT)

S1 Data. Raw data underlying Fig 1, representing the observed and estimated specie rich-

ness for each sampled area.

(XLSX)

S2 Data. Raw data underlying Fig 3, representing the standardized beta coefficients for the

effects of the predictors on species richness (A), and estimated predicted species richness

in relation to the continent (B) and increasing human density (C).

(XLSX)

S3 Data. Raw data underlying Fig 4, representing the standardized beta coefficients for the

effects of predictors on community occupancy (A), and estimated predicted community

occupancy in relation to the increasing forest patch size (B) and increasing forest cover

(C).

(XLSX)

S4 Data. Raw data underlying S2 Fig, representing the percentage of forest cover and aver-

age forest patch size, between the areas inside PA borders and outside the PA borders.

(XLSX)

S5 Data. Raw data underlying S4 Fig, representing the value of the correlation matrix

among the selected covariates.

(XLSX)

S6 Data. Raw data underlying S5 Fig, representing the distances (km) between pairs of

areas for the Neotropics, Afrotropics, and Indo-Malayan tropics.

(XLSX)
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20. Dorazio RM, Royle JA, Söderström B, Glimskär A. Estimating Species Richness and Accumulation by

Modeling Species Occurrence and Detectability. Ecology. 2006; 87:842–854. https://doi.org/10.1890/

0012-9658(2006)87[842:esraab]2.0.co;2 PMID: 16676528

21. Stewart G. Meta-analysis in applied ecology. Biol Lett. 2010; 6:78–81. https://doi.org/10.1098/rsbl.

2009.0546 PMID: 19776064

22. Fraser LH, Henry HA, Carlyle CN, White SR, Beierkuhnlein C, Cahill JF, et al. Coordinated distributed

experiments: an emerging tool for testing global hypotheses in ecology and environmental science.

Front Ecol Environ. 2013; 11:147–155. https://doi.org/10.1890/110279

23. Rovero F, Kays R. Camera trapping for conservation. In: Wich SA, Piel AK, editors. Conservation

Technology. Oxford University Press; 2021. p. 0. https://doi.org/10.1093/oso/9780198850243.003.

0005

24. Steenweg R, Hebblewhite M, Kays R, Ahumada J, Fisher JT, Burton C, et al. Scaling-up camera

traps: monitoring the planet’s biodiversity with networks of remote sensors. Front Ecol Environ. 2017;

15:26–34. https://doi.org/10.1002/fee.1448

25. Rovero F, Ahumada J. The Tropical Ecology, Assessment and Monitoring (TEAM) Network: An early

warning system for tropical rain forests. Sci Total Environ. 2017; 574:914–923. https://doi.org/10.

1016/j.scitotenv.2016.09.146 PMID: 27665451

26. Neilson EW, Avgar T, Burton AC, Broadley K, Boutin S. Animal movement affects interpretation of

occupancy models from camera-trap surveys of unmarked animals. Ecosphere. 2018; 9:e02092.

https://doi.org/10.1002/ecs2.2092

27. Steenweg R, Hebblewhite M, Whittington J, Lukacs P, McKelvey K. Sampling scales define occu-

pancy and underlying occupancy–abundance relationships in animals. Ecology. 2018; 99:172–183.

https://doi.org/10.1002/ecy.2054 PMID: 29065232

28. Efford MG, Dawson DK. Occupancy in continuous habitat. Ecosphere. 2012; 3:art32. https://doi.org/

10.1890/ES11-00308.1

29. Supp SR, Ernest SKM. Species-level and community-level responses to disturbance: a cross-commu-

nity analysis. Ecology. 2014; 95:1717–1723. https://doi.org/10.1890/13-2250.1 PMID: 25163105

30. Haddad NM, Brudvig LA, Clobert J, Davies KF, Gonzalez A, Holt RD, et al. Habitat fragmentation and

its lasting impact on Earth’s ecosystems. Sci Adv. 2015; 1:e1500052. https://doi.org/10.1126/sciadv.

1500052 PMID: 26601154

31. Hansen A. Contribution of source–sink theory to protected area science. 1st ed. In: Liu J, Hull V, Mor-

zillo AT, Wiens JA, editors. Sources, Sinks and Sustainability. 1st ed. Cambridge University Press;

2011. p. 339–360. https://doi.org/10.1017/CBO9780511842399.018

PLOS BIOLOGY Landscape-scale anthropogenic conditions associated with pan-tropical mammal defaunation

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002976 February 13, 2025 20 / 24

https://doi.org/10.1016/j.biocon.2013.02.018
https://doi.org/10.1126/science.aap9565
https://doi.org/10.1126/science.aap9565
http://www.ncbi.nlm.nih.gov/pubmed/29773750
https://doi.org/10.1038/s41559-023-02060-6
http://www.ncbi.nlm.nih.gov/pubmed/37365343
https://www.cbd.int/doc/decisions/cop-15/cop-15-dec-04-en.pdf
https://www.cbd.int/doc/decisions/cop-15/cop-15-dec-04-en.pdf
https://doi.org/10.1073/pnas.1908221116
http://www.ncbi.nlm.nih.gov/pubmed/31659036
https://doi.org/10.1038/s41467-020-14771-6
http://www.ncbi.nlm.nih.gov/pubmed/32080191
https://doi.org/10.1098/rstb.2011.0113
https://doi.org/10.1098/rstb.2011.0113
http://www.ncbi.nlm.nih.gov/pubmed/21844042
https://doi.org/10.1111/1365-2664.12771
https://doi.org/10.1111/1365-2664.12771
https://doi.org/10.1890/0012-9658%282006%2987%5B842%3Aesraab%5D2.0.co%3B2
https://doi.org/10.1890/0012-9658%282006%2987%5B842%3Aesraab%5D2.0.co%3B2
http://www.ncbi.nlm.nih.gov/pubmed/16676528
https://doi.org/10.1098/rsbl.2009.0546
https://doi.org/10.1098/rsbl.2009.0546
http://www.ncbi.nlm.nih.gov/pubmed/19776064
https://doi.org/10.1890/110279
https://doi.org/10.1093/oso/9780198850243.003.0005
https://doi.org/10.1093/oso/9780198850243.003.0005
https://doi.org/10.1002/fee.1448
https://doi.org/10.1016/j.scitotenv.2016.09.146
https://doi.org/10.1016/j.scitotenv.2016.09.146
http://www.ncbi.nlm.nih.gov/pubmed/27665451
https://doi.org/10.1002/ecs2.2092
https://doi.org/10.1002/ecy.2054
http://www.ncbi.nlm.nih.gov/pubmed/29065232
https://doi.org/10.1890/ES11-00308.1
https://doi.org/10.1890/ES11-00308.1
https://doi.org/10.1890/13-2250.1
http://www.ncbi.nlm.nih.gov/pubmed/25163105
https://doi.org/10.1126/sciadv.1500052
https://doi.org/10.1126/sciadv.1500052
http://www.ncbi.nlm.nih.gov/pubmed/26601154
https://doi.org/10.1017/CBO9780511842399.018
https://doi.org/10.1371/journal.pbio.3002976


32. Crooks KR, Burdett CL, Theobald DM, King SRB, Di Marco M, Rondinini C, et al. Quantification of hab-

itat fragmentation reveals extinction risk in terrestrial mammals. Proc Natl Acad Sci U S A. 2017;

114:7635–7640. https://doi.org/10.1073/pnas.1705769114 PMID: 28673992

33. Tilman D, May RM, Lehman CL, Nowak MA. Habitat destruction and the extinction debt. Nature. 1994;

371:65–66. https://doi.org/10.1038/371065a0

34. Chetcuti J, Kunin WE, Bullock JM. Habitat Fragmentation Increases Overall Richness, but Not of Habi-

tat-Dependent Species. Front Ecol Evol. 2020:8. https://doi.org/10.3389/fevo.2020.607619

35. Clough Y, Barkmann J, Juhrbandt J, Kessler M, Wanger TC, Anshary A, et al. Combining high biodi-

versity with high yields in tropical agroforests. Proc Natl Acad Sci U S A. 2011; 108:8311–8316.

https://doi.org/10.1073/pnas.1016799108 PMID: 21536873
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