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Proteomics Reveals Novel Drosophila
Seminal Fluid Proteins Transferred at Mating

Geoffrey D. Findlay*, Xianhua Yi”, Michael J. MacCoss, Willie J. Swanson

Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America

Across diverse taxa, seminal fluid proteins (Sfps) transferred at mating affect the reproductive success of both sexes.
Such reproductive proteins often evolve under positive selection between species; because of this rapid divergence,
Sfps are hypothesized to play a role in speciation by contributing to reproductive isolation between populations. In
Drosophila, individual Sfps have been characterized and are known to alter male sperm competitive ability and female
post-mating behavior, but a proteomic-scale view of the transferred Sfps has been missing. Here we describe a novel
proteomic method that uses whole-organism isotopic labeling to detect transferred Sfps in mated female D.
melanogaster. We identified 63 proteins, which were previously unknown to function in reproduction, and confirmed
the transfer of dozens of predicted Sfps. Relative quantification of protein abundance revealed that several of these
novel Sfps are abundant in seminal fluid. Positive selection and tandem gene duplication are the prevailing forces of
Sfp evolution, and comparative proteomics with additional species revealed lineage-specific changes in seminal fluid
content. We also report a proteomic-based gene discovery method that uncovered 19 previously unannotated genes in
D. melanogaster. Our results demonstrate an experimental method to identify transferred proteins in any system that
is amenable to isotopic labeling, and they underscore the power of combining proteomic and evolutionary analyses to
shed light on the complex process of Drosophila reproduction.
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Introduction

In addition to sperm, males of many internally fertilizing
species transfer seminal fluid proteins (Sfps) to their mates
during copulation. These proteins function in a variety of
reproductive processes, including sperm capacitation, sperm
storage and competition, and fertilization, and in some cases
they affect female behavior and physiology [1]. Like other
reproductive proteins, Sfps often evolve rapidly between
species, underscoring their relevance to reproductive success
[2]. Sfps are thought to interact with several classes of
molecules, including other Sfps (which may originate from
seminal fluid of the same male or from a competitor), proteins
native to the female reproductive tract, and pathogens that
may be introduced during the course of mating. These
interactions create opportunities for coevolution, leading to
speculation that sperm competition, sexual conflict, sexual
selection, and/or host-pathogen interactions could drive the
rapid, adaptive evolution of many Sfps [3]. Because of their
rapid evolution and their critical importance to reproductive
fitness, Sfps may also be involved in the formation of new
species [3-5]. As such, researchers have sought to identify and
characterize Sfps in such diverse taxa as mosquitoes, crickets,
honeybees, rodents, and primates [6-10].

Although Sfps are being studied in many species, they are
best characterized in Drosophila melanogaster. Because the
Drosophila mating system features multiple matings by females
and sperm competition between males [11-14], Sfps are
thought to be especially important for reproductive success
and for mediating conflict and competition. Previous studies
have focused on three areas: (a) the effects of the full set of
Sfps (and especially of accessory gland proteins, or Acps) on
male and female fitness; (b) identification of putative Acps by
expressed sequence tag (EST) sequencing, comparative
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genomics, and proteomics; and (c) functional analysis of
specific Acps. Whole-organism work revealed that Acps
mediate a “cost of mating” to females. The repeated receipt
of Acps through multiple matings lowers female reproductive
output by reducing female life span without a corresponding
increase in egg production [15-17]. Furthermore, when a
population of males harboring natural genetic variation was
allowed to adapt to a static female genotype, male sperm
competitive ability, mating success, and harm caused to
females increased in 30-40 generations [18]. These dramatic
evolutionary outcomes sparked much interest in identifying
the specific proteins of seminal fluid. Screens for genes
expressed specifically in the male accessory glands (and
encoding proteins predicted to be secreted) identified ~70
putative Acps [19,20], several of which have been genetically
or biochemically characterized (reviewed in [21]). Work in
related Drosophila species has revealed that many predicted
Acps are subject to lineage-specific gene gain, gene loss, and/
or copy number variation [22-24]. Additionally, several
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Author Summary

Across many species, males transfer both sperm and seminal
proteins to their mates. These proteins increase male reproductive
success by improving sperm competitive ability and modifying
female behavior. In Drosophila, seminal proteins increase female
rates of egg-laying and sperm storage and reduce a female’s
willingness to mate with subsequent suitors. Several male seminal
proteins have been extensively characterized, and others have been
predicted based on gene expression patterns, yet the full set of
proteins that is transferred to females has not been defined. Here we
introduce a new proteomic method that identifies transferred
seminal proteins in recently mated females and quantifies their
relative abundance. We confirm many of the predicted seminal
proteins and discover a number of novel seminal fluid components.
Some of these proteins show elevated rates of evolution, consistent
with their involvement in sexual selection or sexual conflict, and
many have arisen by tandem gene duplication. By using this
method in three species of Drosophila, we identified lineage-specific
components of seminal fluid. Additionally, we developed and
validated a method to identify completely new genes in the D.
melanogaster genome. These transferred proteins are now targets
for follow-up genetic, biochemical, and evolutionary analysis.

proteomic studies have examined both Acps and sperm
proteins found in males [25,26], and whole-genome, tissue-
specific microarray analysis has increased the number of
predicted Acps to 112 [21,27].

In spite of this considerable progress, less than one-third of
the predicted D. melanogaster Sfps have been detected in
mated females [21,28]. Furthermore, prior work to predict
Sfps has often required that candidate genes show tissue-
specific expression in the male reproductive tract. Identifying
the set of transferred Sfps in an unbiased fashion is of critical
importance, since it is these proteins that are the most likely
to influence post-mating processes like sperm competition
and sexual conflict. We have developed a mass spectrometry
(MS) method that specifically detects male Sfps in mated
female D. melanogaster. In addition to confirming the transfer
of many predicted Sfps, we identified dozens of new seminal
fluid components, including completely new classes of
proteins. Evolutionary analyses show that positive selection
and tandem gene duplication drive the evolution of seminal
fluid between species, and comparative proteomics with
additional species identified lineage-specific Sfps. We also
used our MS data to estimate the relative abundance of each
Sfp in seminal fluid and to discover previously unannotated
genes encoding additional Sfps. Taken together, our experi-
ments illustrate the power of combining proteomics with
evolutionary biology to address fundamental questions about
reproduction.

Results

Isotopic Labeling of Female Flies Allows Transferred Sfps
to Be Identified

To distinguish between transferred Sfps and proteins
native to the female reproductive tract, we metabolically
labeled female flies using a diet enriched in '°N isotopes to
create an isotopically “heavy” form of the female proteins
[29]. Females were reared on yeast that was grown in media
enriched in '°N. After one full generation of labeling, the 15N
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Table 1. Classes of Seminal Fluid Proteins Detected by MS in
Recently Mated D. melanogaster Females

Number of Proteins Detected
(Number Newly Identified)

Protein Class

Unknown function 47 (23)
Protease 15 (5)
Protease inhibitor 14 (6)
Defense/immunity 12 (4
Lipid metabolism 9 (2)
Carbohydrate interactions 72)
Odorant binding 7 (7)
Other functions 7 (5)
Post-mating behavior 5 (0)
Sperm protein 5(0)
Chitin binding 4 (4)
DNA interactions 303
Protein modification 3(2)
TOTAL 138 (63)

doi:10.1371/journal.pbio.0060178.t001

enrichment in detected fly peptides was ~98 atom percent
excess, and no peptides from whole female flies were
identified with natural abundance nitrogen isotopes. These
data confirm that isotopic labeling can be readily achieved in
D. melanogaster and other drosophilids (see below). Therefore,
we reasoned that by mating unlabeled males to labeled
females and then analyzing proteins found in the female
reproductive tract by MS, transferred male Sfps could be
identified by those peptides that showed natural abundance
isotope distributions. We chose to label females instead of
males, because MS resolution is best for unlabeled peptides,
and we were interested in identifying male Sfps.

We performed multiple biological replicates of mating
experiments with different strains of males: Canton S (a
standard lab strain), sons of tudor females (spermless males)
[30], and, as a negative control, DTA-E males (which are
spermless and do not produce main cell accessory gland
proteins) [31]. In two DTA-E experiments, we detected 11
transferred proteins, including several known to be produced
outside of the accessory glands (Table S1). Six total experi-
ments with Canton S and tudor males identified a set of 138
high-confidence Sfps (Table 1 and Table S2), using a peptide-
level g-value < 0.01 within each experiment [32]. Just over
half (75/138) of the transferred Sfps were previously predicted
through tissue-specific expression profiling or other exper-
imental or comparative genomic methods [21], but only 19
were confirmed previously to be transferred at mating.
Notably, we found only five previously documented sperm
proteins [25], confirming that our protein preparation
protocol effectively selected for soluble, extracellular pro-
teins. We did not detect 49 predicted Sfps [21]. These
proteins may be transferred at low levels, immediately
cleaved or degraded in the female, or have certain peptide
sequences or post-translational modifications that complicate
detection by shotgun proteomics. Alternatively, some may
not be transferred at mating.

We identified 63 novel Sfps, 45 of which were found in at
least two biological replicates. Many of these proteins fell into
the same functional categories as the previously predicted set,
including proteases, protease inhibitors, mediators of an
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Figure 1. Whole-Gene, Pairwise Estimates of dy and ds for Transferred
Sfps of D. melanogaster

Each D. melanogaster Sfp was aligned to its ortholog in either D. simulans
or D. sechellia, and a pairwise, whole-gene estimate of each rate was
made. Those genes with ® > 0.5 (dashed line) and/or dy > 0.05 were
analyzed for sites under selection using multiple species alignments from
the genome sequencing project. Open dots represent genes with
significant evidence for positive selection acting on a subset of sites in
the M8 versus M8a model comparison in codeml/ (see Table S3). The solid
line represents o = 1.

doi:10.1371/journal.pbio.0060178.g001

immune response, and proteins involved in lipid metabolism
(Table 1). We discovered several new classes of proteins
among the transferred Sfps. Most intriguing were six
members of the odorant binding protein (Obp) family [33].
Obps are thought to shuttle small molecules through aqueous
solutions by binding them in a small, hydrophobic pocket;
they are traditionally associated with the olfactory nervous
system [34]. We confirmed that these Obps are transferred in
seminal fluid by performing MS on protein digests from
dissected accessory glands and by confirming each gene’s
expression in the male reproductive tract with FlyAtlas [27].

Positive Selection and Tandem Gene Duplication Drive
the Evolution of Sfps

Reproductive proteins of diverse species often evolve
under positive Darwinian selection, which may indicate
involvement in a coevolutionary process such as sexual
selection, sexual conflict, or host-pathogen recognition [2].
We used coding sequence alignments from the 12 Drosophila
genomes project [35,36] to calculate the rates of nonsynon-
ymous substitution (dy) and synonymous substitution (dg) for
all Sfps for which an ortholog was identified (116 of the total
138). For each Sfp, we determined the whole-gene, pairwise
dnlds (®) ratio between the D. melanogaster gene and an
ortholog from a closely related species (Figure 1). By this
conservative test, five Sfps showed evidence of adaptive
evolution (o > 1). However, prior studies have shown that
when the whole-gene pairwise ® ratio exceeds 0.5, or when
the nonsynonymous substitution rate (dy) is elevated, there
are often specific sites within the protein for which adaptive
evolution can be detected with more sensitive methods [7,37].
Therefore, we used multiple species alignments to search for
specific residues under selection for all genes with pairwise ®
> 0.5 and/or pairwise dy > 0.05. (We did not test all Sfps, in
order to minimize the number of statistical tests.) We found
evidence for adaptive evolution at specific sites for 16 of 36
proteins (Figure 1 and Table S3), including four proteins that
were unidentified previously as Sfps. Nine of these tests for
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selection remained significant after applying a strict Bonfer-
roni correction for multiple tests. These rapidly evolving
proteins are attractive targets for future study.

Previous studies found that some predicted Sfps are
clustered throughout the genome [21,24]. We examined the
chromosomal locations of the transferred Sfps and found
similar patterns. We defined a cluster as genes with start
codons located within 10 kb of each other. We identified 19
clusters of 2-5 transferred Sfps, which contain one-third (46/
138) of the detected Sfps (Figure 2A). For 17 clusters, all
member genes are transcribed in the same direction, and 15
clusters contain genes that encode proteins with full-length
homology to one another. Thus, most of the observed
clustering can be attributed to tandem gene duplication.
Four paralogous clusters contain at least one gene that was
under selection in the sites analysis above. Previous work also
found a dearth of Acps on the X chromosome. Consistent
with this finding, the 13 transferred Sfps on the X
chromosome were significantly fewer than would be expected
by chance (x° =4.68, 1 degree of freedom [df], p = 0.03), given
the proportion of annotated genes on the X.

One example of rapidly evolving tandem duplicates is the
gene pair CGI17472 and CG31680. Across five species,
CG17472 has evolved adaptively, with 21.3% of sites predicted
to be under positive selection (estimated ® = 3.36, PAML M8
versus M8a comparison: 2 =15.38, 1 df, p < 0.0001). These
duplicates flank a transposition hot spot and a third,
pseudogenized copy of the locus (Figure 2B). Additionally,
CG17472 has duplicated along the lineage leading to D.
stmulans and D. sechellia (Figure 2C). Examining the ® ratio on
each branch of the phylogeny reveals a burst of positive
selection on the CG31680 lineage immediately after duplica-
tion. Indeed, a branch model allowing for variable selective
pressures along each branch (shown in Figure 2C) fit the data
significantly better than a model with a uniform o for all
branches (3% = 29.04, 14 df, p=10.01).

Relative Quantification Confirms the Importance of the
Newly Identified Sfps

We used our MS data to estimate the relative abundance of
each Sfp in seminal fluid. By counting the number of spectra
associated with each Sfp in a given experiment and standard-
izing by the length of the protein and the total number of Sfp
spectra detected in the experiment, we calculated a normal-
ized spectral abundance factor (NSAF) [38,39] for each
protein, which could then be averaged across all experiments
(Figure 3 and Table S2). Notably, NSAF values were positively
associated with the number of biological replicates in which a
protein was found (Figure 3). Several of the most abundant
proteins were previously characterized Sfps, such as Acp62F (a
protease inhibitor) and Acp70A (the sex peptide). However,
several novel proteins were also in the top quartile for
abundance, including Obpb56f, Obpb6g, and the tandem
duplicate CG17472. Although these NSAF measurements are
only approximate, these data provide the first proteomic-scale
view of the relative amount of each transferred Sfp, which may
be useful for selecting candidates for further investigation.

Comparative Proteomics Reveals Lineage-Specific
Changes in Seminal Fluid Content

To examine the cross-species evolution of seminal fluid
content, we used the predicted protein annotations of D.
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Figure 2. Transferred Sfps Cluster in Small Groups throughout the D. melanogaster Autosomes

(A) Euchromatic genomic locations of the autosomal Sfps are shown, based on the version 5.2 genome assembly. Open points indicate Sfps that occur
in a cluster, filled points indicate those that do not. We observed significantly more clusters of genes than were found when randomly selecting 138
genes with the observed chromosomal distribution (1,000 simulations; median number of clusters: 3; range: 0-9).

(B) Genomic map of Chromosome 2L containing the tandem duplicates CG17472 and CG31680. CG17472, which is present in all five species of the
melanogaster subgroup, contains several residues under positive selection. Orange bars indicate naturally occurring transposon remnants. A
pseudogenized copy of the locus is also indicated (\s).

(C) Phylogenetic analysis of the tandem gene duplication. Numbers above branches are branch estimates of ® in the free-ratio model. Italicized
numbers under nodes indicate percent bootstrap support based on 1,000 replicates. Numbers at the tips of the non-melanogaster branches of the tree

are the GLEANR-predicted gene numbers for the indicated species.
doi:10.1371/journal.pbio.0060178.9g002

simulans and D. yakuba [35,36] to repeat our mating experi-
ments with a wild-type strain of each species (Figure S1). Of
the 63 Sfps detected in all three species, 19 were not reported
previously as seminal fluid components. For Sfps that were
detected in only one or two species, we investigated whether
these proteins could be called as either lineage-specific gene
gain or loss events. Most of the proteins had identifiable
orthologs in the other species; our failure to detect these
proteins may be due to changes in expression patterns,
sequence substitutions that render MS identification more
difficult, changes in the amounts of proteins transferred at
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mating, or the lower number of replicates (two per species)
performed for D. simulans and D. yakuba. However, our data
identify 13 lineage-specific Sfps across the three species
(Table S5). For example, in D. melanogaster, CG6289 (a
predicted serine protease inhibitor) has duplicated to form
the lineage-specific gene CG6663. Also, in D. yakuba, Acp76A
(another serine protease inhibitor) has duplicated, and
several other proteins appear to be either lineage-specific
to D. yakuba or rendered nonfunctional in other species
(Table S5).

Some proteins detected for D. simulans and D. yakuba lacked
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Figure 3. Relative Quantification of Transferred Sfps Found in Mated Female D. melanogaster in a Total of Six Canton S and tudor Experiments

The NSAF was used to estimate the relative abundance for each identified Sfp within each mating experiments, and values for each protein were
averaged across all experiments in which the protein was found. Proteins were sorted by abundance and plotted to show the dynamic range of
proteins detected (about 10%). The color of each point indicates the number of experiments in which the protein was identified; note that sperm-
specific proteins could only be found in a maximum of three experiments (Canton S). Error bars represent one standard error of the mean NSAF.

doi:10.1371/journal.pbio.0060178.g003

annotated orthologs in D. melanogaster. For seven such
proteins, we identified the syntenic region in D. melanogaster
and performed reverse-transcriptase PCR (RT-PCR) to
determine whether transcripts of the region were made. In
five cases, we detected a transcript in D. melanogaster (see Table
S5), and three of these putative loci were detected as proteins
in D. melanogaster when searching for unannotated proteins in
the D. melanogaster genome (see below). Curiously, one of these
genes, which we have annotated as Sfp53D, showed male-
specific expression in D. yakuba and male-biased expression in
D. simulans, but no sex expression bias in D. melanogaster (data
not shown). Sfp53D is therefore an example of the type of
protein that would have been omitted from previous sets of
predicted Sfps due to its lack of sex-specific expression.

A Novel Proteomic Method Identifies Unannotated
Reproductive Genes in D. melanogaster

Based on these results, we reasoned that other Sfps may not
be annotated as genes in D. melanogaster, which would make
them impossible to detect by searching mass spectra against
the annotated proteome. To detect additional unannotated
Sfps, we first constructed a six-reading frame translation of
the D. melanogaster euchromatic genome, which produced
>5.8 million potential open reading frames (ORFs). Then, to
reduce computational search time, we applied the Hardklor
algorithm [40] to predict which MS2 spectra from a tudor
experiment came from male peptides containing only natural
abundance isotopes. These spectra were searched against the
six-frame database, and those that matched an ORF corre-
sponding to an annotated protein were discarded. This
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procedure left 23 novel, putative ORFs that did not match
any D. melanogaster gene annotation in FlyBase. For each
putative ORF, we used rapid amplification of cDNA ends
(RACE) and RT-PCR to confirm transcription of the region
encoding the peptide and to define the full-length transcript.
Through this method, we discovered 19 unannotated genes
(Table S6; GenBank (http:/lwww.ncbi.nlm.nih.gov/Genbank/)
accession numbers EU755332-EU755350), most of which
showed no significant identity to the predicted proteins of
the other sequenced Drosophila species.

All 19 proteins have predicted signal sequences for
secretion; many are encoded by only one or two exons, and
all produce short polypeptides (median length: 93 residues).
Consistent with our clustering analysis, half of the genes were
found in regions of the genome containing other annotated
Sfps. Most of the novel proteins had no recognizable domains
based on BLAST and structural homology searches, but we
identified one C-type lectin and three enzyme inhibitors,
including a putative protease inhibitor, Sfp24Ba. This protein
was identified by three peptides, one of which is indicated in
Figure 4A. Sfp24Ba is adjacent to another previously
unannotated gene, Sfp24Bb (an apparent tandem duplicate),
and lies 25 kb upstream of the gene that encodes a
transferred protease inhibitor, Acp24A4 (Figure 4B). Com-
parative structural modeling (Figure 4C) suggests that this
protein is a Kunitz-type protease inhibitor. The discovery of
these 19 new Sfp genes in a model system that has been
studied for over a century and for which comparative
genomic analysis is now straightforward underscores the
limitations of both computational gene prediction programs
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doi:10.1371/journal.pbio.0060178.9004

and the “whole-proteome” databases that are routinely used
during shotgun MS analyses.

Discussion

Our study provides a proteomic-scale view of the trans-
ferred Sfps in D. melanogaster. While we confirmed that 75
predicted Sfps are truly transferred at mating, we also
identified a total of 82 genes (63 already annotated, 19 newly
discovered) previously unknown to encode seminal fluid
products. By using data from the genome sequencing projects
and by performing comparative experiments in D. simulans
and D. yakuba, we identified many instances of positive
selection, tandem gene duplication, and lineage-specific
changes in seminal fluid content between species. Taken
together, our experiments demonstrate how new proteomic
methods can be combined with the vast amounts of genomic
sequence data that are now available to gain considerable
insight into the molecular players of a specific biological
process.

The two methodological advances presented here—the use
of isotopic labeling to distinguish between the sexes, and
searching MS data against an entire translated genome—
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predicted signal sequence removed), which shows significant homology to

4. The N and C termini are indicated by blue and red shading, respectively.

should be applicable to many taxa. For example, worms,
plants, rodents, and microorganisms are all amenable to
isotopic labeling [29,41,42]. In any of these systems, differ-
ential labeling should readily allow the detection of proteins
transferred from one organism (during mating or another
behavior, e.g., courtship). Thus, our approach allows trans-
ferred proteins in a pre-specified biological process to be
identified. Furthermore, our MS- and RACE-based method to
identifying novel genes should be applicable to other
organisms with sequenced genomes, particularly if their
genome sizes are no more than 1-2 orders of magnitude
greater than the D. melanogaster genome. Rodents, Arabidopsis,
and humans all fall within this range; indeed, recent work in
A. thaliana has found new genes using a similar approach [43].
Our results confirm that searching MS data against an entire
translated genome, rather than only an annotated or
predicted proteome, can identify a considerable number of
new genes. Admittedly, this process might have been
particularly useful for identifying Drosophila Sfps. As shown
here and in previous work, these proteins are short, rapidly
evolving, and relatively free of codon bias [19,22], three
features making them less likely to be detected by computa-
tional gene prediction programs. Nonetheless, our gene

July 2008 | Volume 6 | Issue 7 | €178



identification method was straightforward to perform, and
because it was experimentally based, it offered automatic
verification for the new genes and allowed us to immediately
assign them to a specific biological process: male reproduc-
tion.

One striking result from these experiments is that seminal
fluid content in D. melanogaster appears to be considerably
more complex than was previously predicted. The Obp genes
identified reproducibly and at high abundance by MS are
particularly attractive targets for further characterization.
One hypothesis for the origin of these reproductive Obps is
based on the fact that Obps are a large, 51-member family in
D. melanogaster [33]. If some members of this family were
functionally redundant, selection on the regulatory and
coding sequences of some Obps might have been relaxed,
allowing them to be co-opted from an olfactory function into
a male reproductive function. Indeed, several of the

identified Obps show accessory gland-specific patterns of

expression, while others are expressed in both the accessory
glands and the head [27]. The function of these reproductive
Obps remains to be determined; they may present odorants
or pheromones to odorant receptors in the female repro-
ductive tract or play some other role, such as transferring
small molecules to the female to elicit a behavioral response.
If some of the Obps interact with a receptor in the female
tract, the Orl0a odorant receptor is one possible target, since
its expression is up-regulated in female reproductive tracts in
response to the receipt of Sfps [44].

While the selective pressures driving the evolution of Sfps
(and of reproductive proteins in general) remain unclear, the
important roles of tandem gene duplication and positive
selection in the evolution of Sfps are consistent with the
predictions made by models of sexual selection/conflict [45].
If males are engaged in a coevolutionary chase with females,
driven by sexual selection or sexual conflict, duplication of an
Sfp locus could allow males to better adapt to a particular
allele or paralog of a female receptor [45]. Indeed, gene
duplication followed by positive selection has been observed
previously in a well-characterized reproductive protein, lysin,
which allows abalone sperm to penetrate the egg vitelline
envelope [46]. If Drosophila Stfps are coevolving with receptors
in the female reproductive tract—or with other Sfps with
which they interact—then gene duplication may be an
important evolutionary strategy for males to increase their
reproductive success. Tests of this hypothesis will require
both functional data on the newly identified male proteins
and the identification of their interacting female and/or male
partners [47-49].

The rapid divergence characteristic of many Sfps has
generated considerable interest in their potential role in
speciation [3,4]. If proteins mediating processes such as sperm
storage, fertilization, or post-mating behavior diverged
quickly between allopatric populations, driven continually
by coevolutionary forces such as sexual selection or sexual
conflict, between-population matings may become less
productive than within-population matings. Such a differ-
ence could exert pressure to further differentiate the mating
systems or mating behaviors of each group, which could
eventually lead to the formation of distinct species. Deter-
mining the transferred Sfps, and subsequently identifying
their functions and evolutionary patterns, could therefore be
important steps in identifying potential “speciation genes.”
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In conclusion, this set of transferred proteins provides a
rich resource for investigating long-standing evolutionary
questions and for identifying the specific molecules and
functional allelic variants that affect both sperm competition
and male-female coevolution and conflict. The challenge
ahead will be to apply the combination of genetic, bio-
chemical, and evolutionary methods that have already yielded
many insights into Drosophila reproduction to this novel
collection of transferred proteins. Functional tests of
individual Sfps are essential for understanding the causes of
the dramatic post-mating changes in female behaviors. For
example, several studies have used gene knockouts or RNA
interference to identify the post-mating effects of specific
Stps [50-55]. Other experiments have associated naturally
occurring variants in several Sfps with different measures of
sperm competition [12,56]. We expect that both of these
approaches will become more effective in the future, since
they can now be targeted to those transferred Sfps identified
here.

Materials and Methods

Flies. Fly stocks were maintained on standard media at 25 °C,
except during isotopic labeling (see below). D. melanogaster stocks
included a wild-type lab strain, Canton S, and the strain used for
genome sequencmg, y; en bw sp. To produce spermless males,
homozygous tud' bw sp females [30] were mated to either Canton N
or y; cn bw sp males, and male progeny were retained for use in mating
experiments. The DTA-E stock was used to produce males lacking
both sperm and main-cell accessory gland proteins [31]. D. simulans
strain W89 and D. yakuba strain Tai6 were used in additional mating
experiments.

Isotopic labeling. The isotopic labeling procedure followed a
previously described method [29], with some modifications. Wild-type
Saccarhomyces cerevisiae was grown to saturation in minimal media
containing 2% glucose, yeast mtrogen base without amino acids and
ammonium sulfate (Difco), and '°N-labeled ammonium sulfate (> 99%

°N-enrichment; Spectra Stable Isotopes). Yeast cells were pelletted,
resuspended in a small volume of sterile water, and ly()phlhzed This
dried yeast was then mixed with water to form a “heavy” (*°N) yeast
paste. Flies were isotopically labeled by allowing unlabeled females to
lay eggs for 24-36 h onto an agar plate topped with a small amount of
heavy yeast paste. Adults were then discarded, and eggs were allowed to
develop to adulthood at 25 °C in a vial capped at the open end by the
plate. Heavy yeast paste was added to the plate throughout develop-
ment as the sole food and nitrogen source. Virgin females were
collected over COy within 8 h of eclosion and stored in a separate vial
with '°N yeast paste on an agar, plate. Shotgun MS analysis of protelns
from whole, first- generatlon °N flies was used to confirm isotopic
labeling. In parallel to "N labeling, males of the strain to be tested were
grown in standard vials. Males were collected while young (0-3 d old)
and aged in isolation in a standard vial.

Mating experiments. We performed 12 total mating experiments:
three biological replicates each of Canton S and tudor males, and two
biological replicates each of DTA-E, D. simulans, and D. yakuba males.
For each experiment, males and females were aged to 2-5 d before
mating. On the day before an experiment, approximately 40 labeled,
virgin females were divided into three vials containing agar with a
small amount of heavy yeast paste. Unlabeled males, in a >1.5-fold
excess relative to females, were placed into three standard vials. The
next day, males were transferred to the female vials without
anesthesia. Mating was allowed to proceed for 2 h; vials were
inspected several times during this period to confirm that copula-
tions occurred. At the end of the mating period, flies were sexed over
COy: males were discarded, while females were kept on ice and
immediately dissected in 50 mM ammonium bicarbonate. The lower
female reproductive tracts were retained and stored in cold
ammonium bicarbonate, while ovaries were excluded to prevent
saturating the protein sample with the highly abundant egg yolk
proteins. (If ovaries had been included, a greater fraction of peptides
identified by MS would have arisen from these female proteins,
making it more difficult to detect peptides from lower-abundance
male Sfps.) It is unlikely that the removal of the ovaries diminished
our ability to detect certain Sfps, as we identified all five Sfps
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(Acp26Aa, Acp36DE, Acp62F, msopa, and Spn2) that had been shown
previously to localize to the ovaries [28].

Protein preparation. Because we sought to identify soluble,
extracellular male Sfps, proteins were prepared in such a way so as
to select specifically for soluble proteins. We also sought to reduce
cell lysis and thus protein content from male sperm cells and female
reproductive tract epithelial cells, since releasing intracellular
proteins from these cells would dilute the concentration of trans-
ferred Sfps and render their identification more difficult. Female
reproductive tracts were homogenized in the ammonium bicarbonate
dissection buffer, which lacks any type of detergent and thus
minimized cell lysis. The mixture was then centrifuged for 5 min at
18,000g. This process was repeated once, and the supernatant was
retained. Protein concentration was estimated using a BCA assay
(Pierce). Proteins were prepared for tandem mass spectrometry and
digested with trypsin as previously described [57].

Mass spectrometry. Two samples each of Canton S and fudor, and
one sample each of DTA-E, D. simulans, and D. yakuba, were analyzed
by multi-dimensional protein identification technology (MudPIT)
[68]. Protein digests (50 ug) were bomb-loaded overnight onto a tri-
phasic 100-pm internal diameter capillary column packed with 15-cm
reversed phase material (Jupiter C12, 4 um, 90 A; Phenomonex) at the
tip of the column, then 4 cm of strong cation exchange material
(Whatman), then 3 cm more of C12 material. The columns were then
placed on-line with either an LTQ ion-trap mass spectrometer
(ThermokElectron) or an LTQ-FT Ultra mass spectrometer (Thermo-
Electron) and eluted over a 12-step gradient with increasing salt
concentration as described previously [59]. We also analyzed addi-
tional samples using a single reversed-phase HPLC method. One
sample each of Canton S, tudor, DTA-E, D. simulans, and D. yakuba was
analyzed with 75-um internal diameter capillary columns packed with
40 cm of Jupiter C12 reversed phase material. For each sample
analyzed by reversed phase, four or five technical replicates of ~6 pg
of protein were analyzed by injecting the sample directly into an on-
line column and running four-hour gradients to acquire mass spectra
using data-dependent acquisition.

Protein identification. Tandem mass spectra from each RAW mass
spectrometry data file were extracted from the proprietary data
format and stored in the MS2 file format [60] using in-house
developed software. The charge-state of multiply charged MS/MS
spectra were assigned a single +2 and 43 charge state using the charge-
czar program [61] and searched against two databases using Sequest
[62]. One database contained the annotated proteome of the
appropriate species; the other database contained a set of “decoy”
proteins, made by randomly shuffling the amino acids in each protein
of the annotated database. Each database also included common
contaminants (or their shuffled counterparts). For D. melanogaster
samples, the proteome was taken from the version 4.3 release of the
D. melanogaster genome (downloaded from NCBI; gene annotations
and names were later updated to version 5.2). For D. simulans and D.
yakuba, the GLEANR protein predictions from the 12-genome
Drosophila sequencing project were used [35,36]. Because the GLEANR
sets were likely imperfect, these species’ databases were supple-
mented with the best hit (e-value cutoff = 0.01) obtained when the
identified D. melanogaster proteins were searched using tblastn against
the D. simulans or D. yakuba sequences in GenBank. After the database
searches, the percolator program [32] was used to improve the
discrimination between correct and incorrect peptide spectrum
matches and to assign a g-value as a measure of the false discovery
rate [63].

Lists of transferred proteins (Tables S2 and S4). To determine the
list of high-confidence Sfps in D. melanogaster, we used the following
criteria. Proteins identified in at least two independent experiments
were automatically included. For proteins identified in only one of
the six Canton S and fudor experiments, we required additional
evidence that the protein could plausibly be involved in reproduc-
tion. This criterion could be satisfied if a protein was included in the
most recent and comprehensive set of predicted Sfps [21] and/or if
the protein showed strong evidence of being expressed exclusively or
predominantly in the male reproductive tract (accessory glands or
testes) in the FlyAtlas dataset [27]. Because we performed fewer
mating experiments (two per species) and had no genome-wide
catalog of Sfps or expression data, it was necessary to use different
criteria in defining the sets of transferred proteins in D. simulans and
D. yakuba. For each species, all proteins found in both experiments
were automatically included. Furthermore, we included proteins
found in only one experiment if they met any of the following
criteria: (a) at least two peptides were used to identify the protein in
the experiments; (b) if a single peptide was used for identification, it
was detected at least twice during the MS run; or (c) the protein was
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identified as a transferred or predicted Sfp in D. melanogaster. After
determining the list of transferred proteins shown in Table S2,
functional information was acquired by examining FlyBase and the
primary literature and was used to classify proteins listed in Table 1.
We classified a protein as a “sperm protein” if it was found at least
twice in Canton S experiments but not in tudor experiments, and/or if
it was previously documented as such [25]. We used BLAST and BLAT
searches to determine whether any transferred proteins of each
species could be called as lineage-specific (Table S5).

Genomic locations. Genomic locations of Sfps were determined by
downloading from FlyBase (release version 5.2) the chromosomal
location of the first transcribed base of each gene, and recording the
strand from which the gene was transcribed. Only euchromatic genes
were considered and plotted, such that plots in Figure 2A do not
indicate, for example, centromeric heterochromatin. Clusters were
defined as genes that were within 10 kb of each other. For proteins
encoded in a given cluster, we used pairwise BLASTP searches to
determine whether the proteins showed evidence of paralogy. We
used simulations to estimate a null distribution of the number of
clusters that would be expected for a set of 138 genes distributed
across the chromosomes in the same ratio as our Sfps. We extracted
coding sequence annotations from http:/lwww.flybase.org/ (version
5.2) and noted the location of the start codon for each gene (one
isoform per locus). We then generated 1,000 sets of 138 genes by
randomly selecting genes from each chromosome arm in the same
ratio as the observed Sfps. The number of clusters in each set was
counted; the median was 3, and the range was 0-9 clusters. Therefore,
we judged our observed 19 clusters to be significantly more than
would be expected by chance.

RT-PCR. Several GLEANR-predicted proteins identified in D.
simulans and D. yakuba lacked annotated orthologs in the version 4.3
release of the D. melanogaster genome (one has since been annotated as
CG12828, and another is reported [64] in GenBank under accession
number BK003861, but is not yet recorded in FlyBase). We thus tested
whether these genes (GLEANR numbers: dsim__2617, dsim__3447,
dsim__15012, dsim__10234/dyak__792, dsim__9514/dyak__14199, dy-
ak__12348, and dyak__10591) were expressed in D. melanogaster and
showed sex-specific expression. PCR primers were designed to
amplify transcripts in both the species of identification and the
syntenic region of D. melanogaster. Although several of these proteins
were encoded by short, single-exon genes, primers were designed to
span putative introns when possible. Total RNA was prepared from
whole male and whole female flies of both species using the TRIzol
reagent (Invitrogen) and subjected to rigorous DNase treatment using
the Turbo DNase kit (Ambion). First-strand cDNA from each sex was
synthesized using the SuperScript III kit (Invitrogen) according to the
manufacturer’s instructions. This cDNA was then diluted and used in
PCR reactions. As a positive control, we assayed for transcription of
ribosomal protein L32 (RpL32) using previously published primers [12],
modified as needed for D. simulans and D. yakuba. Negative PCR
controls were performed by using template from cDNA reactions that
lacked reverse transcriptase.

Evolutionary analyses. For each D. melanogaster protein identified,
we used coding-sequence alignments generated by the 12-species
genome sequencing projects [35,36] to conduct molecular evolu-
tionary analyses. We preferentially used the more recent Fuzzy
Reciprocal BLAST-based alignments of D. melanogaster coding
sequences with orthologs in any other species (ftp://ftp.flybase.net/
genomes/12__species__analysis/clark__eisen/alignments); however,
less than half of our Sfps were included in this set, so for the others
we used the comparative assembly freeze 1 (CAF1) GeneMapper
alignments produced by S. Chatterji and L. Pachter. From these
sources, we were able to analyze 116 of the 138 annotated Sfps from
D. melanogaster. We first made pairwise estimates of dylds with model
MO of codeml in the PAML package [65]. When available, we used the
D. simulans ortholog; otherwise, the D. sechellia ortholog was used.
Alignments were obtained from one of the above sources and
checked by eye using MEGA 4.0 [66]. For genes with pairwise dy/ds >
0.5 or dy > 0.05, we expanded our PAML analysis to up to five species
(melanogaster, simulans, sechellia, yakuba, and erecta) in order to search for
specific sites likely to have evolved under positive selection. For each
gene, we used only those species for which alignments were reliable,
and coding sequence alignments were checked by eye and edited in
MEGA 4.0. We then tested for positive selection by comparing the
likelihoods of codeml models M8 and M8a with a likelihood ratio test
[67]. In model M8a, each codon is assigned to one of 11 classes, ten of
which have an o (dn/ds) value between 0 and 1 that is estimated from
the data using maximum likelihood, and the 11th of which has m =1,
representative of neutral evolution. Model M8 differs in that the 11th
class of codons can take any o value; this value is estimated from the
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data and can be greater than 1 (which indicates adaptive evolution).
We corrected for multiple testing with a strict Bonferroni correction,
though we note that among the 36 tests performed, only ~2 would be
expected to be false positives at a critical p-value of 0.05. As shown in
Figure 2B and 2C, we re-analyzed CG17472 and CG31680 by including
both paralogs from D. simulans and D. sechellia. The M8 versus M8a test
of CG17472 in the results section contains all orthologs (including
both duplicate copies in D. simulans and D. sechellia), but not CG31680
and its D. sechellia ortholog. For Figure 2C, we used the dnaml program
in PHYLIP [68] to construct a phylogeny and to simulate 1,000
bootstrap replicates. We then used PAML to estimate ® for each
branch of the phylogeny and performed a likelihood ratio test to
compare the likelihoods of a model that allowed for ® to vary on each
branch of the phylogeny versus a null model in which a uniform ® was
estimated across all branches [69].

Protein abundance. Relative protein abundance was estimated
from D. melanogaster MS data by counting the number of spectra that
positively identified each protein in a given MS run. This spectral
count was normalized for the length of each protein and divided by
the sum of all normalized counts for the entire MS run to produce an
NSAF for each protein, as previously described [38,39]. This value was
then averaged across all experiments in which a protein was detected,
and identified proteins were ranked by their mean NSAFs. This rank
should be interpreted as how common it was to identify ionizable and
detectable spectra for a given protein, relative to the other unlabeled
proteins.

Discovery of new, unannotated proteins. To identify unannotated
Sfps, we first used nr6frame (D. States, unpublished program) to make
a six-reading-frame translation of the entire Berkeley Drosophila
Genome Project D. melanogaster genome, version 5 (downloaded from
ftp://lhgdownload.cse.ucsc.edu/goldenPath/dm3/chromosomes). This
program translates genomic DNA in all six reading frames; each
reported ORF ends with a stop codon (but does not necessarily start
with a methionine). Across the four Drosophila chromosomes, over 7.6
million ORFs were generated. We filtered these ORFs to exclude
those that contained only one type of amino acid (mono-residue
repeats), those that were too short to be confidently used in MS
spectrum identification (<11 residues), or those that could not
produce a tryptic peptide due to a lack of a K or R residue. This
filtering reduced the data set to >5.8 million ORFs. For searching this
large database, it was computationally advantageous to filter the MS2
files in order to reduce the search time. We used data from three
technical replicates of a tudor sample, collected with a 40-cm reversed
phase column on an LTQ-FT Ultra instrument. We used Hardklor
[40] to predict the isotope distributions that resulted from '°N-
enriched peptides and removed their corresponding MS/MS spectra
from the analysis. Because of the excess of labeled peptides within the
sample, this filtering reduced the number of spectra that needed to
be searched by ~86%. The remaining spectra were then searched
against the six-frame translation database using Sequest [62], and
identifications were filtered by DTASelect. Identified peptides
matching annotated protein coding genes were discarded, leaving
23 ORFs that did not match a genome annotation. We designed
primers in the genomic regions matching the identified peptides and
performed 5’ and 3" RACE to amplify transcripts from these regions
(SMART RACE Kit, Clontech-Takara). This method identified 19
unannotated genes, which were then confirmed with RT-PCR and
sequencing of cDNA from whole males. SignalP was used to predict
whether each novel protein is secreted [70], and we used BLAST and
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