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Twist-2 Controls Myeloid Lineage
Development and Function
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Basic helix-loop-helix (bHLH) transcription factors play critical roles in lymphoid and erythroid development; however,
little is known about their role in myeloid lineage development. In this study, we identify the bHLH transcription factor
Twist-2 as a key negative regulator of myeloid lineage development, as manifested by marked increases in mature
myeloid populations of macrophages, neutrophils, and basophils in Twist-2-deficient mice. Mechanistic studies
demonstrate that Twist-2 inhibits the proliferation as well as differentiation of granulocyte macrophage progenitors
(GMP) by interacting with and inhibiting the transcription factors Runx1 and C/EBPa. Moreover, Twist-2 was found to have
a contrasting effect on cytokine production: inhibiting the production of proinflammatory cytokines such as interleukin-
12 (IL-12) and interferon-y (IFNy) while promoting the regulatory cytokine IL-10 by myeloid cells. The data from further
analyses suggest that Twist-2 activates the transcription factor c-Maf, leading to IL-10 expression. In addition, Twist-2 was
found to be essential for endotoxin tolerance. Thus, this study reveals the critical role of Twist-2 in regulating the
development of myeloid lineages, as well as the function and inflammatory responses of mature myeloid cells.
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Introduction

Hematopoietic cell development and function must be
tightly regulated to maintain homeostasis. Cell fates are
established by master transcription factors that orchestrate
determination and differentiation. Disruption of this regu-
lation can lead to lethal consequences for the host in the form
of myelodysplasias or leukemia. Development of the termi-
nally differentiated myeloid lineages follows a hierarchy
starting with the hematopoietic stem cell (HSC) [1-3], which
gives rise to a series of rapidly dividing committed progen-
itors [4,5], namely the common myeloid progenitor (CMP)
and granulocyte macrophage progenitor (GMP). The identi-
fication of specific surface markers has allowed for prospec-
tive isolation of these populations and has facilitated
investigation of the transcriptional regulation that occurs
during myelopoiesis [6-8]. Transcription factors, including
PU.1 and C/EBPa, play critical roles in development of
myeloid lineages because in the absence of these factors,
specific populations fail to develop or are severely altered.
PU.1 plays a broad role in determination of both myeloid and
lymphoid lineages, as mice deficient in PU.1 fail to develop B
cells, T cells, granulocytes, or macrophages [9]. C/EBPa is
necessary for proper granulocyte colony-stimulating factor
receptor (G-CSFR) promoter transactivation as well as addi-
tional downstream activities, and is hence required for
formation of the GMP and myeloid lineage commitment
[10-14]. Although many transcription factors have been
identified that play critical roles in promoting myeloid
lineage development, factors that naturally function to
inhibit or negatively regulate myeloid lineage development
are largely unknown and require further characterization.
These inhibitory factors may play equally important roles in
regulating hematopoiesis by preventing excessive myeloid
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lineage development or myeloproliferative disease. Further-
more, aberrant expression of inhibitory factors, as exempli-
fied by the Runx1-ETO fusion protein, which functions as a
dominant-negative regulator of the transcription factor
Runx1l and an inhibitor of the C/EBPa promoter [15,16],
may play a direct role in leukemogenesis by blocking normal
differentiation and creating an enlarged pool of progenitors
that are prone to malignant transformation.

Importantly, many basic helix-loop-helix (bHLH) tran-
scription factors, including the E2A family, stem cell leukemia
factor (SCL/Tall), Lyl-1, and the helix-loop-helix (HLH) Id
family, are known to be important regulators of hematopoi-
esis [17-21]. bHLH factors form heterodimers or homodimers
that can bind E-box DNA consensus sites comprised of the
sequence 5-CANNTG-3'. SCL is a bHLH factor that is
required for definitive hematopoiesis [18,19]. SCL knockout
(KO) mice are embryonic lethal due to a failure in primitive
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Author Summary

Hematopoiesis is coordinated by transcription factors that regulate
proliferation, differentiation, and cell fate determinations. Myelopoi-
esis refers to the development of all white blood cells, excluding
lymphocytes (B and T cells); however, the molecular regulation of
this developmental process is still incompletely understood. In this
study using mice that lack expression of Twist-2, we establish a
novel role for this basic helix-loop-helix transcription factor as
regulator of myeloid progenitors and fully differentiated myeloid
cells. Specifically, Twist-2 acts to inhibit proliferation as well as
differentiation of progenitors that give rise to macrophages,
neutrophils, and basophils by inhibiting the important transcription
factors Runx1 and C/EBPa. In mature myeloid cells, Twist-2
negatively regulates the production of proinflammatory cytokines
while positively promoting the production of regulatory cytokine IL-
10 by these cells. These findings provide significant insight into
regulation of myeloid lineage development and function.

yolk sac hematopoiesis, and conditional KO mice have
defective erythropoiesis and megakaryopoiesis, but myeloid
lineages are largely unaffected [22]. Lyl-1 is a bHLH factor,
closely related to SCL, which is important for proper B cell
differentiation and regulates the reconstitution ability of
HSCs [20]. The E2A bHLH family is another group that plays
an essential role in development of B cell lineages, without
which B cell development is arrested at the pre-pro B cell
stage [23,24]. A unique set of HLH proteins is the Id family,
which lacks the basic region required for DNA binding and
function as dominant-negative regulators of other HLH
factors. Id-2 and Id-3 cross-repress E2A-mediated B cell
development to skew lymphoid dendritic cell (DC) or natural
killer (NK) cell lineages [25-27].

Nevertheless, whereas many HLH factors have been found
to be essential for proper lymphoid or erythroid develop-
ment, the role of HLH factors in myeloid lineage develop-
ment is less understood. Furthermore, in general, very few
intrinsic negative regulators of myeloid lineage development
have been identified. Instead, much of the inhibitory
regulation that is reported is the result of competition or
cross-inhibition between transcription factors such as PU.1
and C/EBPo, or between PU.1 and Gata-1 [28]. Thus, we
hypothesized that there are unknown bHLH transcription
factors that regulate myeloid lineage development. In this
study, we identify the bHLH factor Twist-2 as a critical factor
that regulates the proliferation and differentiation of
myeloid lineage progenitors, as well as the function and
inflammatory responses of mature myeloid cells.

Results

Preferential Expression of Twist-2 in Myeloid Progenitors

In order to identify bHLH factors that regulate myeloid
development, we first used Gene Expression Omnibus (GEO)
microarray dataset GSE3722 to analyze the expression of a
panel of candidate genes, including known myeloid tran-
scription factors and bHLH factors in CMP and GMP (Figure
S1). Subsequent semiquantitative reverse transcription PCR
(RT-PCR) analysis of sorted hematopoietic progenitors from
wild-type (WT) C57B/6 mice (Figure S1) showed that Twist-2
was preferentially expressed in Lin IL7R Sca-1c¢-
Kit"CD34 FcyRIV/III" 8" GMP and Lin IL7R Sca-1"c-
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Kit"CD34 FcyRIIIIIT CMP, but not or weakly expressed in
the Lin IL7R Sca-1"c-Kit" hematopoietic progenitor com-
partment containing HSC or Lin IL7R Sca-1'""V¢-Kit'*" com-
mon lymphoid progenitors (CLP) (Figure 1A). In contrast to
the preferential expression of Twist-2, Twist-1 was expressed
in all types of progenitors we examined (Figure 1A).
Quantitative RT-PCR assays further confirmed the prefer-
ential and constitutive expression of Twist-2 in CMP and
GMP populations (Figure 1B).

Twist-2 KO Mice Have Significant Systemic Increases in
Multiple Myeloid Lineages

The Twist family of bHLH transcription factors, including
Twist-1 and Twist-2, are key regulators of mesodermal
differentiation [33] and also play a role in the epithelial to
mesenchymal transition involved in cancer metastasis [34].
Twist-2 is known to inhibit the terminal differentiation of a
variety of mesodermally derived cell types including myo-
cytes, osteoblasts, and adipocytes [29-32]. Although many of
the known HLH factors are direct dimerization partners with
Twist-2, there are no reports, to our knowledge, investigating
the role of Twist-2 in hematopoiesis.

To investigate the possible role of Twist-2 in hematopoi-
esis, we enumerated mature myeloid cells and other types of
immune cells from lymphoid organs in age- and sex-matched
Twist-2 knockout (KO) () mice and wild-type M litter-
mates. Twist-2 KO mice develop a severe inflammatory
syndrome, and the majority of mice die within 2 wk after
birth [35]. This phenotype is associated with elevated serum
levels of the cytokines interleukin-1 (IL-1) and tumor necrosis
factor-a (TNFo) due to derepression of necrosis factor kB
(NF-xB) activity [35,36]. Upon analyzing Twist-2 KO mice, we
observed similar percentages of T cells and B cells in the
spleens as compared to WT littermates (Figure 1C). However,
we found a significant increase in CD11b"Gr-1" myeloid cells
in the spleens of Twist-2 KO mice (Figure 1C, lower panel). In
order to determine whether this myeloid population was
systemically increased, we analyzed the liver, blood, and bone
marrow (BM), and found increases in CD11b"Gr-1" popula-
tions in each of these tissues and organs of Twist-2 KO mice
(Figure 1D). Using the specific macrophage marker F4/80, we
identified this increased population to include both
CD11b"Gr-1"""F4/80" macrophages and CD11b"Gr-1"8"F4
80" neutrophils (Figure 1E). In addition, we observed an
increase in CD11c" myeloid DCs in spleens of Twist-2 KO
mice, with equal contributions to two major DC subtypes,
namely CD11¢"CD11b"CD4" and CD11¢"CD11b CD8" DCs
(Figure 1F).

Multiple different cell types of the myeloid lineage stain
positive with CD11b and Gr-1 antibodies, and so in order to
distinguish these myeloid cell subpopulations, we performed
automated complete blood counts (CBC) with differentials on
peripheral blood obtained from a series of eight Twist-2 KO
mice and WT littermates. Twist-2 KO mice have increased
percentages and absolute cell counts of multiple myeloid
lineages, including a 2-3-fold increase in macrophages and
neutrophils as well as an 18-fold increase in absolute basophil
count (Table 1). There was no apparent change in absolute
lymphocyte, red blood cell, or platelet counts in peripheral
blood, suggesting that other lineages, including megakaryo-
cyte and erythroid lineages, were not significantly affected.
Histology of whole bone mounts demonstrated a largely
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Figure 1. Twist-2-Deficient Mice Have Significant Increases in Multiple Myeloid Cells in Multiple Organs

(A and B) Semiquantitative (A) and quantitative (B) RT-PCR of sorted hematopoietic progenitor populations showing constitutive expression of Twist-2
in GMP and CMP populations. Data are normalized to 18s rRNA internal controls and representative of two independent experiments. Error bars indicate
the standard deviation (SD).

(C) Splenocytes of Twist-2 KO and WT littermates were analyzed by flow cytometry. Results are representative of eight independent pairs of mice
analyzed. Splenic CD4" and CD8" T cells (upper panel), IgM* and IgD" B cells (middle panel), and CD11b" and Gr-1* granulocytes and macrophages
(lower panel) are shown.

(D) Flow cytometry showing expansion of CD11b"Gr-1" myeloid cells in peripheral blood (upper panel), liver (middle panel), and BM (lower panel) of
Twist-2 KO mice representative of six independent experiments. ) )
(E) Flow cytometric analysis of splenocytes showing the expansion of Gr-1°"CD11b* F4/80"9" macrophages (upper panel) and F4/80'°*CD11b*Gr-1"9"
neutrophils (lower panel) in Twist-2 KO mice representative of three independent experiments.

(F) Absolute cell counts of CD11c* cells and two major DC subtypes, CD11c¢"CD11b"CD4" and CD11c"CD11b"CD8™ cells, are both increased in Twist-2
KO spleen. Error bars indicate SD.

(G) Images of whole bone mounts stained with H&E (left panels). BM touch preps stained with Wright-Giemsa (right panels) show higher numbers of
mature myeloid cells in the Twist-2 KO BM.

(H) Images of peripheral blood smears with Wright-Giemsa stain showing hypersegmented neutrophils and enlarged monocytoid cells in Twist-2 KO
mice. Images are representative of four independent sets of peripheral blood smears. The arrow indicates the hypersegmented nuclei of the neutrophils.

doi:10.1371/journal.pbio.0060316.g001

intact architecture of the trabecular bone in Twist-2 KO mice
(Figure 1G, left panel). Histological analysis of Twist-2 KO BM
revealed increases in myeloid cells in multiple stages of
maturation (Figure 1G, right panel and arrows), which is
consistent with the CD11b"Gr-1"8" phenotype of the
expanded myeloid populations (Figure 1C-1F). Interestingly,
we observed that hypersegmented neutrophils and atypical
monocytes were present in peripheral blood smears of Twist-
2 KO mice (Figure 1H), which are pathologic findings that can
be observed in the setting of myelodysplastic and myelopro-
liferative diseases [37]. Furthermore, the dramatic increase in
basophils is suggestive of a myeloproliferative disease because
basophilia is mainly observed in the setting of myeloprolifer-
ative disease and cases of chronic myeloid leukemia [38,39].

Increases in Myeloid Cells Due to an Intrinsic Feature of
Hematopoietic Progenitors Deficient in Twist-2

To mechanistically investigate the increases in myeloid
cells observed in Twist-2 KO mice, we first tested whether a

Table 1. Complete Blood Counts with Differentials on Peripheral
Blood

Peripheral Genotype
Blood Counts Twist-2+/+ Twist-2—/~
(Mean * SD) (Mean *+ SD)

Neutrophils, % 6.43 = 0.85 13.55 + 2.74
Lymphocytes, % 84.08 = 242 68.93 + 295
Monocytes, % 3.80 £ 146 6.48 £ 3.05
Eosinophils, % 445 = 0.50 6.75 = 2.71
Basophils, % 0.48 = 0.14 4.83 + 2.98
Neutrophils, cells/pl 220 *= 38 518 = 99
Lymphocytes, cells/pl 3030 + 419 2965 + 775
Monocytes, cells/ul 124 = 63 305 = 179
Eosinophils, cells/ul 160 = 14 263 = 99
Basophils, cells/pl 10*+6 180 + 79
RBC, X 10e6/ul 537 £ 045 5.64 £ 0.61
HGB, g/dI 94 + 037 9.58 + 0.73
HCT, % 279 * 0.84 27.88 * 1.99
PLT, X 10e3/ul 661 = 319 562 * 214

The table shows specific increases in multiple myeloid lineages, including macrophages,
neutrophils, and basophils in Twist-2 KO mice (n = 8 per group); 2-3-fold increases in
macrophages and neutrophils and an 18-fold increase in absolute cell count of basophils
were observed in the peripheral blood of Twist-2 KO mice.

HCT, hematocrit; HGB, hemoglobin; PLT, platelets; RBC, red blood cells; SD, standard
deviation.

doi:10.1371/journal.pbio.0060316.t001
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decrease in apoptosis or cell turnover of these myeloid cells
in the periphery results in their accumulation. Splenocytes
from Twist-2 KO and WT littermates were cultured in
complete media and stimulated with proapoptotic cytokines.
Cells were then analyzed by flow cytometry with staining for
Annexin-V and propidium iodide (PI). Twist-2 KO
CD11b"Gr-1" cells did not show any increased resistance to
cell death. In fact, there was a slightly increased susceptibility
to apoptosis as indicated by the increased percentage of
Annexin-VPI” Twist-2 KO cells (Figure 2A). In addition, we
did not observe any apparent difference in the percentage of
CD11ctAnnexin-V'PI" late apoptotic or necrotic DCs de-
rived from Twist-2 KO and WT BMs (Figure 2B). Thus, it is
unlikely that the increased populations of myeloid cells we
observed in Twist-2 KO mice are due to decreased cell
turnover or resistance to apoptosis in these populations.
Another possibility is that a change in cell trafficking may
result in relative increases of these myeloid cells in specific
organs or tissues at the expense of others. However, this
possibility was largely excluded due to the observed increases
in multiple tissues and organs of Twist-2 KO mice, including
the BM. The possibility of increased myeloid cells as a result
of infection was also unlikely, due to the lack of evidence of
infection in these mice and to their housing in a pathogen-
free barrier facility. Next, we examined the possibility that
altered or dysregulated hematopoiesis in Twist-2 KO mice
results in increased production or myeloproliferation.

Increases in Myeloid Lineage Progenitors in Twist-2-
Deficient Mice

To investigate the intrinsic mechanism for the observed
increases in myeloid cells in Twist-2 KO mice, we used flow
cytometric analysis to examine the HSC and progenitor pop-
ulations. We observed a subtle decrease in the Lin c-Kit"Sca-1"
HSC compartment and percentage of Lin IL7R Sca-1"c-
Kitt"CD34 FcyRIIIT CMP in Twist-2 KO BM (Figure 2C and
2D). In contrast, we found a significant expansion of the
Lin IL7R Sca-1"c-Kit"CD34 FeyRIVIIT™MS" GMP population
in the BM and spleens of Twist-2 KO mice (Figure 2D and 2G).

Downstream progenitors and immediate myeloid precur-
sors could also contribute to myeloproliferation in Twist-2
KO mice. Recently, there has been significant progress in
identifying specific surface markers of these precursor
populations and delineating their hierarchical program of
differentiation [7,40-42]. Mouse DC precursors in the BM
have been defined as being Lin c-Kit™F1t3™MCSFR" [43,44],
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Figure 2. Increased Myeloid Progenitors in Twist-2-Deficient Mice

Twist-2 in Myeloid Lineage

(A) Flow cytometry of splenocytes cultured in complete medium and stimulated with TNFa (5 pg/ml) for 24 h. Cells were stained with CD11b, Gr-1, and
Annexin-V antibodies and Pl to determine relative apoptotic and necrotic populations from one of the representative repeated experiments.
(B) Flow cytometry of BMDC derived from Twist-2 KO mice or WT littermates at day 10 of culture from one of the representative repeated experiments.

Cells were stained with CD11c and Annexin-V antibodies and PI.

(C) Flow cytometric analysis showing a subtle decrease in Lin c-Kit*Scal™ HSC compartment in Twist-2 KO mice. Results are representative of four

independent experiments.

(D) Flow cytometric analysis showing a significant increase in LinTIL7R Scal c-Kit"CD34 FcyR™ GMP population in BM of Twist-2 KO mice representative

of six independent experiments.

(E) Flow cytometric analysis showing a significant increase in Lin“c-Kit™FIt3"M-CSFR* DC precursors in the BM of Twist-2 KO mice. Representative of

two independent experiments. Error bars indicate SD.

(F and G) Twist-2 KO mice have increased IA/IECD11ct DC precursors ([F]) in the peripheral blood and increased Lin’lL7R’c—Kit+FcyR+Beta7high BMCP as
well as LinTIL7R c-Kit'FcyRBeta7 "'® GMP in Twist-2 KO spleen (G). Results are representative of three independent experiments.

doi:10.1371/journal.pbio.0060316.9g002

and mouse DC precursors in the peripheral blood have been
also immunophenotypically defined as being CD11c¢TA-E~
[41]. We stained for these cells in Twist-2 KO mice and WT
littermates, and found significant increases in Lin c-
Kit™FIt3"MCSFR" and CD11c¢'TA-E- DC precursors in the
BM and peripheral blood of Twist-2 KO mice, respectively
(Figure 2E and 2F). Recently, a basophil mast cell progenitor
(BMCP) has been identified in the mouse spleen that is
characterized as being Lin c-Kit"FcyR™Beta7" [42]. The
addition of the Beta7" marker appears to fractionate BMCP
from Lin c-Kit'FcyR™Beta7” GMP. Importantly, we observed
an increase in BMCP in the spleens of Twist-2 KO mice
(Figure 2G). Taken together, these data indicate that Twist-2
plays a role in negatively regulating differentiation and
development of myeloid lineages in vivo.

Twist-2-Deficient Hematopoietic Progenitors Are Skewed
toward Myeloid Differentiation In Vitro and In Vivo

To further investigate whether Twist-2 functions as a
suppressor of myeloid cell lineage differentiation, we first
used methylcellulose colony formation assays to analyze the
relative ability of the BM from WT and Twist-2 KO
littermates to differentiate into hematopoietic colonies in
the presence of granulocyte-macrophage colony-stimulating
factor (GM-CSF) in vitro. Figure 3A shows that BM from
Twist-2 KO mice produced a significantly increased number
of total colonies, suggesting a hypersensitivity to GM-CSF-
induced differentiation or proliferation (Figure 3A). Next, we
analyzed the types of colonies produced upon hematopoietic
differentiation in MethoCult GF M3434 (StemCell Technol-
ogies), which supports differentiation of multiple hemato-
poietic lineages in vitro. Under these conditions, we observed
a significant increase in the relative percentage of myeloid
colonies (colony-forming unit granulocyte macrophage [CFU-
GM], CFU macrophage [CFU-M], and CFU granulocyte [CFU-
G]) as identified by their characteristic morphologies (Figure
3B). Interestingly, when analyzing the resulting colonies by
flow cytometry, we observed an increase in Lin Sca-1"c-Kit"
cells, suggesting an increased maintenance or proliferation of
myeloerythroid progenitors (unpublished data). In addition,
we observed increased percentages of both CFU-GM and
CFU-M differentiated in vitro from mouse embryonic stem
cells in which Twist-2 was specifically silenced by short
interfering RNA (siRNA) (unpublished data).

To examine whether Twist-2 regulates myeloid skewing at
the single-cell level, we sorted the upstream CMPs, which have
both myeloid and erythroid potential, into individual wells
containing MethoCult GF M3434 and cultured the cells for 10
d. Resultant colonies were scored for their respective type
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(BFU-E/CFU-E, mixed GEMM, and CFU-GM/CFU-M). In
agreement with in vitro differentiation assays using whole
BM cells (Figure 3A and 3B), Twist-2 KO CMP cells were
clearly skewed towards differentiating into myeloid colonies
(Figure 3C). Next, we performed competitive and non-
competitive BM transplantation assays to assess the intrinsic
effects of Twist-2 during hematopoiesis. Lethally irradiated
syngeneic WT mice receiving Twist-2 KO BM had a
significantly expanded myeloid compartment in the BM at 4
wk (Figure 3D). Absolute cell counts of multiple myeloid
lineages in the peripheral blood were increased at 8 wk after
transplantation as compared to control mice receiving WT
BM (Figure 3E). Since it is possible that the downstream
effects of Twist-2 on cytokine production could alter
hematopoiesis, we performed competitive BM transplanta-
tion assays using congenic markers to assess the independent
effects of Twist-2 on hematopoiesis in vivo. We admixed WT
CD45.1 BM 1:1 with either WT CD45.2 or Twist-2 KO CD45.2
BM, and transplanted the cells into lethally irradiated CD45.1
congenic mice. Upon analyzing the mice at 4 wk, we observed
a relatively equal contribution to the CD11b"Gr-1" myeloid
compartment in mice that received the WI:WT BM (Figure
3F). However, in mice that received the WT:KO admixed BM,
an enhanced fraction of the CD11b*Gr-1" myeloid cells was
derived from the Twist-2 KO BM, indicating that the Twist-2
KO cells have a competitive advantage over WT cells, given
the same in vivo microenvironment (Figure 3F, right panel).
Collectively, these data demonstrate the skewed myeloid
lineage differentiation of Twist-2-deficient progenitor cells
in vitro and in vivo, and indicate that Twist-2 is likely an
intrinsic inhibitor of myeloid differentiation.

Hyperproliferation of Twist-2-Deficient GMP Cells

To examine whether Twist-2 also plays a role in regulating
the proliferation of myeloid progenitor cells, we first sorted
single cells of Lin TL7R Sca-1"c-Kit"CD34 " FcyRIITI™MS" GMP
from the BM of Twist-2 KO and WT littermates into
individual wells of 96-well plates and analyzed their differ-
entiation and proliferation in MethoCult GF M3434 (Stem-
Cell Technologies). It was apparent that the individual colony
sizes derived from the Twist-2 KO GMP cells were signifi-
cantly larger than those from WT GMP cells (Figure 3G).
Individual colonies from Twist-2 GMP cells also had increased
cell density (unpublished data). In order to quantify this
observation, we used an image analysis software package to
measure the average size of the colonies. Figure 3H shows that
the average size of Twist-2 KO GMP-derived colonies was
more than 3.5 times larger than that of WT GMP-derived
colonies, indicating the enhanced proliferation and differ-
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Figure 3. Twist-2 Regulates the Myeloid Differentiation and Proliferation of Hematopoietic Progenitors in an Intrinsic and Cell Autonomous Manner

(A and B) Twist-2 KO BM cells are hypersensitive to GM-CSF-induced colony formation and skewed toward the differentiation of myeloid colonies. Cells
cultured in MethoCult M3001 containing GM-CSF only (A), and MethoCult GF M3434 containing a growth factor and cytokine cocktail (B) in vitro are
shown. Colonies were counted on day 12 of culture (n =5 plates per group), and results are representative of three independent experiments.

(C) Single-cell Lin"IL7R Sca-1"c-Kit'CD34 FcyRIl/IIIT CMPs from Twist-2 KO mice or WT littermate BM were sorted into individual wells of a 96-well plate
containing MethoCult and cultured for 10 d. Resultant colonies were scored by their respective type (BFU-E/CFU-E, mixed GEMM, and CFU-GM/CFU-M).
Data are representative of three independent experiments.

(D and E) Transplantation of Twist-2 KO BM results in increased myeloid cell counts in irradiated syngeneic hosts. Whole BM from Twist-2 KO mice or WT
littermates was injected retro-orbitally into lethally irradiated syngenic mice (2 X 10° cells/mouse, n = 6 per group). After 4 wk, BM was analyzed and
relative percentages of CD4" and CD8" T cells, B220"Gr-1"CD11b™ B cells, and B220 Gr-1"CD11b" myeloid cells were calculated (D). Peripheral blood
was analyzed in a separate cohort at 8 wk by automated CBC with differential (E). Data are representative of two independent experiments.

(F) For competitive transplants, whole BM from CD45.2 Twist-2 KO mice or CD45.2 WT littermates was mixed 1:1 with WT CD45.1 BM and injected retro-
orbitally into lethally irradiated CD45.1 congenic mice (400 X 10° cells/mouse, n =5 per group). After 4 wk, BM was analyzed, and relative percentages
of Gr-1"CD11b" myeloid cells expressing CD45.1" and CD45.2" were analyzed. Results are representative of two independent experiments.

(G and H) Increased size and number of myeloid colonies of Twist-2 KO GMP in vitro. Single-cell Lin“IL7R"Sca-1"c-Kit"CD34 FcyRI/IINE" GMPs were
sorted directly into individual wells of 96-well plates containing MethoCult (GF M3434) and cultured for 5 d. Images are representative of three
independent experiments (G). Colonies were imaged and digitally analyzed (n = 20 colonies per group) (H). Error bars indicate SD.

(I) Twist-2 KO GMPs are hyperproliferative in vivo. Twist-2 KO and WT mice were injected intraperitoneally with 170 pug/kg BrdU or PBS. After 2 h, mice
were sacrificed and BM was stained for GMP surface markers and BrdU. Proliferating BrdU™ populations in the gated Lin“IL7R™Sca-1"c-Kit CD34 FcyRIl/

111M9" GMPs are shown from one of three repeated experiments.
doi:10.1371/journal.pbio.0060316.9g003

entiation of Twist-2 KO GMP cells in vitro. To directly
examine whether Twist-2 controls GMP proliferation, we
performed bromodeoxyuridine (BrdU) labeling assays to
monitor the proliferation of GMPs in vivo. Twist-2 KO or
WT mice were injected with BrdU, and BM cells were then
stained with markers for GMP cells, followed by intracellular
staining for BrdU incorporation into newly synthesized DNA.
Figure 3I shows that GMP cells from Twist-2 KO mice had
increased BrdU incorporation, indicating increased prolifer-
ation and cell cycling of this progenitor population in vivo.
Taken together, these data indicate that Twist-2 not only
suppresses the myeloid differentiation of hematopoietic
progenitors, but also specifically inhibits the proliferation
of the GMP population.

Twist-2 Inhibits Runx1/AML1 and C/EBPa

Twist-2 forms homodimers or heterodimers with ubiqui-
tously expressed members of the E2A bHLH family [31,45],
and can bind E-box consensus sites present in target gene
promoters or can directly bind transcriptions factors such as
MEF2, Runx2, and NF-kB via its C-terminal domain
[31,35,46]. The Twist family has been previously shown to
bind the runt homology domain of the Runx2 family member
and inhibit its transcriptional activity [46,47]. Given that
Runx1 is a known regulator of hematopoiesis, this prompted
us to examine whether Runx1 transcriptional activity may be
regulated by Twist-2. In order to address this possibility,
COS7 cells were transfected with constructs encoding FLAG-
tagged Twist-2 and Myc-tagged Runxl. Upon immunopreci-
pitation of Runxl, we detected Flag-tagged Twist-2 by
coimmunoprecipitation (Figure 4A). To investigate the
functionality of this interaction, COS7 cells were transfected
with a Runx-dependent luciferase reporter construct con-
taining four core binding factor consensus sites. Interestingly,
we observed a basal level of reporter activity in COS7 cells,
which could be due to a low-level endogenous expression of
Runx family members. Cotransfection of Twist-2 resulted in a
significant dose-response inhibition of Runxl reporter
activity that was able to reduce the promoter activity to near
basal levels (Figure 4B). Neither Twist-2 vector nor empty
vector pcDNA alone inhibited the activity of the Runxl-
responsive luciferase reporter (CBF4__Luc) (Figure 4C). In
addition, neither Twist-2 vector nor empty vector pcDNA
inhibited the activity of an unrelated CREB-responsive
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luciferase reporter (Figure 4E). These data suggest the
specificity of Runx1 inhibition by Twist-2. We also observed
a subtle increase in Runxl-specific DNA binding in GMP
from Twist-2 KO mice as compared to WT controls using
electrophoretic mobility shift assays (EMSA) (Figure S2).
Since multiple transcription factors play critical roles in
myeloid lineage development, we examined the effect of
Twist-2 on the transcription factors PU.1 and C/EBPa, which
are required for myeloid lineage development. We found that
Twist-2 inhibited the transcriptional activity of C/EBPa, but
did not significantly affect the transcriptional activity of PU.1
(Figure 4D). These data suggest that Twist-2 suppresses
myeloid lineage differentiation and the proliferation of
GMP, possibly via inhibition of Runx1 and C/EBPa.

Twist-2 Suppresses the Production of Proinflammatory
Cytokines and Chemokines, Including IL-12

By using quantitative RT-PCR analysis, we found that
Twist-2 mRNA were expressed in myeloid DCs at low levels,
but were rapidly up-regulated in response to stimulation with
a Toll-like receptor-4 (TLR4) ligand (LPS) (Figure 5A), which
prompted us to investigate whether Twist-2 plays a role in
regulation of the function of differentiated myeloid cells. We
analyzed the production of inflammatory cytokines by
CD11c" splenic myeloid DCs and BM-derived DCs (BMDC)
from Twist-2 KO mice using bead-based cytokine arrays and
ELISA assays. Figure 5B and 5C show that Twist-2 KO DCs
produced elevated levels of the proinflammatory cytokines
IL-12, IFNy, IL-1, TNFa, and IL-6 upon LPS stimulation as
compared to WT DC. Production of chemokines, including
MCP-1 and MIP-1a, was also significantly increased from
Twist-2 KO DCs (Figure 5B). Yet, the surface expression of
costimulatory molecules on Twist-2 KO DCs was not
significantly altered compared to that on WT DCs (Figure
S3). We also set out to examine whether Twist-2 could be
involved in mediating endotoxin tolerance, a protection
system to prevent harmfully excessive inflammation re-
sponses to LPS. DCs from Twist-2 KO and WT littermates
were stimulated with LPS for 24 h, then washed and
restimulated with LPS to assay for endotoxin tolerance.
Figure 5C shows that Twist-2 KO DCs continue to produce
high levels of proinflammatory cytokines such as IL-6, TNFa,
and IL-12 in response to repeated LPS stimulation. In
contrast, WI' DCs significantly lost the ability to produce
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Figure 4. Twist-2 Inhibits the Transcriptional Activity of Runx1 and C/EBPa

(A) Immunoassay of COS7 cells transiently transfected with indicated plasmids. After 48 h, cells were lysed in NTN buffer containing 0.5% NP-40 and
0.5% Triton X-100. Cell lysates were analyzed by immunoblotting (IB) with anti-FLAG or anti-myc antibodies (upper two panels). Cell lysates were also
immunoprecipitated (IP) with anti-myc antibody followed by immunoblotting with anti-FLAG antibody (lower panel).

(B and C) COS7 cells were transiently transfected with a Runx1-responsive luciferase reporter (CBF4_Luc, 1 pg), or Runx1 expression plasmid (Runx1, 1
ug), or indicated amounts of Twist expression constructs. pcDNA3.1 blank vector control was cotransfected so that each well received the same total
amount of DNA (4 ng). After 24 h, luciferase activity in cell extracts was quantified via luciferase assay (B). Runx1 responsive luciferase reporter
cotransfected with empty vector control or Twist-2 expression vector only (C). Data are presented as mean = SD and are representative of three
independent experiments.

(D and E) Luciferase reporter assays were performed on cells transfected with indicated plasmids (1 pg each). Twist-2 vector cotransfection inhibited the
activity of a C/EBPa-dependent luciferase reporter in COS7 cells ([D] left panel), but not a PU.1-dependent luciferase reporter ([D] right panel). A CREB-
responsive luciferase reporter from the PEPCK promoter cotransfected with empty vector control or Twist-2 expression vector only (E). Data are
presented as mean = SD, and the results are representative of three independent experiments.

doi:10.1371/journal.pbio.0060316.9g004
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Figure 5. Twist-2 Differentially Regulates the Production of Pro- and Anti-Inflammatory Cytokines by Myeloid Cells
(A) Induced expression of Twist-2 mRNA in CD11c" BM DCs after 4 h of stimulation of LPS (100 ng/ml), as demonstrated by quantitative RT-PCR. Data

are normalized to 18S rRNA internal controls, with samples loaded in triplicate from repeated experiments.

(B) Representative cytokine production by Twist-2 KO and WT DCs after 24 h of stimulation with 100 ng/ml LPS. Data, presented as mean = SD, are

representative of three independent experiments.

(C) Endotoxin tolerance assays. DCs were pretreated with 100 ng/ml LPS for 24 h, washed twice in complete medium, and then allowed to rest for 2 h,
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and then restimulated with 100 ng/ml LPS for an additional 24 h, after which the culture supernatant was collected and assayed. Data are representative

of three independent experiments.

(D) Representative cytokine production by WT BMDC and Twist-2 KO BMDC transfected with either empty vector control or Twist-2 expression vector.
Cells were then stimulated with 100 ng/ml LPS for 24 h. Data presented as mean =+ SD are representative of two independent experiments.

doi:10.1371/journal.pbio.0060316.g005

proinflammatory cytokines in response to repeated LPS
stimulation. Thus, a biological function of Twist-2 is to
maintain endotoxin tolerance to prevent acute excessive
inflammatory responses by myeloid cells.

In order to differentiate between the effects of Twist-2 on
myeloid cell development versus those on homeostasis in
mature progeny, we performed rescue experiments by
reexpressing Twist-2 in differentiated KO cells to investigate
the reversibility of the proinflammatory cytokine phenotype.
BMDCs were generated from WT and Twist-2 KO mice and
transfected with a Twist-2 expression vector or empty vector
control by Nucleofection (Figure S4). Cells were rested
overnight, stimulated with LPS for 24 h, and supernatant
was analyzed by ELISA assays. We observed a significant
reduction in the production of inflammatory cytokines and
chemokines upon rescue of Twist-2 expression in Twist-2 KO
BMDC (Figure 5D). We also noticed that overexpression of
Twist-2 also suppressed the production of these cytokines and
chemokines by WT BMDCs. Thus, these data suggest that the
role of Twist-2 in regulating cytokine and chemokine
production in differentiated myeloid cells is distinct from
its effects on myeloid differentiation.

Twist-2 Promotes the Production of Anti-Inflammatory
Cytokine IL-10

We unexpectedly found that Twist-2 KO myeloid DCs
produced significantly lower levels of the critical anti-
inflammatory cytokine IL-10 when compared to WT myeloid
DCs (Figure 5B). Further analyses showed that the production
of Th2 polarizing IL-4 by Twist-2 KO DCs was also
considerably lower (Figure 5B). Twist was previously found
to act either as an activator or a repressor of somatic muscle
development in Drosophila depending upon its dimerization
partner [45,48]. To investigate the molecular mechanism by
which Twist-2 promotes IL-10 production, we first used an IL-
10 promoter-driven luciferase reporter assay. It was observed
that Twist-2 did not enhance the IL-10 promoter-derived
transcription (unpublished data). Several recent studies have
demonstrated that the transcription factor c-Maf is impor-
tant for the transcription of IL-10 as well as IL-4 [49,50].
Accordingly, we measured the expression of the transcription
factor c-Maf in Twist-2 KO and WT DCs. Figure 6A shows
that the mRNA levels of c-Maf in Twist-2 KO DCs were
significantly lower than those in WT DCs, especially after the
stimulation with a TLR agonist, suggesting that Twist-2 is an
activator of c-Maf transcription. To further investigate this
possibility, we performed chromatin immunoprecipitation
(ChIP) assays using 3T3 fibroblasts which express high levels
of Twist-2. We found that primers (pair 1) specific for a highly
conserved E-box-containing region of the c-Maf promoter
(Figure 6B) generated bands from both the RNA-positive
control and anti-Twist-2 antibody pulldown, but not control
antibody pulldown (Figure 6C). In contrast, negative control
primers (pair 2) specific for a region of genomic DNA approx
20 kb upstream of the ¢-Maf gene (Figure 6B and 6C) did not
show significant pulldown with any antibody. Densitometry

iE). PLos Biology | www.plosbiology.org

quantified a 24-fold enrichment of specific c-Maf promoter
DNA pulldown using Twist-2 antibody as compared to
control immunoglobulin G (IgG), suggesting that Twist-2
directly binds the c-Maf promoter (Figure 6D). To further
investigate whether Twist-2 is an activator of c-Maf, we
cotransfected the expression vectors containing 1.6- or 1.3-kb
5'-flanking region of the c-maf gene fused to the luciferase
gene [561] with the Twist-2 expression vector or control blank
vector into COS cells. Figure 6E shows that Twist-2 activated
both ¢-maf promoter constructs. Thus, these data suggest that
Twist-2 promotes the production of IL-10 and IL-4, possibly
via the activation of c-Maf transcription.

Discussion

In this study, we found that Twist-2 is constitutively
expressed in myeloid progenitors and plays a critical role in
the suppression of myeloid lineage differentiation into
macrophages, neutrophils, and basophils. We further found
that Twist-2 not only inhibits the myeloid differentiation of
GMP, but also inhibits the proliferation of GMP population.
Moreover, we demonstrated that Twist-2 has inhibitory
effects on the activity of Runxl and C/EBPa, which may
contribute to the suppression of GMP differentiation and
proliferation by Twist-2. Thus, this study reveals the critical,
unrecognized role for Twist-2 in negative regulation of GMP
proliferation and myeloid lineage differentiation. In addi-
tion, we found that Twist-2 regulates the function and
inflammatory responses of differentiated myeloid cells by
promoting the production of the important regulatory
cytokine IL-10 and inhibiting the production of proinflam-
matory cytokines and chemokines.

Twist-1 and Twist-2 are highly conserved; however,
deficiency in Twist-1 and Twist-2 results in different
phenotypes: Twist-1 KO mice are embryonic lethal due to a
failure in neural tube closure, whereas Twist-2 KO mice
develop a severe inflammatory syndrome and die within 2 wk
of birth [35,52]. Twist-1 heterozygous null mice have skeletal
and bone defects that mimic patients with Saethre-Chotzen
syndrome caused by mutations in human Twist-1 [46,53-55].
Twist-2 is a known developmental regulator of mesodermally
derived cell types [29-32]. In this study, we found that Twist-2,
but not Twist-1, is selectively expressed in GMP and CMP, and
it suppresses GMP differentiation as well as proliferation.

The Runx family comprised of Runxl, Runx2, and Runx3
are master transcription factors that regulate cell-cycle
progression and differentiation. Runx1l is essential for
definitive hematopoiesis [56-58], and plays an important role
in adult hematopoiesis in both lymphoid and myeloid
progenitor compartments [59,60]. Runx1 regulates myelopoi-
esis by coordinating expression of GM-CSF, M-CSFR,
myeloperoxidase, and neutrophil elastase [61-64]. In this
study, we found that Twist-2 inhibited the function of the
transcription factor Runxl, which may contribute to the
myeloproliferative disease observed in Twist-2 KO mice. In
addition, Runxl is a target of one of the most common
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(A) Quantitative RT-PCR of relative c-Maf mRNA levels in Twist-2 KO
experiments.

and WT BMDCs with or without LPS stimulation from three independent

(B-D) Schematic diagram of c-Maf promoter region and locations of primer pairs: (1) spanning a highly conserved region of the c-Maf promoter
containing multiple E-box consensus sites, and (2) spanning a “promoter desert” region of genomic DNA approximately 20 kb upstream of the c-Maf
promoter used for the ChIP assay (B). ChIP of 3T3 fibroblasts using an anti-Twist-2 antibody probing for c-Maf promoter DNA pulldown or an anti-RNA
Poly (positive) or IgG (negative) controls (C) from one representative of two repeated experiments. Primer sequences available upon request.
Densitometric analysis of relative ChIP PCR band intensity (upper panel) was normalized to input (D).

(E) Activation of c-Maf promoter by Twist-2. COS7 cells were cotransfected with cMaf promoter-driven luciferase vectors containing approximately 1.6

kb (cMaf_R1.6) or 1.3 kb (cMaf_R1.3) of the rat cMaf promoter region
luciferase activity. Double asterisks (**) indicate p < 0.01
doi:10.1371/journal.pbio.0060316.g006

translocations t(8;21) in acute myeloid leukemia (AML), which
generates the dominant-negative Runx1-ETO fusion protein
to suppress Runx1 activity, leading to the blockade of myeloid
lineage differentiation and an accumulated progenitor pool
that is prone to malignant transformation [60]. In addition, C/
EBPa, a member of the basic region-leucine zipper CCAAT/
enhancer-binding protein (C/EBP) transcription factors, is a
potent inhibitor of cell cycle in myeloid cells and other types
of cells due to binding E2F1. Thus, the suppression of GMP
proliferation by Twist-2 may be due to the inhibition of C/
EBPa. However, it is possible that Twist-2 interacts with and
suppresses additional unrecognized factors. Taken together,
our results suggest that Twist-2 suppresses the differentiation
and proliferation of GMP, possibly via the inhibition of the
transcription factors Runx1 and C/EBPoa.

An interesting unexpected finding of this study is that
Twist-2 promotes the production of the important regulatory
cytokine IL-10 [65] by differentiated myeloid cells. The
etiology of the lethal inflammatory phenotype of Twist-2
KO mice is distinct, but not well understood [35]. The
enhanced production of proinflammatory cytokines in
combination with the reduced production of anti-inflamma-
tory cytokine IL-10 may contribute to the lethal inflammation
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[51] and Twist-2 or empty vector (pcDNA3.1) for 32 h before analyzing for

of Twist-2 KO mice [35,36]. In addition, hyperproliferation of
myeloid progenitors and the expanded population of differ-
entiated inflammatory myeloid cells found in Twist-2 KO
mice may perpetuate the lethal inflammation. Different from
the constitutive expression of Twist-2 in GMP, the expression
of Twist-2 in differentiated myeloid cells such as DCs and
macrophages was induced in response to TLR agonists such
as LPS. Twist-2 was previously shown to directly bind the p65
subunit of NF-xB and inhibit the transactivation and
production of inflammatory cytokines such as TNFa, IL-1,
and IL-6 [35]. In this study, we found that the production of
Th1l-polarizing cytokines such as IL-12 and IFNy was also
critically regulated by Twist-2. This is in agreement with a
recently study describing a role for Twist-1 in regulating Th1
cytokines in T-cells [66]. We further demonstrated that the
mechanism for the suppression of IL-12 production by Twist-
2 involves inhibition of NF-kB activity, not via the direct
binding of Twist-2 to E-boxes in the IL-12 promoter
(unpublished data). It was previously reported that C/EBPa
and NF-xB p50 or p65 directly interact and cooperate to
activate proinflammatory genes [67]. Our finding of the
inhibition of C/EBPa by Twist-2 raises an interesting
possibility that the critical regulation of proinflammatory
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cytokines by Twist-2 may be a result of the inhibition of both
NF-kB and C/EBPa proteins by Twist-2. Moreover, Twist-2
was found to have a critical role in maintaining endotoxin
tolerance. Thus, Twist-2, in addition to its critical role in
regulation of myeloid lineage differentiation and the pro-
liferation of myeloid progenitors, uniquely regulates proin-
flammatory responses to prevent excessive inflammation by
inhibiting proinflammatory cytokines and promoting anti-
inflammatory cytokine production.

IL-10 is a potent anti-inflammatory cytokine and plays a
critical role in maintaining homeostasis of the immune
system and protecting the host from excessive inflammation
[65]. Despite its biological importance, the regulation of IL-10
gene expression remains poorly defined. In this study, we
found that Twist-2 promotes the expression of IL-10, not via
direct activation of the IL-10 promoter, but possibly through
the activation of c-Maf transcription. We demonstrated that
Twist-2 is likely a transcriptional activator of c-Maf. bHLH
transcription factors have been known to function as
activators or repressors, depending on the partners or
cofactors [45,48]. c-Maf is the cellular counterpart of
oncogenic v-Maf in the acute transforming avian retrovirus
AS42 that induces musculoaponeurotic fibrosarcoma (Maf)
[68]. c-Maf is a member of the family of basic region-leucine
zipper domain transcription factors, and the target genes of
c-Maf in various cell lineages include the insulin gene in islet
B cells and IL-4 and IL-10 in T cells and myeloid cells
[49,69,70]. Collectively, the data suggest a possible positive
role of Twist-2 in the Maf transcription and subsequent IL-10
production in myeloid cells. Further studies are warranted to
investigate the role of Twist-2 in regulation of innate and
adaptive immunity.

Materials and Methods

Mice. Twist-2 heterozygous null mice were crossed to generate
Twist-2 KO mice [35]. In all experiments, WT littermates were used
for controls. Mice were maintained in a pathogen-free barrier facility,
and all experiments were performed in accordance with the Baylor
College of Medicine Institutional Animal Care and Use committee.

Immunostaining and cell sorting. Single-cell suspensions were
prepared from indicated solid organs of mice 10-12 d old. Red blood
cells were lysed with Tris-ammonium chloride lysis buffer. Peripheral
blood mononuclear cells (PBMC) were isolated from peripheral blood
by gradient centrifugation. Fc receptor block was performed using
anti-mouse CD16/CD32 Fc block antibody (BD Pharmingen), except
in cases when the Fc receptor was used to identify CMP or GMP. Cells
were stained with combinations of fluorescein isothiocyanate,
phycoerythrin, allophycocyanin, peridinin chlorophyll protein, or
phycoerythrin-Cy7-conjugated CD4, CD8, IgM, IgD, CD11b, Gr-1,
Annexin-V, lineage cocktail (CD4, CD8, Ter-119, CD11b, Gr-1, and
B220), IL-7R, Scal, c-Kit anti-mouse antibodies (BD), or APC-
conjugated F4/80 (Caltag Labs), or biotinylated FcyRIIIII followed
by staining with streptavidin-PerCP Ab (BD). Cells were analyzed and
sorted on a FACSaria (BD) as described [71]. FACS data were analyzed
using FlowJo Software (TreeStar).

Hematopoietic colony assays. Single-cell suspensions of BM after
ammonium chloride lysis were plated into 60-mm dishes (2 X 10*
cells/plate) with MethoCult M3001 (containing only GM-CSF) or GF
M3434 as indicated (StemCell Technologies). Cells were cultured at 37
°C, 5% COg, and hematopoietic colonies were counted and scored
after 12 d of incubation, or as indicated.

CBC analysis and histology. Peripheral blood from Twist-2 KO
mice and WT littermates 10-12 d old was collected via retro-orbital
bleed into Microvettes coated with EDTA (SARSTEDT). Automated
complete blood count with differential was performed using an Advia
120 (Bayer Diagnostics, SIEMENS). Peripheral blood smears were
generated and imaged (BX51 Olympus Microscope). For whole bone
mounts, femurs were fixed and processed for paraffin embedding and
stained with hematoxylin and eosin (H&E). For BM histology, femurs
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were incised lengthwise, and BM was gently touched to the surface of
a glass slide, followed by Wright-Giemsa staining and pathological
analysis.

ELISA. BM-derived DCs were generated as previously described
[71,72]. Primary CDl11c" splenic DCs were purified from single-cell
suspensions of splenocytes using CD11c" magnetic bead columns
(Miltenyi Biotec). DCs were plated (1 X 10° cells/ml) into 24- or 96-well
plates and stimulated with 100 ng/ml LPS for 24 h. For some assays,
WT and KO BMDCs were transfected with Twist-2 expression vectors
using the AMAXA Mouse Dendritic cell Nucleofector kits [73]. Briefly,
2.5 X 10° BMDC per condition were electroporated with either 2 pg
of pcDNA3.1 empty vector control or 2 pg of Twist-2 expression
construct and plated into 48-well plates in RPMI supplemented with
10% fetal bovine serum (FBS), 100 U/ml penicillin, 100 pg/ml
streptomycin, 2 mM L-glutamine, and 20 ng/ml GM-CSF. Cells were
rested overnight and then stimulated with 100 ng/ml LPS for 24 h.
Supernatants were harvested and analyzed by ELISA (BD).

Luciferase reporter assay. COS7 cells (0.6 X 10° cells/well) or 293T
cells were seeded into 6-well plates and cultured for 24 h in DMEM
supplemented with 10% fetal bovine serum (FBS), 100 U/ml
penicillin, 100 pg/ml streptomycin, and 2 mM r-glutamine. Cells were
washed with serum-free (SF) DMEM and cotransfected with indicated
plasmid expression vectors using Geneporter (Gene Therapy Sys-
tems). The Runxl, C/EBPa, and PU.l1 expression constructs and
respective luciferase reporter constructs have been described [74,75].
pcDNA3.1 empty control vector was added so that each well received
the same total amount of DNA. After 4 h, an equal volume of DMEM
supplemented with 20% FCS was added to the wells. Cells were
cultured for an additional 24 h, and luciferase activity of cell extracts
was measured on a luminometer normalized to total protein
concentrations using the Dual-Luciferase Reporter Assay System
(Promega).

EMSA. Sorted GMP (2 X 10° cells) from Twist-2 KO mice or WT
littermates were lysed in 25 pl of NTN lysis buffer containing
phosphatase inhibitor cocktail 1 and 2 (SIGMA) and Complete Mini
Protease Inhibitor Cocktail (Roche). Lysates were incubated on ice for
45 min and cleared by centrifugation at 14,000Xg for 10 min. Cleared
lysates were reacted for 20 min at room temperature (RT) with
biotinylated oligo duplexes (Operon) containing the wild-type or
mutated RUNXI1 consensus binding site from the M-CSF promoter:
WT sense: 5'-AGCTAACTCTGTGGTTGCCTTGCCT-3'; WT antisense:
5'-TCGAAGGCAAGGCAACCACAGAGTT-3'; mutant sense: 5'-AGC-
TAACTCTGTACATGCCTTGCCT-3'; mutant antisense: 5'-TCGAAGG-
CAAGGCATGTACAGAGTT-3'. Nonbiotinylated oligos were used as
additional controls. Binding reactions and EMSA were set up and
performed using the Lightshift Chemiluminescent EMSA Kit (Pierce)
and Chemiluminescent Nucleic Acid Detection Module (Pierce)
according to the manufacturers’ protocols. Briefly, reacted samples
were immediately loaded and electrophoresed on 6% DNA retardation
gels (Invitrogen) in 0.5X TBE and transferred to BrightStar-Plus
positively charged nylon membrane (Ambion). DNA was crosslinked at
120 mjicm? using a GS Gene Linker UV Chamber (Bio-Rad).
Membranes were blocked and biotin-labeled DNA was detected and
visualized using streptavidin-HRP followed by ECL reagent (Pierce).

RT-PCR. For real-time quantitative RT-PCR, total RNA was
isolated from indicated cell type using the RNeasy kit (Qiagen).
First-strand cDNA was synthesized from 200 ng of total RNA for
hematopoietic stem or progenitor cells or from 4 ug of total RNA for
mature cells using the Superscript II First-Strand Synthesis System
(Invitrogen). Real-time quantitative RT-PCR was set up using TagMan
Universal PCR Master Mix (Applied Biosystems) and analyzed on an
ABI Prism 7900HT Sequence Detection System (Applied Biosystems).
TagqMan gene expression assays for indicated genes were ordered
from Applied Biosystems. All data were normalized to 18S rRNA
internal controls [72,76]. For semiquantitative RT-PCR 25 ng of first-
strand ¢cDNA was amplified using Twist-1- or Twist-2-specific
primers (sequences available upon request) for 40 cycles using HPRT
primers as controls.

ChIP and immunoprecipitation. 3T3 fibroblasts were grown in 10-
cm plates until semiconfluent. Cells were fixed in 1% paraformalde-
hyde, and ChIP was performed using the EZ ChIP Kit according to the
manufacturer’s instructions (Upstate). Briefly, cell lysate from
approximately 20 X 10° cells was sonicated using a Bath sonicator
(Bioruptor). Precleared lysates were incubated with Anti-RNA
Polymerase II Ab (Clone CTD4HS8), normal mouse IgG, or anti-
Twist-2 antibodies (H-81 sc-15393) overnight at 4 °C. Immunocom-
plexes were collected, and purified DNA was analyzed by RT-PCR
using indicated primers. Densitometry was performed to quantify
relative band intensity as normalized to input. Primer sequences
would be provided upon request. For immunoprecipitation, COS7
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cells in 10-cm plates were transfected with indicated plasmids and
cultured for 48 h. Cells were lysed in 500 pl of NTN NP-40 lysis buffer
containing protease inhibitor cocktail (Roche) and lysate was
homogenized by passing though a 21G needle. Lysate was incubated
with antibodies overnight at 4 °C followed by addition of Protein G-
Sepharose beads (Zymed) and incubation for 2 h. Beads were washed
four times, resuspended in 70 pl of SDS loading buffer, and then
incubated at 95 °C for 8 min. Samples were analyzed by western
blotting with either anti-FLAG or anti-Myc primary antibodies
(Sigma) and secondary antibody conjugates (Sigma).

Statistics. For statistical analysis, we performed the Student ¢-test,
and p-values of less than 0.05 were considered statistically significant.
Results are presented as means plus or minus standard errors (SE).

Supporting Information
Figure S1. Twist-2 Expression in CMP and GMP

mRNA expression of known myeloid transcription factors and bHLH
factors in CMP and GMP from GEO dataset GSE3722 (http:/lwww.
ncbi.nlm.nih.govi/geo/querylacc.cgi?acc=GSE3722). Flow sorting
scheme for hematopoietic stem and progenitor cells.

Found at doi:10.1371/journal.pbio.0060316.sg001 (205 KB PPT).

Figure S2. Electrophoretic Mobility Shift Assay of Sorted GMPs

Whole-cell lysates of sorted Lin IL7R Sca-1c-Kit"CD34 FcyRIl/
18" GMPs (2 X 10%) from WT and Twist-2 KO mice were reacted
with biotinylated oligos containing the endogenous Runx1 consensus
binding site (Runx1 probe) or mutated Runx1 consensus binding site
(mutant Runxl Probe), and EMSA was performed. Arrow indicates
specific Runx1 band retardation. An asterisk (*) indicates nonspecific
band. Densitometry was performed on WT and KO bands indicated
with arrow and was normalized to background in each lane.
Experiment was repeated twice with similar results.
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