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Abstract
Causal inference enables machine learning methods to estimate treatment effects of
medical interventions from electronic health records (EHRs). The prevalence of such
observational data and the difficulty for randomized controlled trials (RCT) to cover all
population/treatment relationships make these methods increasingly attractive for study-
ing causal effects. However, researchers should be wary of many pitfalls. We propose
and illustrate a framework for causal inference estimating the effect of albumin on mor-
tality in sepsis using an Intensive Care database (MIMIC-IV) and comparing various sen-
sitivity analyses to results from RCTs as gold-standard. The first step is study design,
using the target trial concept and the PICOT framework: Population (patients with sep-
sis), Intervention (combination of crystalloids and albumin for fluid resuscitation), Con-
trol (crystalloids only), Outcome (28-day mortality), Time (intervention start within 24h
of admission). We show that too large treatment-initiation times induce immortal time
bias. The second step is selection of the confounding variables based on expert knowl-
edge. Increasingly adding confounders enables to recover the RCT results from obser-
vational data. As the third step, we assess the influence of multiple models with vary-
ing assumptions, showing that a doubly robust estimator (AIPW) with random forests
proved to be the most reliable estimator. Results show that these steps are all important
for valid causal estimates. A valid causal model can then be used to individualize deci-
sion making: subgroup analyses showed that treatment efficacy of albumin was better
for patients >60 years old, males, and patients with septic shock. Without causal thinking,
machine learning is not enough for optimal clinical decision on an individual patient level.
Our step-by-step analytic framework helps avoiding many pitfalls of applying machine
learning to EHR data, building models that avoid shortcuts and extract the best decision-
making evidence.
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Author summary
Rich routine-care data, as EHR or claims, is useful to individualize decision making
using machine learning; but guiding interventions requires causal inference. Unlike
with an RCT, interventions in routine data do not easily enable an apple-to-apple mea-
sure of the effect of an intervention, leading to many analytical pitfalls, particularly in
time-varying data. We study these in a tutorial spirit, making the code and data openly
available. We give 5 analytical steps for data-driven individualized interventions: Step
1) Study design, where common pitfalls are selection bias, with information unequally
collected across treatment and control patients, and immortal time bias, where the
inclusion-defining event interacts with the intervention time. Step 2) Identification of the
causal assumptions and categorization of confounders. Step 3) Estimation of the causal
effect of interest by correct aggregation of confounders and selection of an appropriate
statistical model. Step 4) Assessing the analysis’ robustness to assumptions, and finally
Step 5) Individualizing treatment decision, by exploring treatment heterogeneity, eg
across subgroups. Studying choice of fluid resuscitation in sepsis, we show that common
mistakes in steps 1, 2, and 3 equally compromise causal validity.

preprocessing and analyses are available on
github https://github.com/soda-inria/
causal_ehr_mimic/.
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Introduction: Data-driven decisions require causal inference
Informing a care option extends beyond merely predicting the occurrence of an event; it
involves estimating the effect of the corresponding treatment effects. Routine-care data comes
naturally to mind to guide routine decisions, but they require care to estimate treatment
effects as they are observational, unlike Randomized controlled trials (RCTs). This context
calls for causal inference statistical frameworks. But merely applying these tools to the data
does suffice to ensure the validity of the inferences; numerous considerations must be care-
fully addressed.

Individualized medicine and machine learning challenges
Machine learning plays a pivotal role in individualized medicine [1–5]. It demonstrated supe-
rior performance over traditional rule-based clinical scores in predicting a patient’s readmis-
sion risk, mortality, or future comorbidities using Electronic Health Records (EHRs) [1–5].
However, mounting evidence suggests that machine-learning models can inadvertently per-
petuate and exacerbate biases present in the data [6], including gender or racial biases [7,8],
and the marginalization of under-served populations [9]. These biases are typically encoded
by capturing shortcuts—stereotypical or distorted features in the data [10–12]. For instance,
numerous machine learning algorithms rely on post-treatment information [13–16], exempli-
fied by a diagnostic model for skin cancer that depends on surgical marks [11]. For Intensive
Care Unit data, focus of our study, such information markedly improves mortality prediction
(S1 Fig), but cannot inform decisions.

The importance of causal reasoning in data-driven decision-making [17]
While conventional machine learning relies on retrospective to generate predictions of future
effects [18], truly informing decision-making needs a comparison of potential outcomes with
and without the intervention. This involves estimating a causal effect, mirroring the method-
ology employed in RCTs [17]. However, RCTs encounter challenges such as selection biases
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[19,20], difficulties in recruiting diverse populations, and limited sample sizes for explor-
ing treatment heterogeneity across subgroups. Routinely collected data presents a unique
opportunity to assess real-life benefit-risk trade-offs associated with a decision [21], with
reduced sampling bias and sufficient data to capture heterogeneity [22]. Nevertheless, estimat-
ing causal effects from such data is challenging due to the confounding of the intervention by
indication. Therefore, dedicated statistical techniques are imperative to emulate a ”target trial”
[23] from observational data.

Multiple perspectives on evidence-based decision making
Across different fields, existing literature has emphasized different challenges associated with
estimating treatment effects using observational data. While epidemiologic studies underscore
the importance of the target trial approach [24–28], there emphasis primarily lies on biases
that arise from temporal effects [23,29–33] or confounding variables [34–36], with relatively
less attention to issues arising from estimator selection. Recent replications of RCTs using
observational data did not explore the impact of modern machine learning methods on the
robustness of the results [27,37].

In contrast, machine learning and causal inference literature predominantly studies esti-
mators [38–42] : propensity score matching [43], inverse probability weighting [44], outcome
models [45], doubly robust methods, [39] or deep learning based models [46]. This litera-
ture may be opaque for some due to intricate mathematical details and unverifiable assump-
tions. Guidelines seldom address time-related biases, or covariate aggregation which fre-
quently emerge in datasets with temporal dependencies [29,31]. Recently, the machine learn-
ing community shifted its focus from EHR data to simulated data, which may not capture the
complexities of real-world data [47–50].

In this work, we bring together epidemiological concepts and principles from statistical
and machine learning literature. We adopt an empirical perspective to answer practical needs
of applied researchers. A study of choices spread out across the analysis –study design, consid-
eration of confounders, and selection of estimators (refer to Section Step-by-step framework
for robust decision-making from EHR data)– highlights their equal importance in ensuring
the validity of results. To illustrate and compare biases, we investigate the impact of albumin
on sepsis mortality using data from a publicly available intensive care database, MIMIC-IV
[51] (section Application: evidence from MIMIC-IV on which resuscitation fluid to use).

The primary focus of the main section is on accessibility, with technical details expanded
in the appendices.

Step-by-step framework for robust decision-making from EHR
data
Whether or not using machine learning, many pitfalls threaten an analysis’ value for decision-
making. To avoid these pitfalls, we outline a simple step-by-step analytic framework illus-
trated in Fig 1 for retrospective case-control studies. We frame the medical question as a tar-
get trial [52] to match the design to an RCT giving the gold standard average effect. Then we
probe for heterogeneity –predictions on sub-groups– going beyond what RCTs can achieve.

Step 1: study design – Frame the question to avoid biases
Grounding decisions on evidence needs well-framed questions, defined by their PICO(T)
components. Population, Intervention, Control, and Outcome [53,54], and in case of EHRs or
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Fig 1. Step-by-step analytic framework. The complete inference pipeline confronts the analyst with many choices, some guided by domain knowledge, others by data
insights. Making those choices explicit is necessary to ensure robustness and reproducibility.

https://doi.org/10.1371/journal.pdig.0000721.g001

claims data an additional time component, are necessary to concord with a (hypothetical) tar-
get randomized clinical trial [37,55] – Table 1. A selection flowchart such as in S5 Fig makes
inclusion and exclusion choices for PICOT explicit.

Without care in defining these PICO(T) components, non-causal associations between
treatment and outcomes can easily be introduced into an analysis [56]. The time-varying
nature of EHR calls for checking systematically of the Population and Time components by
addressing two commonly encountered types of bias.

Selection Bias. In EHRs, outcomes and treatments are often not directly available and
need to be inferred from indirect events. These signals could be missing not-at random, some-
times correlated with the treatment allocation [57]. For example, billing codes can be strongly
associated with case-severity and cost. Consider comparing the effectiveness of fluid resusci-
tation with albumin to crystalloids. As albumin is more costly, this treatment is more likely
to have a sepsis billing code. On the contrary, for patients treated with crystalloids, only the
most severe cases will have a billing code. Naively comparing patients would overestimate the
effect of albumin.

Table 1. PICO(T) components help to clearly define the medical question of interest.
PICO component Description Notation Example
Population What is the target population of

interest?
X∼ℙ(X), the covariate distribution Patients with sepsis in the ICU

Intervention What is the treatment? A∼ℙ(A = 1) = pA,
the probability to be treated Combination

of crystalloids
and albumin

Control What is the clinically relevant
comparator?

1 – A∼ 1 – pA Crystalloids
only

Outcome What are the outcomes to compare? Y(1),Y(0)∼ℙ(Y(1),Y(0)),
the potential outcomes distribution 28-day

mortality

Time Is the start of follow-up aligned
with intervention assignment? N/A Intervention

within the first day

https://doi.org/10.1371/journal.pdig.0000721.t001
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Immortal time bias. Improper alignment of the inclusion defining event and the inter-
vention time is a major source of bias in time-varying data [23,29,32]. Immortal time bias
(illustrated in S2 Fig) occurs when the follow-up period, i.e. cohort entry, starts before the
intervention, e.g. prescription for a second-line treatment. In this case, the treated group will
be biased towards patients still alive at the time of assignment and thus overestimating the
effect size. Other frequent temporal biases are lead time bias [30,31] or right censorship [23],
and attrition bias [33]. Good practices include explicitly stating the cohort inclusion event
[58,Chapter 10:Defining Cohorts] and defining an appropriate grace period between starting
time and the intervention assignment [23]. At this step, a population timeline can help.

Step 2: identification – List necessary information to answer the causal
question
The identification step builds a causal model to answer the research question. Indeed, the
analysis must compensate for differences between treated and non-treated that are not due to
the intervention ([59,chapter 1], [26,chapter 1]).

Causal assumptions. Valid causal inference requires assumptions [60] –detailed in S1
Appendix. The analyst should thus review the plausibility of the following: 1) Unconfound-
edness: after adjusting for the confounders as ascertained by domain expert insight, treat-
ment allocation should be random; 2) Overlap –also called positivity– the distribution of con-
founding variables overlaps between the treated and controls –this is the only assumption
testable from data [44]–; 3) No interference between units and consistency in the treatment,
a reasonable assumption in most clinical questions.

Categorizing covariates. Potential predictors –covariates– should be categorized depend-
ing on their causal relations with the intervention and the outcome (illustrated in S4 Fig):
confounders are common causes of the intervention and the outcome; colliders are caused by
both the intervention and the outcome; instrumental variables are a cause of the intervention
but not the outcome, mediators are caused by the intervention and is a cause of the outcome.
Finally, effect modifiers interact with the treatment, and thus modulate the treatment effect in
subpopulations [61].

To capture a valid causal effect, the analysis should only include confounders and possi-
ble treatment-effect modifiers to study the resulting heterogeneity. Regressing the outcome on
instrumental and post-treatment variables (colliders and mediators) will lead to biased causal
estimates [35]. Drawing causal Directed Acyclic Graphs (DAGs) [34], eg with a webtool such
as DAGitty [62], helps capturing the relevant variables and defining a suitable estimand or
effect measure.

Unconfoundedness –inclusion of all confounders in the analysis– is a strong assumption
that can be difficult to ascertain in practice applications. In these cases, sensitivity analyses
for omitted variable bias allow to test the robustness of the results to missing confounders
[63], proximal inference can be used to leverage proxy of unobserved confounders [64], and
the presence of a natural experiment or RCT might identify the desired causal effect without
unconfoundedness [65,Chapter 5, 9].

The estimand is the final causal quantity estimated from the data. Depending on the ques-
tion, different estimands are better suited to contrast the two potential outcomes E[Y(1)]
and E[Y(0)] [66,67]. For continuous outcomes, risk difference is a natural estimand, while
for binary outcomes (e.g. events) the choice of estimand depends on the scale. Whereas the
risk difference is very informative at the population level, e.g. for medico-economic decision-
making, the risk ratio and the hazard ratio are more informative at the level of sub-groups or
individuals [67].
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Causal estimators. A given estimand can be estimated through different methods. One
can model the outcome with regression models also known as G-formula, [45] and use it as a
predictive counterfactual model for all possible treatments for a given patient. Alternatively,
one can model the propensity of being treated for use in matching or Inverse Propensity
Weighting (IPW) [44]. Finally, doubly robust methods model both the outcome and the
treatment, benefiting from the convergence of both models [65]. There is a variety of doubly
robust models, reviewed in S2 Appendix.

Step 3: Statistical estimation – Compute the causal effect of interest
Confounder aggregation. Confounders captured via measures collected over multiple

time points must be aggregated at the patient level. Simple forms of aggregation include tak-
ing the first or last value before a time point, or an aggregate such as mean or median over
time. More elaborate choices may rely on hourly aggregations providing more detailed infor-
mation on the disease course such as vital signs. They may reduce confounding bias between
rapidly deteriorating and stable patients but also increase the number of confounders mak-
ing estimation more challenging [68]. The increase of variance occurs either in arbitrarily
small propensity scores for treatment models or in hazardous extrapolation from one group
to another for outcome model. If multiple choices appear reasonable, one should compare
them in a vibration analysis (see Step 4: Vibration analysis – Assess the robustness of the
hypotheses).

Beyond tabular data, unstructured clinical text may capture confounding or prognostic
information [69,70] which can be added in the causal model [28]. However, high-dimensional
confounder space such as text may break the positivity assumption just as hourly aggregation
choices for measurements.

Missing covariate values might also be a source of confounding. Some statistical estimators
(such as forests) can directly incorporate them as supplementary covariates. Others, such as
linear models, require imputations. S3 Appendix details general sanity checks for imputation
strategies when using statistical estimators.

Statistical estimation models of outcome and treatment. The causal estimators use
models of the outcome or the treatment –called nuisances. There is currently no clear best
practice to choose the corresponding statistical model [48,71]. The trade-off lies between sim-
ple models risking misspecification of the nuisance parameters versus flexible models risk-
ing to overfit the data at small sample sizes. Stacking models of different complexity as in a
super-learner is a good solution to navigate the trade-off [72,73].

Step 4: Vibration analysis – Assess the robustness of the hypotheses
Some choices in the pipeline may not be clear cut. Several options should then be explored,
to derive conceptual error bars going beyond a single statistical model. When quantifying the
bias from unobserved confounders, this process is sometimes called sensitivity analysis [74–
76]. Following [77], we use the term vibration analysis to describe the sensitivity of the results
to all analytic choices.

Step 5: Treatment heterogeneity – Compute treatment effects on
subpopulations
Once the causal design and corresponding estimators are established, they can be used to
explore the variation of treatment effects among subgroups. A causally-grounded model can

PLOS Digital Health https://doi.org/10.1371/journal.pdig.0000721 February 3, 2025 6/ 17

https://doi.org/10.1371/journal.pdig.0000721


ID: pdig.0000721 — 2025/1/31 — page 7 — #7

PLOS DIGITAL HEALTH Step-by-step causal analysis of EHRs to ground decision-making

Fig 2. Application of the step-by-step framework on which resuscitation fluid to use.

https://doi.org/10.1371/journal.pdig.0000721.g002

be used to predict the effect of the treatment from all the covariates –confounders and effect
modifiers– the Conditional Average Treatment Effect (CATE) [78]. Practically, CATEs can be
estimated by regressing an individual’s predictions given by the causal estimator against the
sources of heterogeneity (details in S7 Appendix).

Application: evidence from MIMIC-IV on which resuscitation fluid
to use
We now use the above framework to extract evidence-based decision rules for resuscita-
tion. Ensuring optimal organ perfusion in patients with septic shock requires resuscitation
by reestablishing circulatory volume with intravenous fluids. While crystalloids are readily
available, inexpensive and safe, a large fraction of the administered volume is not retained in
the vasculature. Colloids offer the theoretical benefit of retaining more volume, but might be
more costly and have adverse effects [79]. Meta-analyses from multiple pivotal RCTs found
no effect of adding albumin to crystalloids [80,81] on 28-day and 90-day mortality. Given this
previous evidence, we thus expect no average effect of albumin on mortality in sepsis patients.
However, studies –RCT [82] and observational [83]– have found that septic-shock patients do
benefit from albumin.

Emulated trial: Effect of albumin in combination with crystalloids compared to crystal-
loids alone on 28-day mortality in patients with sepsis. Multiple published RCTs can vali-
date the analysis pipeline before investigating sub-population effects for individualized deci-
sions. Using MIMIC-IV [51], we compare the magnitude of biases introduced by reasonable
choices in the different analytical steps recalled in Fig 2.

MIMIC-IV is a publicly available database that contains information from real ICU stays
of patients admitted to one tertiary academic medical center, Beth Israel Deaconess Medical
Center (BIDMC), in Boston, United States between 2008 and 2019. The data in MIMIC-IV
has been previously de-identified, and the institutional review boards of the Massachusetts
Institute of Technology (No. 0403000206) and BIDMC (2001-P-001699/14) both approved
the use of the database for research. The database contains comprehensive information from
ICU stays including vital signs, laboratory measurements, medications, and mortality data up
to one year after discharge.
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Table 2. Characteristics of the trial population measured on the first 24 hours of ICU stay.
Missing Overall Cristalloids only Cristalloids + Albumin P-Value

n 18421 14862 3559
Female, n (%) 7653 (41.5) 6322 (42.5) 1331 (37.4)
White, n (%) 12366 (67.1) 9808 (66.0) 2558 (71.9)
Emergency admission, n (%) 9605 (52.1) 8512 (57.3) 1093 (30.7)
admission_age, mean (SD) 0 66.3 (16.2) 66.1 (16.8) 67.3 (13.1) <0.001
SOFA, mean (SD) 0 6.0 (3.5) 5.7 (3.4) 6.9 (3.6) <0.001
lactate, mean (SD) 4616 3.0 (2.5) 2.8 (2.4) 3.7 (2.6) <0.001
S1 Table describes all confounders used in the analysis.

https://doi.org/10.1371/journal.pdig.0000721.t002

Step 1: Study design – effect of crystalloids on mortality in sepsis
• Population: Patients with sepsis in an ICU stay according to the sepsis-3 definition.

Other inclusion criteria: sufficient follow-up of at least 24 hours, and age over 18 years.
S5 Fig details the selection flowchart and S1 Table the population characteristics.

• Intervention: Treatment with a combination of crystalloids and albumin during the first
24 hours of an ICU stay.

• Control: Treatment with crystalloids only in the first 24 hours of an ICU stay.
• Outcome: 28-day mortality.
• Time: Follow-up begins after the first administration of crystalloids. Thus, we poten-

tially introduce a small immortal time bias by allowing a time gap between follow-
up and the start of the albumin treatment –see the full timeline in S3 Fig. Because we
are only considering the first 24 hours of an ICU stay, we hypothesize that this gap
is insufficient to affect our results. We test this hypothesis in the vibration analysis
step.

In MIMIC-IV, these inclusion criteria yield 18,121 patients of which 3,559 were treated
with a combination of crystalloids and albumin. While glycopeptide antibiotic therapy was
similar between both groups (51.8% crystalloid vs 51.5% crystalloids + albumin), aminoglyco-
sides, carbapenems, and beta-lactams were more frequent in the crystalloid only group (2.0%
vs. 0.7%, 4.3% vs. 2.6%, and 35.5% vs. 13.8%, respectively). The crystalloid only group was
more frequently admitted as an emergency (57.3% vs. 30.7%). Vasopressors (80.2% vs 41.7%)
and ventilation (96.8% vs 87.0%) were more prevalent in the treated populations, underlying
the overall higher severity of patients receiving albumin (mean SOFA at admission 6.9 vs. 5.7).
Table 2 details patient characteristics.

Step 2: Identification – listing confounders
For confounders selection we use a causal DAG shown in Fig S6 Fig. Gray confounders are
not controlled for since they are not available in the data. However, resulting confounding
biases are captured by proxies such as comorbidity scores (SOFA or SAPS II) or other vari-
ables (eg. race, gender, age, weight). S1 Table details confounders summary statistics for
treated and controls.

Causal estimators. We implemented multiple estimation strategies, including Inverse
Propensity Weighting (IPW), outcome modeling (G-formula) with T-Learner, Augmented
Inverse Propensity Weighting (AIPW) and Double Machine Learning (DML). We used the
python packages dowhy [41] for IPW implementation and EconML [84] for all other esti-
mation strategies. Confidence intervals were estimated by bootstrap (50 repetitions). S2
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Appendix and S4 Appendix detail the estimators and the available Python implementations.
S3 Appendix details statistical considerations that we identified as important but missing in
these packages, namely lack of cross fitting estimators, bad practices for imputation, or lack of
closed form confidence intervals.

Step 3: Statistical estimation
Confounder aggregation. We tested multiple aggregations such as the last value before

the start of the follow-up period, the first observed value, and both the first and last values as
separated features. Missing values were median imputed for numerical features, categorical
variables were one-hot encoded (thus discarding missing values).

Outcome and treatment estimators. To model the outcome and treatment, we used two
common but different estimators: random forests and ridge logistic regression implemented
with scikit-learn [85]. We chose the hyperparameters with a random search procedure (S5
Appendix). While logistic regression handles predictors in a linear fashion, random forests
bring the benefit of modeling non-linear relations.

Step 4: Vibration analysis – Comparing sources of systematic errors
Study design flaw – Illustration of immortal time bias. To illustrate the risk of

immortal-time bias, we vary the eligibility period of treatment or control in a shorter or
longer time window than 24 hours. As explained in Step 1: study design – Frame the question
to avoid biases, a longer eligibility period means that patients are more likely to be treated if
they survived up to the intervention and hence the study is biased to overestimate the ben-
eficial effect of the intervention. Fig 3a) shows that longer eligibility periods lead to albu-
min being markedly more efficient (detailed results with causal forest and other choices of
aggregation in S8 Fig).

Confounder choice flaw. We consider other choice of confounding variables (detailled in
S6 Appendix). Fig 3b) shows that a less thorough choice, neglecting the administrated drugs,
makes little to no difference. Major errors, such as omitting the biological measurements or
using only socio-demographical variables, lead to sizeable bias. This is consistent with the
literature highlighting the importance of a clinically valid DAG [34].

Estimation choices flaw – Confounder aggregation, causal and nuisance estimators.
Fig 3c) shows varying confidence intervals (CI) depending on the method. Doubly-robust
methods provide the narrowest CIs, whereas the outcome-regression methods have the largest
CI. The estimates of the forest models are closer to the consensus across prior studies (no
effect) than the logistic regression indicating a better fit of non-linear relationships. We only
report the first and last pre-treatment feature aggregation strategy, since detailed analysis
showed little differences for other aggregations (S7 Fig for complete results, and S9 Fig for
a detailed study on aggregation choices). Both methodological studies [86] and consistency
with published RCTs suggest to prefer doubly-robust approaches.

Step 5: Treatment heterogeneity – Which treatment for a sub-population?
With adequate choice of study design, confounding variables and causal estimator, the aver-
age treatment effect matches well published findings: Pooling evidence from high-quality
RCTs, no effect of albumin in severe sepsis was demonstrated for both 28-day mortality (odds
ratio (OR) 0.93, 95% CI 0.80-1.08) and 90-day mortality (OR 0.88, 95% CI 0.761.01) [80].
Having validated the analytical pipeline, we can use it to inform decision-making. We explore
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Fig 3. Framing – Immortal Time Bias

https://doi.org/10.1371/journal.pdig.0000721.g003

Fig 4. Subgroup distributions of Individual Treatment effects: better treatment efficacy for patients older than 60
years, septic shock, and to a lower extent males. The final estimator is ridge regression. The boxes contain the 25th and
75th percentiles of the CATE distributions with the median indicated by the vertical line. The whiskers extend to 1.5
times the inter-quartile range of the distribution.

https://doi.org/10.1371/journal.pdig.0000721.g004

heterogeneity along four binary patient characteristics, displayed in Fig 4. We find that albu-
min is beneficial with patient with septic shock consistent with one RCT [82]. It is also benefi-
cial for older patients (age >=60) and males. S7 Appendix details the heterogeneity analysis.

Discussion and conclusion
Valid decision-making evidence from EHR data requires a clear causal framework. Indeed,
machine-learning algorithms have often extracted non-causal associations between the inter-
vention and the outcome, improper for decision-making [11,13,14]. Machine learning studies
in medicine often rely on an implicit causal thinking, via a good understanding of the clinical
settings. A clear framework helps making sure nothing falls through the cracks.
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We have separated three steps important for causal validity: the choice of study design,
confounders, and estimators. Regarding study design, major caveats arise from the time com-
ponent, where a poor choice of inclusion time easily brings in significant bias. Regarding
choice of prediction variables, forgetting some variables that explains both the treatment allo-
cation and the outcome leads to confounding bias, that however remains small when these
variables capture weak links. Regarding choice of causal estimators, preferring flexible models
such as random forests reduces the bias, in particular for doubly-robust estimators. We have
shown that all these three steps are equally important: paying no attention to one of them
leads to invalid estimates of treatment effect, yet imperfect but plausible choices lead to small
biases of the same order of magnitude for all steps. For instance, despite the emphasis often
put on choice of confounders, minor deviations from the expert’s causal graph did not intro-
duce substantial bias (3b)), no larger than a too rigid choice of estimator. To assert the validity
of the analysis, we argue to relate as much as possible the average effect to a reference target
trial, even when the goal is to capture the heterogeneity of the effect to individualize decisions.
EHRs complement RCTs: RCTs cannot address all the subpopulations and local practices
[19,87]. EHRs often cover many individuals, with the diversity needed to model treatment
heterogeneity. The corresponding model can then inform better decision-making [17]: a sub-
population analysis (as in Fig 4) can distill rules on which groups of patients should receive a
treatment. Beyond a sub-group perspective, patient-specific estimates facilitate a personalized
approach to clinical decision-making [88].

Since the early 1980ies, researcher investigated the use of colloid fluids in sepsis resusci-
tation due to their theoretical advantages. However, evidence has long been conflicting. The
debate was sparked anew when new synthetic colloid solutions became available, but were
later shown to have renal adverse effects [80]. As even large RCTs left unanswered questions,
researchers focused on meta-analyses. Here our analysis is in line with the latest two meta-
analyses [80,81], as we found no net benefit for resuscitation with albumin in septic patients
overall, but a possible slight benefit for patients with septic shock (see Fig 4). While regular
meta-analyses not utilizing patient-level data are restricted in their sensitivity analyses, our
approach offers the benefit to investigate further potential effect modifiers such as age, sex, or
race.

Even without considering a specific intervention, anchoring machine-learning models on
causal mechanisms can make them more robust to distributional shift [89], thus safer and
fairer for clinical use [18,90]. Yet it is important to keep in mind that better prediction is not
per se a goal in healthcare. Establishing strong predictors might be less important than iden-
tifying moderately strong but modifiable risk factors as established in the Framingham cohort
[91], or optimizing population-wide cost-effectiveness instead of individual treatment effect.

No sophisticated data-processing tool can safeguard against invalid study design or a major
missing confounder, loopholes that can undermine decision-making systems. Our frame-
work helps the investigator ensure causal validity by outlining the important steps and relating
average effects to RCTs. Causal grounding of individual predictions should reduce the social
disparities that they reinforce [6,92,93], as these are driven by historical decisions and not
biological mechanisms. At the population level, it leads to better public health decisions. For
instance, going back to cardio-vascular diseases, the stakes are to go beyond risk scores and
also account for responder status when prescribing prevention drugs.
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