
RESEARCH ARTICLE

On the optimality of the enzyme–substrate

relationship in bacteria

Hugo DouradoID
1, Matteo MoriID

2, Terence Hwa2, Martin J. LercherID
1*

1 Institute for Computer Science and Department of Biology, Heinrich Heine University, Düsseldorf,

Germany, 2 Department of Physics, University of California at San Diego, La Jolla, California, United States

of America

* martin.lercher@hhu.de

Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Much recent progress has been made to understand the impact of proteome allocation on

bacterial growth; much less is known about the relationship between the abundances of the

enzymes and their substrates, which jointly determine metabolic fluxes. Here, we report a

correlation between the concentrations of enzymes and their substrates in Escherichia coli.

We suggest this relationship to be a consequence of optimal resource allocation, subject to

an overall constraint on the biomass density: For a cellular reaction network composed of

effectively irreversible reactions, maximal reaction flux is achieved when the dry mass allo-

cated to each substrate is equal to the dry mass of the unsaturated (or “free”) enzymes wait-

ing to consume it. Calculations based on this optimality principle successfully predict the

quantitative relationship between the observed enzyme and metabolite abundances,

parameterized only by molecular masses and enzyme–substrate dissociation constants

(Km). The corresponding organizing principle provides a fundamental rationale for cellular

investment into different types of molecules, which may aid in the design of more efficient

synthetic cellular systems.

Introduction

Bacterial growth relies on the organized activity of thousands of chemical reactions. Regulation

of enzyme abundances and activities finely tunes the corresponding fluxes to match cellular

needs [1]. The regulation of protein expression is subject to constraints such as limited ribo-

somal capacity [2], constant density of macromolecules or dry mass [3–5], and membrane sur-

face area [6]. Each of these constraints can be physiologically relevant in specific conditions,

and, in each case, the constraint limits the protein mass that can be produced or allocated in

the cell [2].

However, the fluxes of intracellular reactions depend not only on enzyme expression, but

also on substrate concentrations. As fluxes need to be balanced in steady-state growth, this

dependence leads to mechanistic constraints between enzyme and substrate levels. Systems

biology has only recently started to explore the consequences of these relationships on the

organization of metabolic systems and on regulatory strategies, such as feedback inhibition, at

the genome-scale level [7–10]. The interdependence of fluxes v and the concentrations of

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001416 October 26, 2021 1 / 18

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Dourado H, Mori M, Hwa T, Lercher MJ

(2021) On the optimality of the enzyme–substrate

relationship in bacteria. PLoS Biol 19(10):

e3001416. https://doi.org/10.1371/journal.

pbio.3001416

Academic Editor: Jason W. Locasale, Duke

University, UNITED STATES

Received: July 28, 2021

Accepted: September 17, 2021

Published: October 26, 2021

Copyright: © 2021 Dourado et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The raw data, which

was compiled from the literature and from public

databases, is provided in Supplementary files S6

Data, S7 Data and S8 Data. The code used to

generate all results (including figures) from the

publicly available data is provided as a

Supplementary zip file (S2 File).

Funding: This work was funded through a

fellowship to HD by the German Academic

Exchange Service (DAAD – IRTG 1525; https://

www.daad.de/en/), through a grant by the

Volkswagenstiftung in the “Life?” program to MJL

https://orcid.org/0000-0003-4851-1355
https://orcid.org/0000-0002-6263-8021
https://orcid.org/0000-0003-3940-1621
https://doi.org/10.1371/journal.pbio.3001416
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3001416&domain=pdf&date_stamp=2021-10-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3001416&domain=pdf&date_stamp=2021-10-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3001416&domain=pdf&date_stamp=2021-10-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3001416&domain=pdf&date_stamp=2021-10-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3001416&domain=pdf&date_stamp=2021-10-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3001416&domain=pdf&date_stamp=2021-10-26
https://doi.org/10.1371/journal.pbio.3001416
https://doi.org/10.1371/journal.pbio.3001416
http://creativecommons.org/licenses/by/4.0/
https://www.daad.de/en/
https://www.daad.de/en/


enzymes [E] and metabolites [S] are illustrated by the simplest example of enzyme-limited

kinetics, the Michaelis–Menten rate equation

v ¼ kcat � E½ � �
½S�

½S� þ Km
ð1Þ

Here, kcat is the turnover number, and the kinetic interaction of substrates with their con-

suming enzymes is parameterized by Km, the enzyme–substrate dissociation (or Michaelis)

constant. Km has the unit of concentration and hence provides a natural scale for the substrate

abundance, [S]. Typical Km values for cellular reactions are in the range of 10 μM to 1 mM

(median 98 μM; cyan bars, Fig 1A) [11]. Metabolomic measurements in glucose minimal

medium found the concentrations of the most abundant metabolites to be of similar magni-

tude (red bars, Fig 1A) [12], with concentrations typically 2 times larger than the correspond-

ing Km (Fig 1A, Fig A in S1 File). Thus, the enzyme saturation factor [S]/([S]+Km) is typically

around two-thirds, implying that even for enzyme species actively involved in biosynthesis,

one-third of the proteins make no contribution to metabolic fluxes at each point in time.

Accordingly, substrate availability is an important factor limiting cellular efficiency and hence

fitness [13].

It is commonly assumed that in vivo metabolite concentrations are a consequence of the

biochemical properties of each metabolite and of the enzymes by which it is consumed

[9,11,14]. However, if cellular efficiency is indeed limited through idle, unsaturated enzyme

fractions, it is conceivable that natural selection would favor higher saturation for more highly

expressed enzymes, whose idle fractions occupy more cellular resources. To explore this possi-

bility, we collected data on the concentrations of substrates and the dominant enzymes con-

suming them based on published studies on Escherichia coli [12,15]; here, “dominant” refers to

the enzyme with the highest proteome fraction compared to all others competing for the same

substrate (Materials and methods, “Concentrations” and “Dominant enzymes”). The molar

Fig 1. Dissociation constants Km provide a natural scale for the relationship between substrate and enzyme concentrations. (A) Log-scale histograms of observed

metabolite concentrations [S] (red) [12] and the geometric means of corresponding Km values (blue) [11]. (B) Correlation between the molar concentrations of

enzymes and their substrates. The underlying data can be found in S1 Data.

https://doi.org/10.1371/journal.pbio.3001416.g001
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concentrations of E. coli proteins and their substrates are indeed correlated (Fig 1B; Pearson r2

= 0.39, P = 2.2 × 10−8): 39% of the variability in substrate concentrations can be predicted

from the concentrations of the corresponding dominant enzymes. In the following, we show

how a simple, quantitative description of this observation can be derived as an optimality prin-

ciple that combines enzyme kinetics with a constraint on resource allocation.

Mechanistic link between enzymes and substrates

To analyze the interdependence of enzyme and substrate abundances, we first focus on the

simple case of Michaelis–Menten kinetics, Eq (1). Only a fraction of enzymes is bound to the

substrate and catalyzes the reaction, while the remainder, of concentration [Efree], does not

directly contribute to the reaction flux. We can rewrite the Michaelis–Menten Eq (1) to high-

light this “inefficiency” as

v ¼ kcat � ð½E� � ½Efree�Þ; ð2Þ

where the concentration of free enzymes is a function of total enzyme and substrate concentra-

tions

Efree½ � ¼
½E�

1þ ½S�=Km
ð3Þ

For efficient enzyme usage, the fraction of free enzymes should be as small as possible,

[Efree]�[E]. However, to achieve this, substrate concentrations must be kept much above Km.

Eq (3) and its generalizations thus exhibit a general trade-off faced by living cells: For a given

reaction flux, low substrate concentrations lead to inefficient enzyme utilization, while efficient

enzyme allocation requires high substrate concentrations.

To assess the relevance of this trade-off, we looked at data from a recent quantitative metabolo-

mics experiment for E. coli grown on glucose minimal media [12], which observed a total dry

mass fraction of 3.1% for 43 assayed metabolites, mostly from central carbon metabolism. The

dry mass fraction of cytosolic proteins that are capable of consuming these metabolites is 15.3%

(Materials and methods, “Concentrations”). If roughly 70% of these enzymes are bound to sub-

strates (S/Km~2.3, Fig 1A), the remaining free enzymes would account for 4.6% of dry mass, mak-

ing the dry mass contributions of the assayed metabolites and of the corresponding free enzymes

comparable. Intuitively, inefficiencies of a few percent may seem low. However, population genet-

ical models show that a relative fitness difference of s between members of a population leads to

extinction of the less fit strain unless |s|<<1/Ne (with Ne the effective population size) [16]; with

typical effective population sizes of Ne�108 in natural bacterial populations [17], a strain that

could avoid wasting even 0.1% of its resources would be under substantial positive selection.

The total cell density (its mass per volume) is the sum of its aqueous density and its dry

weight per volume (dry mass density); the fraction of dry mass in the total density is approxi-

mately constant, at 30% across growth conditions [18,19]. The optimal allocation of the pro-

tein part of this mass in schematic whole-cell models has provided qualitative explanations for

several experimental observations in E. coli, such as the approximately linear scaling of the

ribosomal protein fraction with growth rate [20–25], optimal and suboptimal regulatory strat-

egies [24–26], and the emergence of overflow metabolism with increasing nutrient quality

[20,27–29].

While these studies considered only the protein part of the dry mass density, a given flux

through an enzymatic reaction is determined by the concentrations of both the enzyme and

the metabolites involved. Metabolites also influence the diffusion and the free energy of other

molecules; they hence contribute to molecular crowding, despite being smaller than proteins
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and accounting for a smaller fraction of the dry weight. The most straightforward way to account

for the observed constancy of dry mass density across growth conditions is thus to account for all

dry mass components equally. Accordingly, we now explore the consequences of a limited total

dry mass density on optimally efficient enzyme–substrate systems; this analysis results in a sur-

prisingly simple quantitative relationship between the contributions of enzymes and their sub-

strates to the dry mass density. This relationship accounts quantitatively for the relationship

between the cell’s investment into enzymes and their substrates (Fig 1B), as well as for the compa-

rable dry mass fractions of metabolites and the free enzymes waiting to consume them.

Enzyme–substrate optimality

Let us consider the total contribution of an enzyme E (with molar mass mE and mass density

cE = mE[E]) and its substrate S (with molar mass mS and dry mass density cS = mS[S]) to the cel-

lular dry mass density:

Mtotal ¼ mS½S� þmE½E� ¼ cS þ cE ð4Þ

At constant dry mass contribution Mtotal, the maximal reaction flux occurs at a unique com-

bination of substrate and enzyme concentrations. For the irreversible Michaelis–Menten

kinetics of Eq (1), the optimal contribution of the substrate to dry mass per volume equals the

corresponding contribution of the free enzyme molecules waiting to consume it:

mS½S�
�
¼ mE½Efree�

�
¼

mE½E�
�

1þ ½S��=Km
ð5AÞ

or, equivalently,

c�S ¼ c�E;free ¼
c�E

1þ c�S=~Km

; ð5BÞ

where we also scaled the dissociation constant to mass concentrations, ~Km ¼ mSKm; here and

below, asterisks (�) indicate values optimal for reaction flux.

The derivation of this relationship is illustrated in Fig 2 (a formal derivation is given in

Materials and methods, “Derivations”). Fig 2A illustrates a simple reaction, where enzymes

(large red squares) convert metabolites (small orange squares) to products according to irre-

versible Michaelis–Menten kinetics (Eq (2)). Fig 2B shows how the reaction flux v (blue shad-

ing) scales in proportion to the mass concentrations of free enzymes and substrates. At

constant combined mass concentration (density) of enzymes and substrates (violet line), maxi-

mal flux is achieved on the diagonal (cyan), where the contributions of free enzymes and sub-

strates are equal (illustrated in Fig 2C). From a complementary view point, at this optimal flux

value, Mtotal represents the minimal possible joint dry mass contribution of enzyme and sub-

strate: This state represents the most parsimonious—or most efficient—dry mass allocation at

the given reaction output.

A generalization to reaction networks, with enzymes consuming multiple substrates and

substrates consumed by multiple reactions, leads to a very similar equation: Each substrate

mass concentration equals the mass concentration sum over all free enzyme species Ei waiting

to consume the substrate

c�S ¼
P

ic
�

Ei ;free
¼
P

i

c�Ei
1þ c�S=~Km;i

ð6Þ
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(Materials and methods, Eq (37)). Further extensions to other irreversible kinetic rate laws

(such as metabolite inhibition, Hill kinetics, or stoichiometries other than 1:1) can be derived

formally in the same way as Eq (6). Eq (6) and its extensions can be viewed as an approxima-

tion to a network-level description of maximal cellular steady-state growth[30], which

accounts for the total dry mass conservation while ignoring details of the mass conservation of

individual cellular components (Text A in S1 File).

The predictions from Eq (5) become independent of the considered reactions when we

scale enzyme and metabolite mass concentrations by ~Km, the dissociation constant (in mass

units): e� = s��(1+s�), with e�≔c�E=~Km and s�≔c�S=~Km. As shown in Fig 3A, this predicted rela-

tionship (solid line) provides a quantitative description of the observed E. coli data across sev-

eral orders of magnitude of enzyme and substrate concentrations [12,15] (N = 66, r2 = 0.57,

P = 3 × 10−13 for predicted versus observed substrate concentrations across minimal media,

Fig 3B; geometric mean fold error (GMFE) = 2.49).

It is worth emphasizing that the predicted relationship between substrate and enzyme mass

concentrations contains no fitting parameters; it is based solely on dissociation constants

determined in in vitro experiments [31–33]. It can easily be shown that when predicting sub-

strate concentrations from enzyme concentrations according to Eq (5), uncertainties in the

values of dissociation constants lead to relative errors in the substrate concentrations of at

most the same magnitude,
D½S��

½S�� �
DKm
Km

(Materials and methods, Eq (23)). There is no reason

why the experimental estimates of dissociation constants should be biased in support of our

predictions. In the absence of Eq (5), there would thus be no reason why the data in Fig 3A is

distributed around the solid line, just above the plot’s diagonal (which describes equal mass

concentrations, c�s ¼ c�E), and no reason why the substrate concentrations predicted from

enzyme concentrations should be mostly within a factor of 3 of the observed values (Fig 3B), a

range that is compatible with the combined experimental uncertainty of metabolomics and

dissociation constant measurements. This consistency hence constitutes strong a posteriori

support for our assumptions.

Fig 2. Derivation of the optimal relationship between enzyme and substrate concentrations. (A) Irreversible Michaelis–Menten kinetics for enzyme

E (large red squares) consuming substrate S (small orange squares), acting under a constraint on total dry mass for the reaction, Mtotal. (B) Contour plot

of the flux dependence on substrate and free enzyme mass concentrations. Blue shading is proportional to flux; white contour lines trace identical flux

values at different combinations of substrate and free enzyme concentrations. The magenta line indicates the combined mass concentration of substrate

and total enzyme at the limit Mtotal; maximal flux is achieved on the diagonal (cyan). Equivalently, the diagonal indicates the minimal cellular investment

into substrate and free enzyme mass concentration at constant flux v (along the corresponding contour line). (C) Cartoon illustrating the relationship

between enzyme and metabolite concentrations in the optimal solution (the cyan dashed line in (B)). A general mathematical derivation for the optimal

relationship between metabolite and enzyme concentrations in reaction networks is provided in Materials and methods (“Derivations”).

https://doi.org/10.1371/journal.pbio.3001416.g002
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For Figs 1 and 3, we defined “dominant” enzymes as those that constitute at least half of the

total protein mass capable of consuming a given metabolite. While this threshold of 50% is to

some extent arbitrary, it means, according to Eq (6), that the substrate concentration is mostly

determined by this one protein: The combined effect of all other enzymes on the substrate con-

centration is expected to result in at most a 2-fold error. Choosing alternative cutoffs does not

affect the overall conclusions; as expected, the predictions get more accurate at higher cutoffs

(Fig B in S1 File).

The number of data points in Fig 3A is determined by the requirements of Eq (5) (for

details, see Materials and methods, “Dominant enzymes”). The most important restriction is

that the metabolite’s absolute concentration must have been quantified experimentally in the

same strain and condition as the proteome. Moreover, the approximation of Eq (6) with Eq (5)

requires that one enzyme dominates the sum in Eq (6), here defined as contributing at least

50% of the total enzyme mass able to consume the metabolite (see also Fig B in S1 File).

Fig 3. Experimentally observed enzyme [15] and metabolite [12] concentrations reflect the predicted optimal

scaling. (A) If a single enzyme E dominates the total enzyme mass consuming substrate S (Materials and

methods,”Dominant enzymes”), we can use Eq (5), rewritten for scaled enzyme concentration, e ¼ c�E=
~K~

m ¼

mE½E�
�
=ðmSKmÞ (y-axis), and scaled substrate concentration, s ¼ c�S=

~K~
m ¼ ½S�

�
=Km (x-axis), resulting in the prediction

e = s (1+s) (solid line). Data points are color coded by reaction (see abbreviations in (B) and full names in S2 Data).

Point sizes represent the saturation factor of the enzyme by the substrate, with the highest saturation factor for each

enzyme–substrate pair set to 1.0. (B) Comparison of experimentally observed (x-axis) and predicted (y-axis) molar

metabolite concentrations. Color coding as in panel a. (C) As predicted by Eq (6), the combined mass concentration

Etotal =
P

icEi ¼
P

imEi
½Ei� of the enzymes Ei consuming a given substrate S is higher than the substrate mass

concentration cS = mS[S]. Solid points show substrates for which irreversible enzymes contribute�50% to Etotal; circles

show substrates for which reversible enzymes (some of which may produce rather than consume the metabolite)

contribute>50% to Etotal. The underlying data can be found in S2 Data.

https://doi.org/10.1371/journal.pbio.3001416.g003
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To include more data points, we can make another approximation to Eq (6) that does not

require the existence of a dominant enzyme and is independent of Km: In the optimal state,

each substrate mass concentration must be smaller than the combined mass concentrations of

its consuming enzymes, cS �
P

ic
�
Ei

(i.e., mS½S�
�
�
P

imEi
½Ei�

�
). While molar concentrations of

substrates are much higher than those of enzymes (Fig 1B), the substrate mass density appears

to provide a lower bound for the corresponding enzyme masses density, as predicted: Almost

all data points in Fig 3C fall above the diagonal. Reversible enzymes (i) may produce rather

than consume the substrate; and (ii) may operate close to thermodynamic equilibrium; we

thus expect substrates for which reversible enzymes contribute the majority of the total enzyme

mass (open circles in Fig 3B) to deviate, on average, more from the lower bound than sub-

strates for which irreversible enzymes dominate (solid dots).

If the dominant enzyme for a given metabolite remains the same across multiple condi-

tions, we expect the corresponding points to follow the prediction line from Eq (5)—with dif-

ferent positions along the x-axis corresponding to differences in the enzyme’s saturation. This

effect can be seen for galactose-1-phosphate uridylyltransferase (GalT): GalT is expressed at

high levels only in growth on galactose, which is the only condition where it must sustain high

fluxes. In other conditions, the enzyme and its substrate alpha-D-galactose 1-phosphate

(GAL1P) show a correlated decrease (Fig 3A), demonstrating that Eq (5) can also apply at low

reaction fluxes.

The predictions do not match the data in Fig 3A perfectly. For each enzyme–substrate pair,

point sizes reflect the relative saturation; smaller points indicate a lower saturation and hence a

higher fraction of free enzymes. The highest saturation for each pair (dot size 1.0 in Fig 3A)

typically corresponds to the largest reaction flux and is generally associated with a relatively

good agreement between data and predictions (N = 15, r2 = 0.72, GMFE = 1.96, Fig C in S1

File). Substrate concentrations and hence saturation are often much lower in other conditions

(smaller dots in Fig 3A). By contrast, the corresponding enzyme concentrations are typically

maintained at high levels; a notable exception is GalT, which has a central metabolic function

only in growth on galactose, and for which enzyme concentrations are much lower in other

conditions. This observation of near-constant enzyme concentrations across conditions indi-

cates a limit to the optimal resource allocation quantified in Eqs (5) and (6): For most

enzyme–substrate pairs with similar metabolic roles across multiple conditions, the cellular

organization appears to approximate optimal metabolic efficiency at the highest flux condition

(where cellular costs for this reaction are highest), but may not reduce enzyme concentrations

specifically in conditions that require lower fluxes.

Conclusions

In this work, we have shown that the experimentally observed enzyme–substrate relationship

is roughly consistent with an optimal allocation of cellular mass between catalysts and their

substrates, where the cellular mass of a metabolite equals the combined mass of all free

enzymes waiting to consume it. For simple, irreversible Michaelis–Menten kinetics (Eq (1)),

this relationship follows directly from the proportionality of the reaction flux to the concentra-

tions of substrate and free enzymes and from the assumption of a limited dry mass density

(Fig 2). If all enzymes consuming a given metabolite make up only a small combined proteome

fraction, the optimal relationship causes enzymes to be, on average, only weakly saturated with

that metabolite.

How could the cell achieve such an optimal balance between the concentrations of metabo-

lites and enzymes across changing environments? To do so would demand very detailed, envi-

ronment-dependent regulation of individual protein concentrations. The machinery required
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for such detailed fine-tuning would likely be very costly and might be less robust to perturba-

tions than a simpler, approximate regulatory strategy. Due to this trade-off, natural selection

may have favored the evolution of an approximate, robust implementation of the optimal

enzyme–metabolite balance, potentially explaining why enzyme concentrations are roughly

constant across conditions (Fig 3A). Moreover, a trade-off between enzyme–metabolite opti-

mality and regulatory costs may also be consistent with the observation that protein concentra-

tion changes across growth conditions are often regulated not at the level of each individual

protein, but at the level of complete pathways or protein sectors [2,21,34,35], controlled by

global factors such as Crp [36].

Our derivation of the proposed optimal balance between catalysts and their substrates is

based on (i) the assumption of a constant dry mass density, which encompasses all intracellular

nonwater molecules regardless of their molecular sizes. Accounting for all dry mass compo-

nents equally is simply the most straightforward way to account for the observed constancy of

dry mass density across growth conditions in E. coli [18,19]. Previous studies have indepen-

dently focused on 2 different types of concentration bounds: (ii) a limit on the volume concen-

trations of large molecules such as proteins, DNA, and RNA, termed “macromolecular

crowding” [3,20]; and (iii) a limit on the molar concentration of small molecules, ensuring the

maintenance of internal osmolarity [37,38]. While the exact mechanisms connecting these 3

different types of concentration bounds are not currently understood and still require further

investigation, a recent theoretical study indicates that large and small molecules jointly inter-

fere with intracellular diffusion and the Gibbs free energies of reactions, resulting in an opti-

mal combined mass density: At lower concentrations, enzymes are not sufficiently saturated

with their substrates, while at higher concentrations, the slow down of diffusion limits the sub-

strate supply [39]. The study’s estimate of the optimal dry mass density was highly consistent

with observed values in E. coli [19]. These results indicate that the overall mass concentration

limit considered here can be seen as a “coarse-grained” constraint approximating more funda-

mental physical mechanisms.

The optimal use of dry mass density is also to be expected if we look at the problem from a

different, simpler angle: Between 2 cells with all reactions running at the exact same rates, the

cell maintaining such rates at a smaller dry mass density will grow faster, since it can reproduce

its own biomass in less time (see Text A in S1 File for more details). As growth rate is an

important determinant of fitness in fast-growing microbes such as E. coli [40], the resulting

selection pressure toward minimal dry mass would continue until eventually other costs, such

as the costs of increasingly detailed gene regulation systems, prevent further fine-tuning of the

enzyme–substrate relationship.

We wish to emphasize that our conclusions do not rest on the details of these theoretical

considerations, but on the quantitative agreement between our predictions and the observed

enzyme–substrate relationships in E. coli. We are not aware of the existence of plausible alter-

native models that could make equally accurate predictions without fitting any parameters.

Accordingly, we conclude that the derivations leading to Eqs (5) and (6) currently provide the

best explanation for the observed relationships.

Clearly, other factors than those considered above also affect optimal allocation strategies.

For instance, the concentration of membrane-permeable metabolites is often set by external

concentrations. Further, the cell might favor higher enzyme levels in order to lower the con-

centrations of toxic substrates such as reactive oxygen species, weak acids, or formaldehyde.

Our analysis in its current form also does not consider posttranslational regulation, such as the

suppression of enzyme activities by allosteric regulation or protein modifications. Such regula-

tion does occur for a minority of enzymes in E. coli under some conditions, and, when it does,

our results are no longer expected to hold. Posttranslational regulation plays a stronger role in
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eukaryotes; given the lack of matching, quantitative proteomics and metabolomics data from

eukaryotes, an evaluation of the applicability of our theory beyond prokaryotes currently

appears infeasible.

Multiple reactions in central carbon metabolism are reversible. Several of these have been

found to operate close to thermodynamic equilibrium, where we expect deviations of the enzyme/

substrate concentration ratio toward higher values compared to our equations. Here, Eqs (5) and

(6) provide lower bounds for the optimal enzyme concentrations; in contrast to effectively irre-

versible reactions, a quantitative prediction of these values is impossible unless we consider the

complete reaction network, as enzyme concentrations are now interdependent with both sub-

strate and product concentrations [30]. However, 70% of all enzymatic reactions in the E. coli
genome-scale metabolic model are labeled as generally irreversible [31], and many other reactions

are likely effectively irreversible in certain conditions; together with the results in Fig 3, these con-

siderations indicate that our theory is widely—although not universally—applicable.

The metabolomics data used for Fig 3 cover 4 orders of magnitude, but are biased toward

highly abundant molecules involved in high-flux, central pathways; while E. coli is able to produce

over 1,000 metabolites in total, most of these typically occur at low concentrations, such that the

total E. coli metabolome accounts for only about 10% to 20% of dry mass [41,42] compared to the

3.1% for the 43 metabolites assayed by Gerosa and colleagues [12]. While it is conceivable that the

observed relationships only apply to more abundant metabolites and their consuming enzymes,

Fig 3 does not indicate a qualitatively different behavior for metabolites at low mass concentra-

tions. A thorough, genome-wide analysis of the applicability and limits of our theory will have to

await the generation of quantitative concentration data for the complete E. coli metabolome.

In sum, our results highlight the trade-off between the cellular maintenance costs of enzyme

and metabolite pools, indicating that their concentrations are approximately balanced toward

the parsimonious use of cellular resources. This organizing principle not only improves our

understanding of cellular resource allocation, but can also contribute to the optimization of

the metabolic efficiency of engineered strains and synthetic cellular systems.

Materials and methods

Concentrations

Proteins and metabolites. We obtained protein concentrations of E. coli strain BW25113

for 18 exponential growth conditions on minimal media [15] (S7 Data). For 7 of these condi-

tions, we additionally obtained metabolite concentrations [12] for the same strain (S6 Data).

Individual absolute protein abundances and growth rates for cells growing exponentially in

different carbon-limited conditions were obtained from Schmidt and colleagues [15]. Protein

mass concentrations (protein mass per cytoplasmic volume) were obtained by first converting

the reported absolute protein abundances into protein mass fractions (gram of proteins per

total protein mass) by multiplying protein abundances by the molecular weight and normaliz-

ing them so that they sum to 1. The resulting fractions were converted to protein mass per dry

weight by multiplying them by the ratio of total protein mass to dry mass, MP/MDW. For car-

bon-limited cells, experimental data from Basan and colleagues [27] can be well described by a

linear function of the growth rate λ, MP/MDW = 0.8053−λ×(0.1461 h). Finally, the resulting dry

weight fractions were divided by the ratio of cytoplasmic volume and dry mass [43], 2.23 μL/

mgDW to obtain protein mass per cytoplasmic volume. Metabolite concentrations were

obtained from Gerosa and colleagues [12] in units of μmol/gCDW and converted to μmol/μL

using the same conversion factor 2.23 μL/mgDW used for the proteins.

Enzyme–substrate dissociation constants. For Fig 3A, we collected a nonredundant set

of enzyme dissociation (Michaelis) constants Km of wild-type enzymes from EcoCyc [31],
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BRENDA [32], and UniProt [33] (S8 Data). All experimental values are from E. coli, with the

exception of 2 metabolite–enzyme pairs where only data from other organisms are available:

D-ribulose 5-phosphate–ribose-5-phosphate isomerase A (Ru5P–rpiA) and 1,3-bisphospho-

D-glycerate–phosphoglycerate kinase (13DGP–pgk). If more than one Km was listed across the

databases, we first checked if these values were mostly within the same order of magnitude

(i.e., if the geometric standard deviation was�10); in this case, we used the geometric mean of

all available values. Otherwise, we considered the available data for Km to be too unreliable to

be included. For Fig 1A, we obtained Km values from the dataset in reference [11], filtered for

the organism E. coli and restricted to values for reaction substrates rather than products.

Metabolite molecular weights were obtained from EcoCyc [31].

Dominant enzymes

If the unsaturated mass concentration mE[Efree]� of enzyme i accounts for more than half of

the total protein mass utilizing a given substrate S, Eq (5) approximately describes the relation-

ship between enzyme and substrate concentration also in the general case (Eq (6)). In this case,

we call Ei the “dominant” enzyme for S. For an automated identification of dominant enzymes,

we used the sybilSBML [44] package in R [45], with the EcoCyc [31] metabolic model for E.

coli exported as an SBML file using Pathway Tools 19.5 [46]. For each metabolite measured in

reference [12], we first identified all reactions using it as a substrate according to the metabolic

model. The gene-reaction associations given in the EcoCyc model through b-numbers were

used to map the reactions to the proteins measured in reference [15].

For each substrate assayed in by Gerosa and colleagues [12], we determined a dominance

score (hereafter referred to simply as “dominance”) for each enzyme consuming it and assayed

in by Schmidt and colleagues. The dominance of an enzyme was defined as the fraction it con-

tributes to the total mass concentration of all assayed enzymes using the substrate. An enzyme

was considered “dominant” for the substrate if its dominance was >0.5, i.e., its molecules con-

stituted more than half of the total protein mass consuming the substrate. We only attempted

to assess dominance if more than half of the enzymes capable of consuming a given substrate

were assayed in reference [15].

For enzymes with dominance > 0.5, we still did not consider it dominant for further analy-

sis if

i. its substrate has a major role besides the involvement with the assigned metabolic enzymes

in the EcoCyc model. That is the case for 2 metabolites with major role in gene regulation:

Cyclic AMP (cAMP) regulates transcription through varying concentrations of cAMP-CPR,

and 2-dehydro-3-deoxy-D-gluconate 6-phosphate is a component of the YebK-2-dehydro-

3-deoxy-D-gluconate 6-phosphate transcriptional regulator; accordingly, the metabolic

enzymes using these metabolites as substrates are not expected to have a major impact on

their concentrations.

ii. its associated metabolite is in fact a product, not a substrate of the respective reaction. We

inferred this by (a) accessing the available condition-dependent reaction directions also

measured in Gerosa and colleagues [12]; and (b) for 3 amino acids (L-tyrosine, L-arginine,

and Adenine), their respective most dominant enzymes (aspC, argH, and deoD) are in fact

catalyzing reactions in their biosynthesis pathways [31].

Dominant enzyme information including their genes, bnumbers, dominance, reversibility,

and concentrations are included in S2 Data. This file also includes the corresponding informa-

tion for the second most dominant enzyme in each case.
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Derivations

Let us first consider the simple case of a substrate used by a single irreversible reaction. For an

irreversible enzymatic reaction that converts a single substrate into a product according to a

general kinetic function k� k([S], Km, kcat), the reaction rate is

v ¼ ½E�k ð7Þ

with enzyme molar concentration [E] and substrate molar concentration [S]. For irreversible

Michaelis–Menten kinetics,

k ¼ kcat
½S�

½S� þ Km
; ð8Þ

where kcat is the turnover number and Km is the enzyme–substrate dissociation (Michaelis)

constant. The enzyme and substrate concentrations of this reaction together account for a total

mass concentration M, measured per volume of the corresponding cellular compartment, e.g.,

the cytosol; M is a linear function of the molar concentrations [E] and [S], each multiplied

with the respective molecular weights (mE and mS, respectively):

M ¼ mE½E� þmS½S� ð9Þ

Maximizing the flux at a given total mass concentration M is mathematically equivalent to

minimizing M at a constant flux; we here consider the latter scenario, assuming that the cell is

in a steady state that demands a fixed reaction rate v>0. Rearranging Eq (7), we can express

[E] as a function of v and the kinetic function k([S], Km, kcat),

E½ � ¼
v
k

ð10Þ

We assume v>0 and thus [S]>0 and k>0 throughout our derivations. Substituting Eq (10)

into Eq (9), we can express the reaction’s total mass concentration, M, as a function of the sub-

strate concentration [S] and the constants v, Km, kcat:

M ¼ mE
v
k
þmS S½ � ð11Þ

If M is minimal, a necessary condition is that the derivative of Eq (11) with respect to [S]

must be zero (at constant v):

dM
d½S�
j½S�¼½S�� ¼ 0 ð12Þ

We thus have

� mE
v�

ðk�Þ2
dk
d½S�
þmS ¼ 0 ð13Þ

We can simplify the further derivation if we divide all terms in Eq (13) by mS and consider

the ratio a≔mE/mS:

a
v�

ðk�Þ2
dk
d½S�
¼ 1 ð14Þ
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Substituting the flux v using Eq (7):

a
½E��

k�
dk
d½S�
¼ 1 ð15Þ

To calculate the derivative, we assume irreversible Michaelis–Menten kinetics; however, the

derivation can proceed identically for any other irreversible kinetic rate law.

For irreversible Michaelis–Menten kinetics (Eq (8)), Eqs (14) and (15) result, respectively,

in

v� ¼ kcat
ð½S��Þ2

aKm
ð16Þ

a½E�� ¼ ½S�� 1þ
½S��

Km

� �

ð17Þ

We note that Eq (17) does not depend on kcat. Combining Eq (17) with Eq (3) of the main

text results in the equality between the mass concentration of substrate and free enzyme,

mS½S�
�
¼ mE½Efree�

�
ð18Þ

Both Eq (16) and (17) can further be solved for [S]� to give, respectively,

½S�� ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
aKmv�

kcat

s

ð19Þ

½S�� ¼
Km

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
4a½E��

Km

s

� 1

 !

ð20Þ

Substituting Eq (19) in Eq (16) and Eq (20) in Eq (17), we have, respectively,

v� ¼ kcat ½E�
�
�
½S��

a

� �

ð21Þ

½E�� ¼
v�

kcat
þ

ffiffiffiffiffiffiffiffiffiffi
Kmv�

akcat

s

ð22Þ

Here, [S]� is given by Eq (20). In both equations, we note that the second term on the right-

hand side is a consequence of the incomplete enzyme saturation by the metabolite.

Error in predicted substrate concentration due to uncertainties in Km. Consider the

mass concentrations (densities) at optimality of enzyme, c�E ¼ mE½E�
�
, and substrate,

c�S ¼ mS½S�
�
. According to Eq (5),

c�E ¼ c�S 1þ
c�S:
~Km

� �

¼ c�S þ
c�S2
~Km

) c�S ¼
~Km

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
4c�E
~Km

s

� 1

 !
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)
@c�S
@ ~Km

¼
c�S
~Km

1 �
1þ

c�S
~Kmffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
4c�E
~Km

q

0

B
@

1

C
A �

c�S
~Km

)
Dc�S
c�S
�
D~Km

~Km

; ð23Þ

where the second to last inequality follows from the fact that the partial derivative is known to

be positive, and the last line follows from the law of error propagation. As Dc�S; c
�
S; D

~Km, and

~Km are all scaled by the same molar masses relative to Δ[S]�, [S]�, ΔKm, and Km, respectively, it

follows that the relative error in [S]� is at most that of Km.

Optimality at the systems level

Enzymatic reactions in biological cells are not isolated: The same substrate is often consumed

by multiple enzymes, and the same enzyme may utilize multiple substrates. We thus need to

generalize the above derivation to the systems level, considering all metabolic reactions within

one cellular compartment (e.g., the cytosol) simultaneously.

A nonzero rate vj of reaction j can then be described using any reaction kinetics as

vj ¼ ½Ej�kj; ð24Þ

where the effective rate per enzyme kj ¼ kjð½Si�; kcatj ;Kmij
Þ is a function of the metabolite con-

centrations [Si] and respective turnover number kcatj , and Michaelis constants Kmij
(in the fur-

ther derivations, we assume Kmij
¼ 0 if the metabolite i is not involved in the reaction j). We

assume that the cell is in a given metabolic state, i. e., all reactions have a fixed rate vj ( v! =

const). Below, we are only concerned with active reactions (vj>0), and we thus drop metabo-

lites and enzymes involved only in nonactive reactions from further consideration (i.e., we

assume [Si]>0 and [Ej]>0 for all i and j without loss of generality).

In this metabolic state, the metabolism of a given cellular compartment accounts for a total

mass concentration Mtotal; this can be calculated as the sum of all enzyme and metabolite

molar concentrations, each term multiplied by the corresponding molecular weight:

Mtotal ¼
P

jmEj
½Ej� þ

P
imSi
½Si� ð25Þ

The derivation proceeds largely as above. We can rearrange Eq (25) to express each enzyme

concentration [Ej] as a function of vj and the vector of effective rates (which itself is a function

of metabolite concentrations [Si]) as

½Ej� ¼
vj
kj

ð26Þ

It follows that for any vector of reaction rates v! and any vector of nonzero metabolite con-

centrations [Si], there always exists a matching vector of enzyme concentrations [Ej]. Substitut-

ing Eq (26) into Eq (25), we obtain

Mtotal ¼
P

jmEj

vj
kj
þ
P

imSi
½Si�; ð27Þ
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which is now only a function of metabolite concentrations [Si], kinetic parameters and the

constants v!;m!E;m
!

M .

If this metabolic state has the lowest possible mass concentration (i.e., Mtotal is minimal

with respect to all metabolite concentrations), then all partial derivatives must vanish,

0 ¼
@Mtotal

@½Sl�
j½Sl �¼½Sl �� ¼ �

P
jmEj

v�j
ðk�j Þ

2

@kj
@½Sl�

þmSl
; ð28Þ

for all metabolites l (we keep the index i reserved for the sum of metabolites and use l for the

respective partial derivatives, in order to avoid confusion in later equations). Dividing all

terms in Eq (28) by mSl
and rearranging, we obtain

P
j

aljv�j
ðk�j Þ

2

@kj
@½Sl�

¼ 1; ð29Þ

where alj≔mEj
=mSl

is the ratio of the molecular weights of enzyme Ej and its substrate Sl.
Using Eq (24) to resubstitute the reaction rates vj into Eq (29) leads to

P
j

alj½Ej�
�

ðk�j Þ
2

@kj
@½Sl�

¼ 1 ð30Þ

This equation can be solved for arbitrary kinetic functions (for any explicit dependency of

kj(S) on the metabolite concentrations S), provided these are effectively irreversible.

If all reactions j follow generalized irreversible Michaelis–Menten kinetics of the “conve-

nience kinetics” form[47],

kj ¼ kcatj
Q

i
½Si�

½Si� þ Kmij

 !

; ð31Þ

where the kinetic parameters consist of turnover numbers kcatj and Michaelis constants Kmij
,

then Eq (30) results in

P
j

alj½Ej�
�

½Sl�
�

1þ
½Sl �
�

Kmlj

� � ¼ 1; ð32Þ

which only depends on the concentration and Michaelis constants of a single substrate Sl and

is independent of turnover numbers kcatj . Thus, the contribution of each individual metabolite

to the total cellular cost in a maximally efficient metabolic system can be considered in isola-

tion. Also considering irreversible (generalized Michaelis–Menten) convenience kinetics, Eq

(29) results in

P
j

aljv�j Kmlj
φ�lj

kcatj
¼ ð½Sl�

�
Þ

2
; ð33Þ

where

φ�lj≔
Q

l0 6¼l

Kml0 j

½Sl0 �
� þ 1

 !

ð34Þ

is the contribution of the other metabolites l0 6¼l used as substrates in reaction j.
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Combining Eq (32) with Eq (3) directly generalizes Eq (18), now considering the concentra-

tion of all free enzymes j using a substrate l:

mS½Sl�
�
¼
P

jmEj
½Ej;free�

�
; ð35Þ

where [Ej,free] is the concentration of the fraction of enzyme Ej not bound to its substrate Sl.
This equation applies to a complete metabolic system of effectively irreversible reactions

following generalized Michaelis–Menten kinetics: The optimally cost-efficient concentration

of each metabolite [Sl] in a given metabolic state (i.e., at given reaction rates v!) depends only

on the concentrations of the enzymes consuming it, their affinities Kmlj
for the metabolite, and

the enzyme/metabolite molecular weight ratios alj, but is independent of turnover numbers

and reaction rates.

If one of the summands in Eq (35) is close to 1, it will dominate this expression, and we

approximately recover Eq (5) of the main text. The dominant term will usually correspond to

the enzyme with the highest aljEj; this is what is shown in Fig 3A of the main text.
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Kollmann, Tabea Mettler-Altmann, Balazs Papp, Daniel Rickert, Deniz Sezer, and Itai Yanai

for helpful discussions. Deniz Sezer shared important insights into the interpretation of Eq (5).
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